HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 微电子学论文

微电子学论文

时间:2022-11-16 13:03:49

微电子学论文

微电子学论文范文1

中职电子商务是一门既重理论又讲究实践操作的学科,其主要知识点包括Internet应用、网上支付、信息安全、网店开设推广、商品知识、网店美工、电子商务物流和客户服务等等。例如电子商务物流中不同材质商品的包装,为了防止因商品包装而产生的客户投诉甚至退单的情况发生,不同类型商品均有其打包的注意事项和操作流程,如易变形易碎品需使用轻质填充物防止商品变形打碎,还有首饰类、衣服、鞋包、电子产品、液体类、书刊等商品,在教学中都会进行商品包装实操训练。因受场地和设备的限制,教师在全班演示操作后,不可能令所有学生看清楚并马上掌握,大多学生即使在课堂上领会操作要点,但过后又可能忘记,还得再次请教老师或其他同学。教育理论表明,知识的掌握在于重复,这就要求学生在课堂上学到的知识,在课后要及时反复学习,温故而知新。教师在组织电子商务项目教学时,可以利用微信的语音或图文功能将学习任务的主题、要求和学习要点发送给学生,学生在完成项目学习任务过程中,可以随时随地的打开微信查看图文,重听教师的讲授内容,从视觉和听觉上开拓学习思路。这样既能及时解答学生的疑问,又减轻了教师的工作量。上例中教师可以通过微信将不同商品包装的教学演示视频短片发给学生,使学生能够随时随地拿出手机观摩复习。学生反映,他们通过微信可以将课外的零碎时间利用来学习,如车站、厕所、宿舍、公交车、床上等都是他们学习的好地方,这对于学生熟练掌握初步习得的技能是非常有利的。

二、加强互动教学,拉近师生情感

中职电子商务教学质量的提高离不开良好的课堂教学,然而在课堂中学生不可能和教师有更多的交流,即使在课外也不可能有过多的时间交流。有些学生性格比较内向,平时不愿意和教师或同学面对面交流,加上中职学校教师一般都担任多个班级的课程,工作量较大,没有更多的时间与学生面对面的接触和解答学生的疑问,师生之间缺少实时互动与交流。反而有很多学生喜欢通过微信与老师交流,教师利用微信的互动功能加强与学生的交流,了解学生的需要,解答学生的问题。微信可以将通讯录中的一部分人组建在一起群聊,群成员的发言,其他成员可以及时听到看到,还能一起对讲,群聊中被人@到,也会收到提醒。教师在进行电子商务项目分组教学时,同组学生组建一个微信群,并给微信群起个响亮易记的名字,教师也是这个微信群的成员之一。成员可以随时联系,互相探讨学习任务,教师在微信群能够及时了解学生的学习情况和学习小组的任务完成进度,随时解答学习小组的疑问和及时调整学习内容。同时,教师还要组建一个班级微信群,将所有学习小组的成员都拉进群,并邀请电子商务行业的专家加入。

在班级微信群,学习小组互相分享学习成果,交流学习心得和体会,还可以通过语音、图文和拍照等功能形象生动地提问,并及时得到行业专家、老师和其他同学的解答,促进学习任务的完成,激发学生的潜能,培养学生协作学习的习惯。例如,在客户服务课程教学过程中,教师可以利用微信群对全班学生进行分组,通过微信的语音交流功能,指导学生分组进行“接待客户来电咨询”、“处理客户退换货”的电话客服的教学。学生在不同地点分别扮演客户、客服、发货员等不同的电子商务角色,创设出近乎真实的工作场景,教师和其他同学还能够在现场监听语音内容,分析比较学习任务的完成效果,更好地改进学习。利用微信的语音功能,行业专家、老师和学生都能听到对方亲切的话语,在学习知识的同时,感受到对方的热情,拉近了彼此之间的感情。良好的师生感情有利于增强学生学习的自信心,增加学生对教师的信赖,挖掘学生学习电子商务专业知识的动机,使学生真正“爱学”、“乐学”。

三、拓宽知识面,延伸知识深度

在有限的课堂教学中,教师为了完成教学计划规定的任务,不可能在课堂中讲授更多的电子商务最前沿的知识,也不可能在课堂中熟悉所有学生,了解学生的知识掌握程度,做到因材施教。电子商务是信息技术发展的产物,日新月异的互联网技术造就了诸如O2O、跨境电子商务、移动电子商务等新型的电子商务模式。然而,中职学校电子商务专业受到教材、设备和教学软件更新速度过慢的影响,同时中职学校电子商务的专业教师有很大一部分是非本专业出身或由计算机信息类专业、财经类专业的教师担任,这二个原因导致电子商务专业的学生在学习电子商务专业知识时更多只能停留在教材内容范围,根本不能适应电子商务的高速发展,更谈不上以就业为导向了。微信的公众平台即微信公众号,可以帮助教师和学生获取电子商务的最新动态和前沿知识。公众号分为服务号和订阅号,服务号是企业开展业务、信息的公众服务平台;订阅号为媒体和个人提供一种新的信息传播方式,构建与读者之间更好的沟通模式。因此,学生通过关注电子商务企业的服务号或订阅号,比如“卖家吧”、“腾讯电商那些事”、“网迷电商”等,这些服务号或订阅号都会定期推送电子商务最新的消息和技术给关注的微信用户,教师和学生通过查阅这些消息就可以很方便地了解电子商务前沿新闻和最新动态,及时把握电子商务发展动向,有意识地拓宽学习的视野,往更深层次地理解电子商务知识。

基于微信订阅号对个人开放申请和良好的互动模式,教师在微信公众平台申请用于电子商务教学的订阅号,要求电子商务专业的学生添加此订阅号,教师就可以很方便地在网页版的微信公众平台或通过手机微信公众号助手的群发功能,将电子商务内容及时快速地推送到每位学生的手机、平板电脑等移动终端。教师还可以通过公众平台的编辑模式设置“消息自动回复”和“关键词自动回复”,学生向订阅号提问或回复,就能自动获取想了解的电子商务内容,而且内容可以是文字、图片、语音和视频。例如,笔者申请开通了电子商务学习的订阅号“studyec”,要求电子商务专业的学生添加并关注,笔者在用户管理后台将电子商务专业的学生按不同年级和知识层次进行分组,有针对性地按分组群发图文、语音和视频等形式的教学内容。比如使用语音方式布置课外作业和解答学生的疑问,鼓励学生用心学习,设置自动回复消息开设O2O电子商务模式的专题知识拓展,学生只要回复相应的数字,即可获得相应的知识内容或知识难点,延伸了课堂。学生学习的自由度大了,主动性也提高了,也能把零散的时间用在学习上,更重要的是满足了不同层次学生的需要,真正做到“因材施教”。

四、分享学习成果,反思学习过程

微信朋友圈将微信的圈中好友紧密联系在一起,通过朋友圈,能够分享图文、语音、视频和链接,圈中好友点击阅读、参与评论。在学习电子商务项目任务的过程中,学生通过微信朋友圈“晒”照片、谈心得、分享学习成果,圈中好友评论、回复,在分享和评论中反思学习过程,总结学习经验,改进学习方式方法。例如,在学习签名邮件和加密邮件收发的项目内容时,教师组织学生通过微信朋友圈分享如何收发签名和加密邮件以及操作过程中最该注意的问题,分享学习的喜悦,反思学习过程中的不足,总结Outlook和Foxmail软件进行签名邮件和加密邮件收发的优缺点,师生们踊跃发言,或提出疑问,或解答迷惑,一个无形而卓有成效的分享讨论圈就此展开。

五、轻松点赞,收获评价

学生的学习任务完成得如何?学习成果有没有达到教学目标?通常需要进行定性和定量评价,教师预先按照制定的评价量规设计学习过程或学习成果评价表,组织学生进行自评、他评和教师评,最后统计评价结果。在微信朋友圈发表观点,分享有价值的信息,常常得到圈中好友的点赞,点赞越多,证明信息越受好友欢迎,越能体现信息主人的成就。教师可以巧妙地利用微信点赞的功能,快速有效地组织教学评价。例如,学生通过微信朋友圈分享签名邮件和加密邮件的学习成果,教师组织学生在规定时间范围内对学习成果进行点赞和评论,最后要求学生将点赞和评论结果截图发送给老师和班级微信群,老师和全班同学都可以及时了解评价结果,反思和改进教学。点赞和评论的主体可以是学生本人、其他同学和老师,点赞的个数相当于定量评价,文字评论相当于定性评价,体现了评价的趣味性、评价主体的多样性和评价方式的全面性。

六、微信在电子商务教学中应用的注意问题

第一,教学中不能过分依赖微信。

微信虽然给电子商务教学带来便利,对电子商务知识的掌握起到促进作用,但是电子商务还是应该以课堂教学为主,微信只能起到辅助教学的作用,是课堂教学的有益补充。因此,教学中需要运用微信时一定要计划周详,突出教师的主导作用和学生的主体地位,以提高教学效果为前提。

