0
首页 精品范文 系统设计论文

系统设计论文

时间:2022-07-10 14:36:20

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇系统设计论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

系统设计论文

第1篇

该信息平台设计包含三个部分,一是用户使用的阅读器,该阅读器具有用户登录、频道管理(订阅、退订)、信息阅览的功能;二是RSSfeed(RSS源)生成设计,即图书馆将推送的频道生成相应的RSSfeed,用于用户订阅;三是用户信