第二,加强信息的管理和更新。

微信毕竟是基于移动互联网的聊天交流工具,因此在利用微信进行电子商务教学过程中,教师应该严格控制学生使用微信时不偏离学习内容而转为娱乐,要经常监听学生发送的信息是否合法合理,绝对不允许胡言乱语和发送不切实际的信息。教师在利用微信公众平台时千万不能因过分强调群发功能,却忽视了电子商务知识的传授和教学互动,还要兼顾不同层次学生的学习需求,否则就和垃圾邮件、垃圾短信没什么区别了。同时,要注意教师订阅号的信息更新,如果长时间不更新订阅号的电子商务信息,粉丝就会流失,就会失去订阅号的互动教学功能。因此,定期更新电子商务的新知识、新闻、动态,甚至电子商务人物的故事案例,对于师生用好微信教学都是极为关键的。

第三,尽可能使用语音交流,利于增进情感。

微电子学论文范文2

30余年悬案告破,中微子研究获诺奖

2002年诺贝尔物理学奖授予了两项天文课题,共三位科学家,其中有美国的化学物理学家戴维斯(R,Davis)和日本粒子物理学家小柴昌俊,他们的获奖课题是太阳中微子探测。

2002年真是太阳中微子研究的丰收之年。2002年,在加拿大安大略湖畔的萨德伯里中微子天文台(The Sudbury Neutrino Observatory,SNO),由国际上17个单位、179位科学家共同协作,终于破解了困扰科学界30余年的太阳中微子失踪悬案。2002年,美国《科学》杂志年终评选当年10大科技成果的第3项是“太阳中微子失踪之谜被揭示”,而2001年的10大科技成果为“SNO的太阳中微子探测新技术”,恰巧也是第3项。

然而,获2002年诺贝尔物理学奖的不是参与SNO破解悬案的179位科学家中的任何一位,而是当初太阳中微子探测的开拓者戴维斯和小柴昌俊。获奖时,戴维斯已88岁高龄,而且身患老年痴呆症,只能由他的家人代替他走上斯德哥尔摩的诺贝尔奖领奖台;而小柴昌俊获奖时也已76岁了。2006,年5月31日戴维斯离开了人世。

中微子难觅踪迹

中微子的概念是瑞士籍奥地利物理学家泡利在1930年提出来的,而它的名字则是另一位意大利物理学家费米(E.Fermi)为它取的。中微子概念的提出源自理论上的需要,即为了挽救能量和动量守恒定律。在当时反复进行的物质粒子衰变的实验过程中,科研人员检测出在衰变前后存在质量亏损。亏损的原因可以用质量转化为电子的动能来解释。可是,计算的结果却让人大惑不解,电子的动能怎么也达不到质量亏损的程度,总有一部分丢失的质量或能量下落不明。于是泡利提出,这丢失的能量可能被一种未能检测到的神秘粒子带走了。1932年英国物理学家查德威克,(J.Chadwick)发现中子之后,费米为之取名“中微子”(Neutrino)。中微子不带电荷,质量非常轻,甚至认为其静止质量为0,与其它物质的相互作用极为微弱,穿透力极强,以近乎光速的飞行速度穿过它遇到的一切物体。这些理论上的认识乃至于中微子是否真实存在,都有待于实验或观测证实。

1956年,美国物理学家莱尼斯(F.Reines)等人在实验室中探测到中微子的真实存在,并因此获得了1995年度诺贝尔物理学奖;1962年,美国,物理学家列德曼(L.Lederman)和斯坦伯格(J.Steinberger)用加速器进行中微子实验,他们以13.5米厚的堆在退役军舰上的钢板作靶,观察到中微子穿过的踪迹,据此分享了1988年的诺贝尔物理学奖;1963年,美国布鲁克海文同步加速器探测到存在两种性质不同的中微子:电子中微子和“中微子;1989年,位于日内瓦的欧洲核物理研究中心,组织了372位各国科学家开展合作研究,确定出中微子有且只有3个品种:电子中微子、u辛微子和τ中微子;1998年7月,美国的费米加速器实验室捕捉到τ中微子的踪迹。

当代标准基本粒子模型认为,组成宇宙万物的基本粒子一共只有12种:上、下、顶、底、奇、粲6种夸克,电子、u子、τ子及相应的中微子6种轻子。中微子占基本粒子种数的四分之一。荷兰物理学家霍夫特和威尔特曼为当代标准基本粒子模型建立了坚实的数学基础,因此获得了1999年的诺贝尔物理学奖。

占据四分天下其一的中微子,充斥着整个宇宙,却又很难在实验室之外探测到它们的踪迹。宇宙物质最集中的地方是星系里的恒星。恒星内部的热核反应是宇宙中主要的中微子源,产出的中微子数是光子数的2/3。离人类最近的中微子源是太阳,每秒钟产出约103s个中微子。地球上所有生物赖以生存的太阳光子,仅需8分钟就由太阳表面传到了地球。但是,这些光子在太阳中心区产生以后,自由程很短,经无数次碰撞、迂回,要经历1千多万年才能到达太阳表面。唯有中微子,与其它物质粒子之间没有除弱相互作用以外的任何作用,能够快速穿行于一切物质之间。同时到达地球的太阳中微子和光子,前者是8分多钟以前刚刚从太阳中心产出的,而后者早在l千多方年前就产生出来了。地球上的人类,只有白天才能直接享受太阳光子送来的光和热,而中微子却不分昼夜时时轰击着我们。每个人体每秒钟都有数万亿个太阳中微子穿过。白天从头顶贯穿到脚下,晚上又从脚下贯穿过头顶,而我们却毫无知觉。如果天文学家要造一架特殊的望远镜来观察太阳中微子,白天把望远镜对准太阳,中微子聚焦成一个亮斑;夜晚则把望远镜朝着地下,隔着地球对准太阳,照样可以得到这个亮斑,因为地球对于中微子是透明的。然而这种望远镜不可能制造成功,因为找不到任何材料可以改变中微子的运动路径,使它们聚焦。

探测中微子的几种方法

实际上,早在上个世纪的40年代,前苏联的物理学家蓬德科沃(B.M.Ponteeorve)就已提出用氯元素探测中微子的可能性。氯的一种同位素37Cl,含有20个中子、17个质子和17个电子。在遭到中微子轰击以后,有一种机率很小的可能性,使37Cl少1个中子却多了1个质子和1个电子,衰变成氩原子的同位素37Ar,随后35天中,一半37Ar又会放走中微子重新变为37Cl。如果在大量的37Cl中适时检测出有衰变的37Ar,就证明受到过中微子的光顾。

1968年,美国布鲁克海文实验室的戴维斯开始建造这种探测器。他在南达科他州一个深1500米的废弃金矿井中放置了一个巨大的容器,内装有610吨四氯乙烯液体,有约1030个氯原子,其中1/4是37Cl。在太阳中微子的轰击下,监测和统计衰变出的37Ar原子个数,从而测算出遭遇了多少太阳中微子的轰击。多年探测的结果,中微子数目不及理论值的1/3。那2/3的太阳中微子到哪里去了呢?是技术上的缺陷,还是对太阳产能机制认识不全面,抑或是基本粒子理论出了问题?人们不得其解,这就是有名的“太阳中微子失踪之谜”。

另一种探测中微子的办法,是利用镓(71Ga)吸收中微子后变为锗(71Ge)的原子核过程。镓(71Ga)的原子核有31个质子和40个中子,在吸收一个中微子后,变为锗(71Ge)原子核,有32个质子和39个中子。通过对锗(71Ge)的计数也能探测到中微子剂量的大小。镓探测器比氯探测器灵敏度更高,而且价值更贵重。在俄罗斯高加索地区,俄、美合作的镓探测器使用了60吨金属镓。在意大利格兰萨索山底下1200米深的矿井中,也有一项名为GALLEX的实验,用含30吨镓的110吨氯化镓(GaCl3)溶液探测太阳中微子。

1983年,日本的小柴昌俊在东京以西300千米的岐阜县神冈町深1000米的砷矿矿井中,安置了一个装满2140吨纯水的容器,利用太阳中微子穿过时发生微弱闪光(切仑科夫辐射)的原理,在容器周围安置了948支光电倍增管进行探测。在美国俄亥俄州,地下600米深处一座盐矿里也有一个类似的探测器IMB,纯水量8000吨。1987年7月23日,大麦哲伦云中的超新星(SNl987A)爆发,在日本神冈、俄罗斯高加索、美国俄亥俄和意大利格兰萨索山的4个中微子探测器都探察到了来自17万光年以外,超新星爆发过程中释放出的中微子到达地球的踪迹,它们是穿过了地球南极后被这些探测器发现的,到达时间早于光学波段信号22小时。这是人类首次探测到太阳以外的宇宙中微子的到达信息。受其鼓舞,日本神冈又加以扩建,至1996年,增加到纯水量5万吨,光电倍增管11200支。

当然,无论氯探测器、镓探测器还是纯水探测器都没有真的逮到中微子,只是探查出中微子曾经光顾过的蛛丝马迹,但探测的可靠性是令人信服的。因为有人做过专门的实验,用人工方法制造出一批中微子,都能被探测器发现,而且计数准确。然而,即使取得了以上的成功,2/3的太阳中微子依然下落不明,太阳中微子失踪悬案仍然无解。

到底有没有静止质量

当初在理论上提出中微子概念的时候,认为中微子像光子一样,是没有静质量的。但在以后的基本粒子物理实验中,出现一个又一个难以解释的现象,特别是在三种中微子中间出现的“振荡”现象,即一种中微子在行进途中会自动转变为另一种中微子。而如果中微子没有静质量,是不会发生这种振荡现象的。

1997年7月29日,日本东京大学宇宙线研究所所长户冢洋二在德国汉堡举行的基本粒子国际研讨会上,宣称属于该所的神冈中傲子探测器得到了中微子确有静质量的观测证据。1998年6月5日,他们又重申这一结果,并给出了中微子静质量的下限——电子质量的500万分之一。户冢洋二的老师,就是日本中微子探测试验的开拓者小柴昌俊。

在发现三种中微子之间有振荡现象以后,人们想到,太阳热核反应中产生的电子中微子,在飞行途中是否突变为现有探测器探测不到的另外两种中微子,从而造成了中微子失踪之谜?若果真如此,就需要建造一种新型的、能探测到所有中微子的探测器来揭开太阳中微子失踪之谜。于是,加拿大安大略湖畔的萨德伯里中微子天文台(SNO)应运而生,并于1999年4月建成。

SNO位于地下2000米深处一座镍矿内,使用1000吨重水,贮满一个直径12米的球形容器,再浸没于7000吨纯水的大罐中,置于高34米的地下坑洞里,有9600支高灵敏度光电倍增管负责监测中微子穿过时产生的切仑科夫闪光。3年的探测结果终于证实,那些“丢失”的太阳电子中微子中,有2/3的数量在飞行途中转换成τ中微子和u中微子,而且都被SNO捕捉到了,实测结果与理论值符合得很好。天文学家建立的太阳模型和物理学家关于中微子的理论都是正确的。中微子探测的开拓者,美国的戴维斯和日本的小柴昌俊因此获得了2002年度诺贝尔物理学奖。2006年11月28日,SNO的太阳中微子探测实验告一段落。新扩建的SNOLAB将用于其它粒子的研究。至此,中微子失踪悬案终于真相大白。

中微子探测的中国情结

最早提出中微子探测实验方案的科学家中,有中国的两弹一星功勋科学家王淦昌院士。1930年泡,利提出中微子概念的时候,王淦昌正在德国柏林大学留学,师从实验物理学家迈特纳(L.Meitner)。王淦昌当时所做的β衰变实验为泡利的中微子假说提供了即时而有力的支持。1933年王淦昌获博士学位。同年,迈特纳因犹太人身份被剥夺了教授的权利。1934年4月,王淦昌毅然回到灾难深重的祖国,先后在山东大学和浙江大学任教。1940年,王淦昌随浙大内迁到贵州遵义期间,在极其艰苦和简陋的条件下,写出了著名的论文《关于探测中微子的一个建议》。在当时的条件下,他无法亲自进行所建议的实验,便将论文寄给了权威的美国《物理学评论》(Physical Review)编辑部。战争期间通信不畅,编辑部在1941年10月才收到论文,并在1942年1月即刊出了这篇论文。1942年~1952年,包括戴维斯在内的美国科学家,阿伦(J.S.Allen)、赖特(B.T.Wright)、施密斯(P.B.Smith)等都先后按王淦昌的建议,获得实验结果,为以后的中微子探测研究做了前期工作。

2003年第5期《科技导报》发表了中科院高能物理研究所何景棠研究员的文章《2002年诺贝尔物理奖与中国人擦肩而过》。故事的主人公是中国核物理学家唐孝威和日本的小柴昌俊。唐孝威院士1952年毕业于清华大学,先后任职于中科院近代物理研究所、二机部原子能研究所、核工业部九院和浙江大学。1978年1月,46岁的唐孝威与51岁的小柴昌俊同在德国汉堡电子同步加速器中心工作,两人都对质子衰变和中微子探测有着浓厚的兴趣,并开始谈论实验方案。各自回国后,又多次通信,商定中日联合建造探测装置:在中国西部选址,建设滦洞实验室。中方提供3000吨到5000吨纯水,日方负责100吱左右光电倍增管及相关的电子设备。唐孝威的建议得到时任高能所所长张文裕院士的大力支持,唐孝威还亲自到西部山区寻找合适的候选地点。但建议方案最终未能得到更高层领导的支持,计划落空。小柴昌俊遂独自在日本寻找到神冈町地下1000米深处,按原本由唐孝威提出的思路建成了中微子探测设备,直至获得2002年诺贝尔物理学奖。“中国人有好的物理思想,好的实验方案,好的高山深洞地理条件,但由于得不到相应的支持,从而失去了一次获得诺贝尔奖的机会。机会已失,时不再来了。”曾经身为唐孝威院士助手的何景棠研究员,在文章中不禁如此感叹。

破解太阳中微子失踪悬案的关键设备SNO,最早提出建设思路的是一位华裔物理学家陈华森博士(Herbert HwaSen Chen,赫伯特·华森·陈),他在科学文献中更常出现的名字是“HerbChen”。Herb Chen在困苦的童年时代从战乱的中国漂泊到美国,靠个人的聪明勤奋和完全的奖学金接受到良好的教育,在1964年毕业于加州理工学院物理系,并于1968年获普林斯顿大学理论物理博士学位,以后在加州大学欧文分校(UC,Irvine)工作,逐渐由理论物理研究者转为出色的实验物理学家。Herb Chen长期专注于中微子与弱相互作用的实验研究,他在1984年最早提出了能探测到所有中微子的重水型探测器方案,目标瞄准破解太阳中微子失踪悬案。他的建议很快得到采纳,并选定了加拿大安大略湖畔的萨德伯里开始建设中微子天文台。遗憾的是未等$NO建成,陈华森于1987年11月7日因白血病去世,年仅45岁。

如果说以上几件往事难免令人伤感和失落,那么下面的故事则让人振奋和充满希望。这就是最新一代的中国大亚湾中微子实验装置已初战告捷。

在深圳市区以东约50千米的大亚湾核电站与岭澳核电站,拥有世界上第二大核反应堆群,腹背为大海和高山环绕,形成天然的宇宙线屏蔽。中微子实验装置建于山洞中,有总长3千米的隧道和3个地下实验大厅,共8台中微子探测器,均为圆柱形,直径和高各5米,内置新型探测液体Gd-LS,总重110吨,浸没于10米深的水池中。Gd代表稀土金属钆,LS是Liquid Scintillator(液体闪烁体,简称液闪)的缩写,Gd-LS即掺钆液闪,含烷基苯闪烁溶剂和PPO发光物质,再掺入0.1%的155Gd和157Gd。核电站在运行过程中产生电子反中微子,使Gd-LS产生切仑科夫闪光,通过光电计数测量中微子的通量。如果远点探测器比近点探测器的中微子通量有所减少,就表明中微子因振荡而消失了,意味着中微子在飞行中从一种类型转变成另一种类型。到此时,国际上已经发现了两种中微子之间的振荡。而第三种,即电子中微子与τ中微子之间的振荡则一直未被发现,甚至有理论预言其根本不存在。

微电子学论文范文3

英文名称:Journal of Microwaves

主管单位:中国科学技术协会

主办单位:中国电子学会

出版周期:双月刊

出版地址:江苏省南京市

种:中文

本:大16开

国际刊号:1005-6122

国内刊号:32-1493/TN

邮发代号:

发行范围:国内外统一发行

创刊时间:1980

期刊收录:

CBST 科学技术文献速报(日)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

中文核心期刊(1992)

期刊荣誉:

联系方式

期刊简介

微电子学论文范文4

关键词: 四步法 ABnm型 微粒 空间构型

从近几年新课标地区“物质结构与性质”模块的高考试题分析考查微粒空间构型主要以ABnm型为主且趋于稳定。对于初学者来说,该部分内容相对较难掌握,因而容易产生困惑和误解;为此,接下来就选NH、CO、SO 、 HO 、NH 、 SF这六种微粒为具体的实例浅析预测ABnm型微粒空间构型过程中“四步法”的灵活应用。【说明:其中A代表中心原子,B代表与中心原子结合的原子,n代表为微粒所带电荷。且n=0说明微粒 ABnm为分子,n>0则微粒 ABnm代表的是阳离子、n

1.“四步法”预测ABnm型微粒空间构型具体实施步骤

1.1第一步:根据电子式或结构式确定ABnm型微粒的中心原子

针对ABnm型微粒一般来说中心原子就为A

1.2第二步:计算中心原子A含有的孤电子对数

中心原子A含有的孤电子对数=1/2(a-xb)

【说明:a代表中心原子价电子数;对于主族元素,a等于最外层电子数,对于阳离子来说,a等于价电子数减去离子所带的电荷数;对于阴离子来说,a等于价电子数加上离子的电荷数的绝对值。 b代表与中心原子结合的原子最多能接受的电子数;其中氢为1,其他原子等于8减去该原子的价电子数。 x代表与中心原子结合的原子个数。】

1.3第三步:计算ABnm型微粒的价层电子对数

ABnm型微粒的价层电子对数=中心原子A的孤电子对数+σ键电子对数

1.4第四步:根据ABnm型微粒的价层电子对数确定VSEPR构型并结合中心原子A的孤电子对数的确定该微粒的立体构型

2.以NH、CO、SO 、 HO 、NH 、 SF为实例预测ABnm型微粒空间构型中 “四步法”的灵活应用

2.1确定微粒的中心原子

NH、CO、SO、 HO、NH、SF微粒的中心原子分别为N、C、O、S、 O 、N、S

2.2确定中心原子A的孤电子对数

2.3确定价层电子对数

2.4结合上述步骤四中的有关结论确定ABnm型微粒的立体构型

“四步法”主要适用于常见ABnm型微粒空间构型的预测,但对于不常见或比较复杂的微粒空间构型的预测“四步法”并不适用,此时最好应用等电子体原理预测一些不常见或比较复杂微粒的空间构型。因为等电子体分子轨道中的电子排布和成键情况相似因而微粒空间结构相同,根据等电子这一原理可推知,原子数目相同的离子或分子中,若电子数也相同,电子排布和成键情况相似,则这些分子或离子就具有相同的电子结构同时具有相似的几何构型。如简单的CO分子的空间构型属于直线形,不常见的N离子与CO分子属于等电子体二者的结构相似,则N与CO微粒空间构型应该相似且都属于直线型;同理复杂离子NO与BF属于等电子体,根据等电子体原理可知二者的结构相似且微粒空间构型都属于平面三角形。

参考文献:

[1]陈经涛,吕俊芳.分子或离子的空间构型与杂化方式的简易确定法[J].陕西教育学院学报,2003,19(1).

[2]葛尚正.判断分子空间构型的简便方法[J].山东化工,.2003,32(9).

[3]勾华.在教学中使用价层电子对互斥理论的探讨[J].贵州师范大学学报,1999,17(1).

微电子学论文范文5

关键词 半导体物理 启发式教学 启发式问题

中图分类号:G424 文献标识码:A

半导体物理是研究半导体原子状态和电子状态以及各种半导体器件内部电子过程的学科,是固体物理学的一个重要分支。研究半导体中的原子状态是以晶体结构学和点阵动力学为基础,主要研究半导体的晶体结构、晶体生长,以及晶体中的杂质和各种类型的缺陷。研究半导体中的电子状态是以固体电子论和能带理论为基础,主要研究半导体的电子状态,即能带结构、杂质和缺陷的影响、电子在外电场和外磁场作用下的输运过程、半导体的光电和热电效应、半导体的表面结构和性质、半导体与金属或不同类型半导体接触时界面的性质和所发生的过程、各种半导体器件的作用机理和制造工艺等[1-4]。

从上面的半导体物理研究内容可以看出,半导体物理是一门介于理论与实践之间的课,由于它的理论性,导致老师难教,学生难学。因此怎么教是一个非常值得探讨的问题。文献[5-6]提出了基于研究性学习的教学思想,培养学生的创新意识和科学工作能力,取得了一定的教学效果。文献[7] 提出了采用多媒体、课堂互动、“头脑风暴”和课程实验结合的 “形象化”的教学方法,激发了学生的学习兴趣,促使学生能更深刻地理解半导体物理理论。

本文首先分析半导体物理教学现状,然后提出两种启发式教学思路,并举例说明,最后总结启发式教学效果。

1 教学现状

1.1 教材难度较大

目前大多数院校选用的教材是电子工业出版社出版的刘恩科主编的《半导体物理学》,该书偏重于理论阐述和推导,需要学习者具有良好的数学和物理相关基础知识。但是,由于半导体物理课程比数学课程晚两个学期开课,到半导体物理开课的时候,大部分同学数学都忘得差不多;另外大部分学校微电子专业都取消了量子力学和固体物理课程,学生没有学习物理理论的前导知识,就直接进入半导体物理的学习。因此,加大老师了教学难度,同时也增加了学生的学习压力。

1.2 教学模式单一

目前半导体物理教学基本采用“老师讲学生听”的模式[8],由于半导体物理阐述的大部分都是微观物理结构、微观物理现象和微观物理理论推导,这些知识抽象枯燥,如果只是采取单纯的“老师讲学生听”模式,缺少老师和学生之间的互动,需要学生有比较好的想象力,因此无形中增加了学生的学习难度。另外一方面,长期采用这种教学方法,不利于带动学生的探索精神,学生获得的知识也仅限于课本知识,不利于学生创新能力的培养。

1.3 学生认识偏差

目前,高校工科学生中大多有重技术轻理论的思想,具体到微电子学专业的学生, 重电路设计轻半导体物理及器件的研究[9]。这使学生学习半导体物理的积极性不高。如果学生的半导体物理及器件的理论知识的基础不扎实,会导致学生的电路设计尤其是模拟集成电路设计能力的停留在初步阶段,难以提高。

2 启发式教学思路

针对目前的教学现状,为了让学生能通过简单的问题启发明白半导体物理知识,因此本文提出以下两种启发式教学思路。第一种思路是从宏观现象中寻找与微观现象相匹配的例子引出问题,宏观现象都是现实生活中能够看到或感觉到的东西,以这样的例子来引出问题,让学生理解微观现象的难度大大降低;第二种思路是从电路的工作角度引出微观现象,电路的工作原理都是工科学生比较感兴趣的东西,如果能从电路的工作角度一环一环引出微观现象,让学生的学习兴趣一下提高不少,也培养了学生的思考精神。下面分别对这种两种教学思路举例说明。

2.1 从宏观现象中寻找与微观现象相匹配的例子引出问题

比如讲授能级分裂的时候,设置如下启发问题:

问题1:50个座位的教室能坐多少人?(提示:必须遵守一人一座的原则)

答:50人。

问题2:如果想在这个教室坐下100人怎么办?

答:只能加50个座位。

问题3:一个原子的一个电子轨道能容纳多少个电子?(提示:必须遵守一电子一轨道的原则――包里不相容原理)

答:一个电子。

问题4:两个原子挨在一起,他们的相同能量的电子轨道相交了,这个时候相当于两个电子在同一能量轨道上,如果还必须遵守一电子一轨道的原则,怎么办呢?

答:增加一条轨道,相当于一条轨道变成两条轨道。

问题5:如果N个原子挨在一起,如果还是按照一个电子一轨道的原则,那他们相同能量的电子轨道怎么办呢?

答:增加N-1条轨道,也就是相当于一条轨道变成N条轨道。

2.2 从电路的工作角度引出微观现象

比如讲授半导体掺杂前,可以设置如下启发问题:

问题1、电子设备是怎么工作的?

答:电流驱动的。

问题2、电流又是怎么形成的?

答:载流子的定向运动形成电路。

问题3、载流子怎么产生的?

答:通过本章节的学习,大家将会找到答案。

3 结束语

半导体物理是一门介于理论与实践之间的课,由于它的理论性,导致老师难教,学生难学。本文提出启发式教学方法,采取不断提问题的方法,问题一环扣一环,直到最后引出上课内容。通过在教学中采用启发式教学的效果看,对于复杂的微观问题,老师容易讲明白了,学生也容易听明白了。因此启发式教学一方面在没有降低知识难度的情况下降低了学习难度,另一方面提高了学生的学习兴趣,增强了学生的思考精神。

基金项目:电子科技大学中山学院质量工程建设项目资助(项目编号:ZLGC2012JY12)

参考文献

[1] 沈伟东,刘旭,朱勇,等.用透过率测试曲线确定半导体薄膜的光学常数和厚度[J].半导体学报,2005(2):335-340.

[2] 唐莹,孙一翎,李万清.MATLAB在半导体课程教学中的应用[J].长春理工大学学报(高教版),2009(10):126-127.

[3] 孙连亮,李树深,张荣,等.半导体物理研究新进展[J].半导体学报,2003(10):1115-1119.

[4] 江锡顺.提高应用型本科院校半导体物理教学质量的方法研究[J].滁州学院学报,2011(5):110-111.

[5] 王印月,赵猛.改革半导体课程教学 融入研究性学习思想[J].高等理科教育,2003(1):71-73.

[6] 张铭,王如志,汪浩,等.基于研究性学习的半导体物理课程教学改革[J].科教文汇(上旬刊),2011(7):47-48.

[7] 王强.半导体物理的形象化教学[J].中国现代教育装备,2009(1):92-93.

微电子学论文范文6

关键词 微波电路;教学实践;教学效果

中图分类号:G642.4 文献标识码:B 文章编号:1671—489X(2012)30—0056—02

1 课程特点

微波电子线路课程是一门研究在微波频段工作的电子器件及其电路组成的专业基础课。微波电子线路一般泛指构成微波系统中各种功能模块的元器件与电路结构,也称为微波有源电路。随着微波半导体材料技术和工艺水平的发展,先后出现半导体二极管、砷化镓金属半导体场效应管、PIN二极管和变容管等微波半导体器件,并在微波系统中获得广泛的应用。这种以半导体为核心组成的微波电子线路称为微波固态电路。在微波半导体器件发展的同时,又研制出微波混合集成电路(MIC)和单片微波集成电路(MMIC),同时,低噪声集成电路、大规模和超大规模微波集成电路发展迅速,中功率微波发射机实现固态化,但是大功率微波振荡和放大必须依靠微波电真空器件,比如行波管、速调管、磁控管等。这些微波器件在雷达、通信、导航、卫星地面站等得到广泛应用。

微波电子线路课程所学习的内容具有应用广泛、技术难度高、内容更新较快的特点,这要求微波电子线路课程的教学要不断地探索和研究,以适应微波频段电子装备教学和工作的需要。

该课程的学习可以采用微波技术的分析方法,从电磁场的角度去分析,但是比较复杂;也可以等效成电路去分析,这是习惯的分析方法,在分析过程中做一些等效和近似在工程上是允许的,是不影响本质的。学习过程中强调物理概念原理分析、重视实践能力的培养以及最新技术发展在课程中的体现。教学方法体现启发性,重视知识能力、素质的协调发展,注重实践能力和创新能力的培养。

2 教学内容设计

根据人才培养方案的要求,该课程教学时间为30大纲学时。依据该课程的课程标准、课程设计,理论教学20学时,实践学时10学时;授课方式上采用理论和实践相结合的教学方式,理论教学上突出岗位任职所需的基础理论,借助实际微波器件的应用介绍,分析微波电子器件和微波设备的发展前景。通过边讲解边实践的方式,加深学员的理解。

具体进度:为了方便学习和知识的交流,首先对微波传输线理论和其他微波无源元器件组成微波无源电路进行回顾复习;对微波无源器件及等效电路,简要介绍一下微波电抗元件、连接元件、终接元件、衰减器和移相器、阻抗匹配器和变换器以及定向耦合器、微波滤波器谐振器、微波铁氧体等的特点和运用。

对微波有源器件分4个模块进行学习。

第一个模块的内容是微波频率变换器(混频器),主要介绍频谱搬移的原因、原理及工作过程。采用数学的方法对频率变换的原理进行定量分析,并结合实际的频率变换电路进行讲解。进而介绍微波混频器件即微波二极管工作原理,重点分析微波混频器的特性和主要技术指标,介绍各种微波混频器的工作原理,最后讨论微波混频器的镜像回收。

第二个模块内容是微波晶体管放大器,主要介绍微波晶体管低噪声放大器。与低频放大器相比,微波放大器是采用S参量作为分析和设计放大器的主要网络参数,说明S参数(分布参数)与集总参数的区别、微波双极型晶体管低噪声放大器和微波场效应管低噪声放大器设计方法、使用特点与应用场合,讨论以双极型晶体管放大器为主。

第三个模块内容是微波控制器件与微波控制电路。微波控制器件是组成微波控制电路的重要部件,主要讲述微波控制电路及其应用,包括微波开关、数字移相器、电调衰减器、微波调制器及限幅器等。微波控制元件有微波半导体器件和微波铁氧体器件,重点内容是微波PIN二极管的原理及其组成。

最后一个模块内容是微波电真空器件。尽管近年来微波半导体器件得到迅速发展,微波电真空器件仍然有存在的必要性。主要介绍三大电真空器件即磁控管、速调管、行波管的结构、工作原理和应用特点。

3 教学方法设计

教学改革的核心是教学方法的改革,教学方法要体现在整个课堂教学过程中。在教学方法上,基于任职教育学员底子薄、基础差、学习水平参差不齐的现状,力求避免单纯的注入式,改用启发式、讨论式、答辩式的教学方法。将课堂讲授、课内讨论、课外自学、技能训练等合理结合,把教学过程分为课题引入、设疑激学、讲练结合、精选例题、总结巩固等环节进行教学实践。课题引入阶段尽量由设计实例或工程实际问题引入课题,即在介绍一些重要章节前,列举一个设计实例或工程实际问题,通过分析、设计,引入相关知识和理论,等学员的兴趣被调动起来,并产生诸多疑问时再进行内容讲解。而有实验条件的内容要争取进行现场教学,讲练结合。即将课堂讲授与技能训练合理结合起来,有些教学内容可以安排在实验、实训中进行,边讲边练,讲练结合。边讲边练主要用于介绍微波电路工作原理后,由学员对电路的功能及外部特性进行测试;讲练结合则是由学员根据微波电路的功能对电路进行测试后,由教师和学员对测试结果进行讨论,归纳总结,以加深对理论的理解。这样,将教学过程放在实验、实训中,有利于学员实现由感性到理性的自然过渡,在边学边练中更深刻地领会所学知识,在头脑中建立起理论与实际的联系,使学员逐步提高学习能力和实践技能,引导学员将基本理论、基本分析方法应用于解决实际问题。

4 考核方式设计

该课程的教学以提高学员的综合能力素质为最终目标,考核方式采用对教学全过程综合评估,具体考核环节包括4个环节:课堂表现、实验成绩、创新能力和课程结束考试。在4个方面进行加权,综合评估后得出学习成绩。

1)课堂表现:根据学员的课堂表现进行评价,包括学员功能的积极性、互动性、课堂回答问题的质量等。重点考查学员学习态度、课堂表现等情况。

2)实验成绩:实验环节的定位在于使学员加深对理论的理解和增强实践能力。通过观察学员实验的科学性、规范性,根据实验科目的完成情况进行评价。

3)创新能力:由于微波电子线路是一门实践性很强的课程,创新能力通过学员的小制作和参与科技创新活动等情况来评估。考核重点在于学员对理论知识的掌握以及相应的实践能力。

4)课程结束考试:课程结束考试主要考查对微波器件、电子电路的理论知识的理解掌握情况和综合应用能力。

5 教学效果分析

微波电子线路课程已经在雷达、通信等专业的多个教学班进行讲授,从教学效果来看,学员对微波电子线路的有关理论有了深入的认识,顺利地从集总参数的低频电子线路跨入分布参数的微波器件和微波电子线路的分析运用,实验技巧、动手能力得到锻炼和加强。存在的问题主要是有的课易放难收,学员在讨论中思维纵横捭阖,天马行空,致使教学任务完不成;课堂教学的内容丰富了,学员的基础知识掌握得又不够牢。但总的说来,收获总是多于问题。该课程教学设计的实施培养了学员的创新精神和多元化思维,学员的成长与进步非常显著。

参考文献

[1]周道雷.任职教育理论与实践研究[M].北京:军事科学出版社,2009.

微电子学论文范文7

【摘要】 我国电子政务正处于一个新的发展阶段,但是仍然存在一些难以逾越的困难和障碍,而微博的应用必将在突破电子政务发展局限中发挥推动作用,并为电子政务在行政管理改革上提供新的理念和模式,本文在分析微博的网络办公、舆论导向等功能的基础上,阐述了微博对电子政务在信息建设上的优势,以及对我国服务型政府今后的建设和完善进行了新的展望。

 

【关键词】 电子政务 微博 功能

从中国电子政务建设的实际发展情况看,要实现“管理服务型”的政府转型目标,必须将微博构建到电子政务体系中,把微博服务政务的功能作为政府电子治理创新的重要组成环节,丰富和科学规划电子政务信息数据库的开发应用,在剖析微博的各项功能基础上,提升电子政务资源共享能力和政府部门的业务应用系统,营造健康有益的政务信息平台环境为公众服务。

 

一、网络办公功能

电子政务是以电子信息技术和社会管理相结合,通过网络技术将管理与服务提供给政府与公民之间的政府办公形式,电子政务中引用微博平台,是因为微博具有简捷、传播迅速、即时报道的优势,微博给予人们平等的发言权,加强了人与人之间、政府与公民之间的互动。

 

网络办公实际是完善办公自动化系统,政府人员在与公民进行微博沟通时,获取了大量社会信息资源,使网络采集的各种信息,能够及时进行综合处理,以及安排反馈处理意见的方法等,这些都是办公自动化的主要目标。电子政务启用微博办公,不但能使信息资源、人力、物力资源进行科学有效管理,也是对完成信息共享与工作协同的政府行政行为的考验,微博的存在不但提高了工作效率,同样也改进了办公质量,而且缩短了办公周期,消弱了社会大众的疑虑,在提高管理的科学化水平,实现办公活动的科学化、自动化方面,起到了重要的促进作用。

 

微博的核心功能是即时信息的与获取,这也是电子政务引用微博的关键,微博不受时间、地点、写作格式的限制,在微博上发言的用户总会对信息的传、受者形成聚类,每个微博用户总会从某个或某些微博主那里找到自己需要的信息,政府部门在采集相关信息时,可以利用这一点,进行“连锁式”的收集,这样不出门就可以采集大量的文字、图片、视频等信息,这就是电子政务网络化、电子化的办公方式,对提高办公效率和完善工作程序的标准化、规范化争取了广阔的空间。

 

二、“一站式”服务系统功能

通过使用微博来推动全社会信息化进程和促进各政府部门间系统业务的集成,完成电子政务为民服务的理念,实质上是电子政务创新中微博“一站式”服务系统功能的体现。

1、推动全社会信息化进程。政府微博是一种亲民、近民、爱民的政府新形象,政府人员在与民间接触讯息时,能够有效地丰富政府信息资源库,加强政府信息资源库的正常运行,才能支撑电子政务发展的基础,才能促成政务信息的集成,进而实现信息的完备储蓄。

 

政府微博的开放、活泼、聚集性特点,能够为电子政务信息流程原有的机械、封闭、分散性,注入新的活力。微博的信息资源可以自由流通,在政、民反复沟通过程中,通过聆听、核实、监督、检查、反馈与改善的举措,汇入到门户系统平台、信息平台、工作流平台和数据交换平台,为社会大众提供优质的增值服务,进一步消除沟通障碍,积极做好电子政务信息流程再造的各项准备,以及增强普及社会信息的流通力。

 

微博的应用打破了以职能分工和层级节制为理论依据的传统电子政务服务方式,微博以服务为导向,强调沟通和安抚的信息流程模式,信息的实时互动和及时的上,都以提高公众的满意度水平为准则,微博能够在一定程度上实现信息资源共享,这是实现电子政务服务功能的保证。

 

2、促进各政府部门间系统业务的集成。政府部门使用电子政务向公民提供信息服务,是其重要职能之一,而政府开设微博来创建自身的人际网络,是遵循网民对信息需求的欲望,凭借互联网的强大技术支持,将掌握大量的社会信息告知公民,为其提供有关政治、经济、社会、生活及一切公共领域的知识和讯息,微博在政府的及时应用和被公众广泛的关注,使政府以电子、网络等为手段,集成政府业务,目前的政府各业务系统基本都建成了业务应用管理系统,目的是达成为公共服务的目标,在利用好原有的电子政务资源基础上,集成现有的微博优势应用,使政府门户网站为公民、企业、组织等用户服务,办理各项业务,将政府组织由易于控制的金字塔型向利于服务的网络型转变。

 

政府微博与网民微博需要建立起以信息为纽带相互关注的关系,政府微博通过网民的困扰,关注到自身部门间沟通不足的劣势,为了实现便民服务,使公众、企业等用户享受到方便、快捷、高效的服务,将微博收集的问题分类,在信息传递过程中须减少信息传递的途径,同时减少信息失真,达到政务信息资源共享,按照电子政务中信息流通的规律,将业务通过电子化途径集成,使政务信息尽快、少时、准确地传达到目的地(如图1)。

 

三、舆论导向功能

政府微博为社会、公民获取信息增添了一个话语平台,微博以其巨大的影响力不断改变着我们的表达方式和生活方式,甚至是新闻事件的方式,微博平台为公众提供了公共性的事务信息,引导着公共舆论,面对传播力强大的微博,政府不能任其发展,也不能随意干扰其发展,只能主动参与到其中,利用自身的公共权力、社会公信力和信息资源等有利因素,将微博管理纳入到公共治理中,将社会言论自由保持应有的底线,并指导其向健康、愉悦的方向发展。

 

微博在中国电子政务的发展、制度的推进、政民的沟通和影响公共事件进程中,发挥着越来越重要的作用,对我国的舆论格局产生巨大影响,微博通过围观的形式演变成网络舆论,进而形成社会公共舆论,而电子政务保存着政府关于政治、经济、科技、军事和文化活动等多方面的宝贵信息,在对政府微博的把握上,通过适当的信息提供与制度,使公众能够享受方便、快捷的信息服务,这对社会公共事件的解决和发展起到了推进作用,对社会公众的舆论偏向显示了责任意识。

四、整合与发展功能

国家在政府信息化方面已经投人了大量的人力、物力和财力,政府利用微博的广播性、社交网络性,不断提高电子政务互联互通、部门协作的能力,微博为政府提供获取外部信息的通道,帮助电子政务与政府以外的机构、事业单位、社会团体建立接口,实现有效运行,建立行业信息资源服务,发展和完善电子政务的社会公共管理任务。

微电子学论文范文8

关键词 工程教育专业认证;射频微电子;卓越工程师

中图分类号:G642.3 文献标识码:B

文章编号:1671-489X(2015)11-0007-02

1 引言

工程教育专业认证对保证和提高工程教育质量、推动我国卓越工程师教育培养计划具有重要作用。我国工程教育于2013年6月在韩国首尔召开的国际工程联盟会议上成功加入《华盛顿协议》,成为预备会员,这标志着我国工程教育迈出重大步伐,为工程类学生今后走向世界提供了具有国际互认质量标准的“通行证”。工程教育专业认证作为国家工程师制度改革的基础和前提,也将为广大工科学生未来的工程执业提供便利[1-2]。

随着国内半导体制造现代化工艺线的不断建设和扩展,以及微电子技术的飞速发展,IC产业对微电子人才需求日益增加。目前我国正面临微电子技术人才奇缺的局面,对培养人才的要求也日益提高。射频微电子学课程作为电磁场与微波技术方向的专业核心课程,是数字通信、射频系统以及射频集成电路设计的基础。建立能适应新形势下满足工程教育认证标准要求的射频微电子学课程教学体系,提高射频微电子学课程教学水平,是电类专业顺利通过工程教育专业认证的重要环节之一。

为实施教育部“卓越工程师教育培养计划”,切实增强学生的工程实践能力、工程设计能力和工程创新能力,本文结合客观实际,从教学方式方法改革、学生工程实践能力培养、侧重学生对所学知识的应用和创新能力的教学评价方法的研究和实践等方面着手,建设面向工程教育专业认证的射频微电子学课程教学体系[3]。

2 改进教学方式方法,提高学生学习的积极性

采用先进现代教学手段是提高学生学习兴趣和积极性的重要方法之一。

1)在保证知识结构的系统性和知识点布局的全面性基础上,采用启发式互动教学法,充分调动学生学习微电子课程的积极主动性,引导学生主动分析工程实际问题,有效提高课程的教学质量。

2)改进多媒体课件,使教学更贴近工程实践。使用视频剪辑、动画、实物照片等教学手段,向学生展现该课程的核心内容以及所学理论的工程实践应用,增加学生对射频和微电子的感性认识。例如:在介绍S参数时,可以通过视频录像介绍工程实践中利用矢量网络分析仪测试射频无源器件及有源器件S参数的方法;在介绍微波传输线时,可以向学生展示由微带构成的射频前端系统中的馈电网络的实物照片和调试过程的视频录像;通过收集并展示各种射频无源(滤波器、功分器等)、有源器件(低噪声放大器、混频器等)的照片和实物,使学生更形象地认识射频器件,提高学生的学习兴趣。

3)推进课程网站的建设,以网络教学作为教学辅助手段。在教学网站上提供国外著名科教网络频道有关射频技术和微电子学的课程课件和相关教学资源,课堂教学课件、射频微电子技术常用的网络资源和网址,建立讨论区供学生相互讨论和教师答疑,建立专门的网页介绍射频微电子技术的前沿和发展方向,鼓励学生跟踪前沿技术自主创新。

4)在教学评价方面,侧重学生对所学知识的应用和创新能力的考查,将小组自主学习、研究性学习的情况纳入对学生成绩的评价,引导学生重视课程的实践环节,改变单一的考试成绩评价方式,重视学生在学习过程中的自我评价和自我改进。

3 注重学生面向工程实际的能力培养,改革射频微电子学实践教学内容

微电子学课程体系主要包括微电子器件和工艺、集成电路设计与应用两大类,应用性极强,学生需经过实际器件工艺的操作和具体集成电路的设计,才能深刻理解器件工作原理、掌握集成电路仿真和版图绘制方法,全面了解集成电路设计的全过程,达到很好的教学效果。

作为该课程体系中重要的一门课程,射频微电子学是一门理论性与工程性都很强的课程。如图1所示,射频微电子学涉及许多学科交叉领域,因此,学生不仅需要学习数字集成电路设计、模拟集成电路设计等理论课程,掌握集成电路原理,还要能利用各代工厂提供的工艺库和器件模型进行各种集成电路原理设计和版图绘制。现代射频集成电路的开发流程,由仿真域(设计、仿真、验证)实体域(电路实现)测试域(测试验证)三个环节构成。工业界需要的合格的射频微电子工程师必须具备在上述三个领域的全面知识和技能。目前培养的学生比较注重基础理论的学习,仅对仿真域中的设计环节比较熟悉,而仿真、电路实现、测试等方面的能力比较欠缺。

因此,在教学过程中,为了培养学生的工程实践能力,除了基础理论知识的教授外,还需教授学生掌握电路CAD软件、电磁场仿真设计工具(HFSS、IE3D或CST)、各种集成电路测试设备(矢量网络分析仪、示波器、信号源、频谱仪和噪声仪),并要求学生利用电磁仿真软件对所学的射频无源及有源器件(如滤波器、功分器,低噪声放大器、混频器、振荡器等)进行分析和设计,使学生不仅能更深刻地理解所学习的射频器件的工作原理及射频集成电路设计方法,也能熟悉和掌握仿真软件。学生在教师或助教的指导下,自主设计、仿真验证射频无源器件(如滤波器、功分器、工分器等)及其有源器件(如低噪声放大器、混频器等),在此基础上进行射频系统前端的集成电路设计,然后通过评估筛选出性能较好的设计,制作实物并进行工程测试。这样就实现了对学生在射频集成电路工程设计重要环节由仿真域(设计、仿真、验证)实体域(电路实现)测试域(测试验证)能力的培养。

在理论教学的基础上,通过小组学习讨论的方式,鼓励学生按课题小组设计多种射频元器件。但由于射频器件及射频系统前端的集成电路的制作和工程测试的成本较高,无法满足所有学生的需求,对器件的制作和测试必须择优进行。在实际的实践教学中,只进行某种器件设计的小组为参照组,评估完成整个设计、仿真、制作、测试流程的小组对该器件掌握的改善情况。

4 进行校企合作的卓越工程人才联合培养

射频微电子学教学可在校企联合培养机制下,建立必要的激励政策,充分发挥企业的行业优势,引导教学从注重学生“考试结果”向注重学生“学习过程”的转变。这反映到本课程的教学内容上,要强调理论性与本课程的有机结合,突出案例分析和实践研究;反映到教学过程中,要重视运用团队学习、案例分析、实践研究和模拟训练等方法的运用。在考核时,对校外课外的实践内容实行严格的考核,比如邀请校外射频微电子工程技术人员与校内专业教师组成考核小组,考核学生在企业实习的具体表现。根据实际条件,增加工厂生产实习环节,使学生能在综合运用所学知识的基础上,加强对企业岗位操作规程及相关管理规程等的详细了解。

5 结束语

本文在工程教育专业认证背景下并结合本校的本科卓越工程师教育培养和专业建设,基于笔者近两年来在微波技术与天线、射频微电子学课程授课过程中的总结,探讨建立新形势下能满足工程教育认证标准要求的射频微电子学课程教学体系,从而适应国际化、社会化、高素质、创新型人才的培养需求。需要指出的是,由于受到教学经验和客观实际的限制,笔者只是简要地讨论了在工程教育背景下本课程教学的转变,在未来的教学过程中会进一步进行思考和总结。

参考文献

[1]修开喜.中美工程教育专业认证体系的比较研究[D].辽宁:大连理工大学,2013.

[2]刘昭亚.本科院校工程教育专业认证制度研究[D].安徽:淮北师范大学,2014.

[3]林健.“卓越工程师教育培养计划”质量要求与工程教育认证[J].高等工程教育研究,2013(6):49-61.

微电子学论文范文9

在高考填报志愿时,很多考生和家长对微电子专业的就业前景怎么样的问题很关心。下面是由本站编辑为大家整理的“微电子专业就业方向与前景怎么样”。

微电子专业培养目标

本专业培养掌握微电子学专业所必需的基础知识、基本理论和基本实验技能,能在微电子学及相关领域从事科研、教学、科技开发、工程技术、生产管理与行政管理等工作的高级专门人才。

微电子专业就业方向

电子类企事业单位:半导体集成电路芯片制造、产品检测、产品封装、版图设计、质量控制、生产管理、设备维护及技术研发。

学生可选择到中、高等职业院校从事专业教学和管理工作,或到集成电路制造厂家、集成电路设计中心以及通信和计算机等信息科学技术领域从事研究、开发及管理等工作,也可选择微电子科学与工程、固体电子学、通信、计算机科学等学科继续深造,攻读硕士研究生。

微电子专业的就业前景怎么样

微电子科学与工程专业近年来也逐渐热火起来了,竞争力也很大。微电子专业一直是经久不衰的报考热门。微电子科学与工程专业主要研究新型电子器件及大规模集成电路的设计、制造,计算机辅助集成电路分析,各种电子器件的基础理论、新型结构、制造工艺和测试技术,以及新型集成器件的开发。微电子学近年来的发展,使计算机能力成倍数地增加,硬件成本大幅度降低,从而极大地推动了工业以及信息产业的发展。

微电子学专业毕业后可以在集成电路、电子信息、互联网电商等相关企业从事芯片设计师、信息工程师、网络运营维护、营销管理等相关工作。随着经济社会的发展,尤其是芯片设计制造等高新技术产业不断发展,微电子专业具有广阔的就业途径和良好的职业发展前景。

(来源:文章屋网 )

微电子学论文范文10

英文名称:Research & Progress of SSE Solid State Electronics

主管单位:工业和信息化部

主办单位:南京电子器件研究所(中电科技集团公司第55所)

出版周期:双月刊

出版地址:江苏省南京市

种:中文

本:大16开

国际刊号:1000-3819

国内刊号:32-1110/TN

邮发代号:

发行范围:国内外统一发行

创刊时间:1981

期刊收录:

CA 化学文摘(美)(2009)

CBST 科学技术文献速报(日)(2009)

EI 工程索引(美)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

中文核心期刊(1992)

期刊荣誉:

中科双效期刊

联系方式

微电子学论文范文11

爱护眼睛,青少年朋友首先要做到,在看书学习的时候,要把书本、纸张放在距离眼睛25厘米的地方。这个距离称为“明视距离”。老师、家长要求的“25厘米距离”是怎么来的?原来,我们的眼睛,能分辨离眼睛25厘米处相距0.1毫米(100000纳米)的两个点。在这种情况下,对眼睛来说,它们所成的视角大约是1’,所成的像恰好能落在视网膜的两个感光细胞上。两个点的距离如果小于0.1毫米,它们在视网膜上的像,就都落到一个感光细胞上,我们的视觉感受到的就只是一个点。显然,设法把这个视角放大,我们就可以看到更小的东西。

光学显微镜的诞生

显微镜的问世,要从400年前说起。1590年前后,眼镜工匠詹森把两个凸透镜前后放置,发现物体的细节变得十分清楚。光学显微镜就是这样偶然发明的。但是,谈到显微镜,荷兰人列文虎克的名气比詹森大得多。列文虎克的贡献,不仅是自制出放大倍数达到300的显微镜,而且致力于显微镜的实际应用。这使他成为显微镜发展史上的杰出人物。

阅读关于列文虎克的记载文字,给我们留下最难忘印象的,就是他那不可遏止的强烈的好奇心。他本是个卖亚麻制品的商人,却以制作玻璃与金属制品为乐事。他把磨制镜片、组装显微镜作为业余的消遣。做商人,那是为了生计;做实验,那是他的游戏。列文虎克用自制的显微镜发现了一个微观的世界,一个人们从未见过的世界。这使他异常兴奋。我们见惯了大自然的美,有了显微镜才发现,那个微观的自然世界也很动人、也很美!列文虎克怀着极大的兴趣观察了许许多多东西的“细节”。唾液、、尿液、叶片、牛粪等,都成了他的观察对象。他破天荒第一次利用显微镜观察到细菌,打破了数百年来人们的迷信猜测,开辟了征服传染病的新纪元。

显微镜的历史,就是不断提高分辨率的历史:使越来越小的样本细节,能够在眼睛上形成1’以上的视角。科学家渐渐认识到,光学显微镜的分辨率与照明辐射的波长成正比。照明辐射的波长越短,显微镜的分辨率越高。可见光的波长为400纳米~760纳米。现代光学显微镜的最大有效放大倍数可以达到2000,能够分辨200纳米的物体,可以看到最小的细菌。多数病毒比细菌小得多,使用光学显微镜就无法观察了。

电子显微镜的诞生

人们对光的认识也在不断深化。1864年,麦克斯韦把全部电磁现象归结为一组数学方程,推论出自然界存在电磁波,指出光只是波长在一个很小范围内的特殊的电磁波。1878年人们认识到,光学显微镜的分辨率在理论上是有限度的。科学家知道,为了提高分辨率,必须采用波长更短的“辐射”来照射样品。1905年,26岁的爱因斯坦发表了题为《关于光的产生和转化的一个启发性观点》的论文,首次揭示了光子的波粒二象性。1921年,爱因斯坦获得诺贝尔物理学奖,就是因为这篇论文的成就。1923年夏天,32岁的德布罗意提出,一切实物粒子都具有波动性;1924年,他给出物质波波长的计算公式,实物粒子动量越大,它的波长就越短。德布罗意获得1929年诺贝尔物理学奖。

物理学的这些革命性事件,引起了显微镜科学技术的革命。德国科学家鲁斯卡和克诺尔想到,既然“一切实物粒子都具有波动性”,那可以用电子束代替光作为显微镜的“光源”。电子与光子一样,也具有波粒二象性,而电子的波长比光的波长短得多,利用电子束照射样品,就能分辨样品更微小的细节。1932年,他们研制出第一台电子显微镜,放大倍数达到12000,超过了光学显微镜。这一年鲁斯卡年仅26岁。1939年,在鲁斯卡主持下,西门子公司制造出世界上第一台实用的电子显微镜。如今,电子显微镜的工作电压高达100万伏,有效放大倍数高达100万倍。电子显微镜完成了显微技术的一次革命,因此鲁斯卡获得1986年诺贝尔物理学奖金的一半,另一半由研制出扫描隧道显微镜的宾尼希和罗雷尔分享。获诺贝尔物理学奖时,鲁斯卡已经是80岁的耄耋老人了,离他去世仅仅两年。

电子显微镜的革命性在于,它用电子束代替了光学照明。在受到50~100千伏电压的加速后,电子的波长为0.53~0.37纳米,大致等于光波长的l/1000。根据两者波长的关系,大家可以推测,电子显微镜的分辨率会比光学显微镜高得多。现代电子显微镜可以分辨物体上距离0.2纳米的两个点,是光学显微镜的1/1000。借助电子显微镜,人们能够观察金属的晶体结构、蛋白质分子、细胞和病毒的结构。电子显微镜的发明,推动了生物学的研究。

扫描隧道显微镜的诞生

电子显微镜观察的物体要放在真空中,要接受脱水处理,而且要接受高速电子的打击。因此,能放进电子显微镜观察的试样受到限制,观察结果也受到影响。科学技术的发展,需要基于新原理的显微镜;而显微镜要在理论上有所突破,必须依赖基础科学的革命性的进展。1958年,日本科学家江崎玲於奈在研究重搀杂PN结时发现了隧道效应,揭示了固体中电子隧道效应的物理原理。江崎玲於奈与贾埃弗、约瑟夫森分享1973年诺贝尔物理学奖。

1978年,一种新型显微镜的灵感,在一次谈话中产生了。一天,IBM公司苏黎世实验室的科学家罗雷尔向德国研究生宾尼希介绍他们实验室的表面物理研究计划。31岁的宾尼希提出,可以用隧道效应来研究表面现象啊!罗雷尔对他的想法很有兴趣。于是,1978年底,罗雷尔就邀请宾尼希来到苏黎世,一起研制利用隧道效应的显微镜。宾尼希和罗雷尔克服了重重困难,终于在1981年研制出扫描隧道显微镜。它是显微技术的又一个革命性的进展,放大倍数达到数千万倍。这种新型显微镜的革命性表现在,它是借助隧道效应研究材料表面。因此,它不使用透镜,对样品无破坏性,而且可以获得三维图像。

扫描隧道显微镜的研制成功,展示的是综合性成果之和谐美。最早利用隧道效应来研究表面现象的不是宾尼希和罗雷尔,而是美国物理学家贾埃弗。我们可以想见,观察样品表面原子尺度,必定要求仪器具有极高的稳定性。贾埃弗未能克服这个巨大的障碍。宾尼希和罗雷尔却在3年时间里,实现了理论上、实验技术上和机械工艺上三大方面的突破,解决了仪器的稳定性难题,取得了最后的成功。没有机械工艺上的突破,扫描隧道显微镜是无法成功的。

扫描隧道显微镜分辨率极高,水平方向达到0.2纳米,垂直方向更达到0.001纳米,可以给出样品表面原子尺度的信息。我们知道,一个原子的典型线度是0.3纳米。对于单个原子成像来说,这样的分辨率已经是足够了。扫描隧道显微镜的发明,促进了生物科学、表面物理、半导体材料和工艺、化学作用的研究。扫描隧道显微镜技术还在继续发展。例如,为了弥补扫描隧道显微镜只能对导体和半导体进行成像和加工这个缺陷,研制出能在纳米尺度对绝缘体进行成像和加工的原子力显微镜。

在上世纪30年代,还出现了一种借助电子来显示物体表面结构的显微镜,那就是场一发射显微镜。1937年,缪勒发明了场一发射显微镜,直接把发射体表面的图像投射到荧光屏上。因为是“直接投射”,这种显微镜的放大倍数,大约等于荧光屏半径除以发射体半径,可以达到100万。场一发射显微镜和场一离子显微镜,是迄今最得力的显微镜之一。场一发射显微镜的分辨率可以达到2纳米。场一离子显微镜的分辨率更高,可以达到0.2纳米。0.2纳米的分辨率是什么意思呢?就是说,荧光屏上能够显示出样品(针尖)表面上的单个原子。在场一离子显微镜中,样品尖端要承受强大的电场力作用。因此,场一离子显微镜仅用于研究金属材料,无法进行生物分子的研究。

微电子学论文范文12

[摘要]本文提出实物粒子波动性不是自身特性,而是微观粒子在一定宏观作用下的统计规律表现,波动性原因不在于微观粒子自身,而在于宏观作用的微观变化(涨落),并用此观点合理解释了隧道效应现象和电子的单双缝衍射实验现象。

[关键词] 波粒二象性 不确定关系 衍射干涉 微观粒子 势垒

经典力学――运动学和动力学是研究物体运动规律的理论。无论是对宏观物体还是微观的实物粒子都是正确的。目前人们能够测定和控制的是宏观作用力(宏观稳定统计平均值)。由于宏观作用力的微小变化(涨落)对宏观物体或较大的实物粒子的作用影响微乎其微,完全可以忽略不计,因此,经典理论完全适用于宏观物体和较大的实物粒子;而宏观作用力的微小变化(涨落)对微小实物粒子――微观粒子的影响则不能忽略,因此,经典理论经常不适用于微观粒子。这里强调指出经典理论对微观粒子不是不正确,而是经常不能用于微观粒子。例如,在研究宏观引力场和电磁场对微观粒子的作用时用的恶就是经典理论,而且事实证明是完全正确的。

经典力学是关于物体运动学和动力学理论,而对微观粒子经常不适用。也就是对于单一微观粒子的运动我们还无法研究和控制,但是微观粒子在宏观作用力下的统计运动是有规律的,也就是波动规律,是量子力学的理论。所以,牛顿第二定律方程是研究物体(主要是宏观物体)运动规律的方程,而薛定谔方程则是研究物体(微观粒子)运动统计规律(多个粒子一次运动规律或单个粒子多次重复运动规律)的方程。可以说实物粒子的波粒二象性与光的波粒二象性完全不同。

光波的波粒二象性。光是连续物质、是波在一定条件下既有波动性,又有粒子性,光本身主要是波动性,而它与物质作用有时表现出粒子性。即本身具有波动和粒子性。

而实物粒子却不同。它是粒子只有粒子性,波动性不是它的自身特性,而是在宏观作用力下,粒子运动的统计规律的表现。波动性的根本不是自身而是外作用力。粒子波动性不是单个粒子的特性,而是多个粒子统计规律。微观粒子的波动性是作用力的统计规律的表现。

用上述观点来分析探讨微观粒子的不确定关系(以前称之为测不准关系)由于测不准说法不确切,所以目前大多数都称之为不确定关系。微观粒子之所以有不确定关系是由于它的波动性。二者之间是有必然联系。但是波动性不是微观粒子的自身固有属性,故不是单个微观粒子不能同时具有确定的动量和位置,没有确定的轨道,而是在一定的宏观条件下。多个粒子或单个粒子的重复不能同时具有确定的动量和位置。没有确定的运动轨道、微观粒子的不确定性来自于一定宏观条件下的微观变化(涨落)或者是由于作用于微观粒子的作用力的微观不确定性。如果认为波动性或不确定性关系是微观粒子自身固有的特性。则很多量子理论和实验得到的结果无法合理的解释。

例如,既然微观粒子自身具有波动性,就要得出微观粒子不可能有静止的时候,这是不符合事实的。因为微观粒子发生碰撞,就存在着由v变为 -v的粒子,如果没有v静止的时候,他的速度方向是如何改变的,也能发生跃迁吗?就是量子力学中的隧道效应等现象也无法合理解释,为了解释隧道效应有人使用不确定关系解说势垒有一定宽度。因此,进入势垒的微观粒子具有不确定关系。进入势垒的粒子是具有一定动能的定基态粒子。它的不确定动能哪里来的。如果没有来源就要假设粒子具有负动能,没有办法只能说这是量子理论得出与实验相符的结论,验证了量子力学理论的正确性。如果用作用力(势垒)的微观变化(涨落)就可以合理解释这一现象,因为势垒是一个作用力场(对微观粒子而言),势垒对粒子的作用力有不确定性,进入或穿过势垒的粒子是由于这些粒子在势垒中时,他的势能小于势垒高度。这种观点当然可以证明为什么粒子动能大于势垒高度时还有不能穿过势垒而返回的粒子(反射波)。

我们再来分析、解释电子的单缝和双缝衍射实验现象。

电子的单缝衍射现象:单缝宽度越窄,衍射越明显,是由于缝越窄,过缝的电子与缝边物质越近,当然作用就越强烈、作用的不确定性越大,故衍射的越明显,而单缝的衍射――缝对电子的统计作用(是多个电子同时过缝或者单个电子多次重复过缝)是有规律的。这个规律与光波相似。故说粒子具有波动性。同时电子过双缝衍射也是一样。至于电子过双缝时的分布与过单缝的分布不一样也类似光一样。我们认为电子与光波不一样。粒子的波与光波不同。没有位相,故不发生干涉,那为什么会像光一样出现双缝干涉图样。我们认为光的双缝干涉条纹是两个单缝衍射条纹分布干涉迭加结果。而电子的双缝衍射条纹与光波相似也是等间隔条纹分布。由于电子没有位相,不会发生干涉,故不是两个单缝衍射条纹分布的相加,也就是光的双缝衍射是通过某一缝的衍射条纹分布与单缝衍射条纹分布相同。双缝衍射时,两缝之间互不影响和干扰。而电子的双缝衍射则不同。两缝之间是有相互影响和干扰的。通过某一缝的电子衍射分布是与另一缝有无元电子通过有关,如果电子只过一缝(另一缝被遮住)则衍射图样是单缝衍射。图样和光单缝衍射图样相同。若两缝同时打开,则每一缝衍射图样都与双缝的衍射图样相同(似光波的双缝图样)。因为双缝图样是单缝图样的几率相加(无干涉)也就是其中某一单缝对电子的作用是受另一缝有电子通过而影响的。更确切的说一个缝的电子衍射,缝对电子的作用,电子也对该缝有作用(作用相互)并且影响了另一缝对电子的衍射。正是这种影响的统计规律,才出现了双缝衍射图样和单缝衍射图样的不同。要说有“干涉”那是电子通过两缝之间的作用物质“干涉”,这里有电子的原因也有双缝间作用物质的原因。

光波与实验粒子之所以有这样的区别是由于光的波动性是它的自身特性。光波是连续性物质,双缝衍射,接收屏上所接收的任意一个光子无论在何处都是通过双缝的,不可能说光子是从哪一个缝通过的。而电子的波动性是它的统计规律。电子的双缝衍射,接收屏上任一个电子都是从两缝中的一个缝过来的。尽管我们分不出是从哪个缝过来的。因为它是粒子,粒子性是它的自身特性,波动性不是粒子(单个粒子)自身特性,而是多个粒子在一定的宏观作用下的统计运动规律。波动性的根源在于物质作用的微小变化(涨落),当这种微小变化对微观粒子不起作用时,波动性也就消失,例如,电磁场、引力场对微观粒子的作用就是这样,那时,经典理论也适用于微观粒子。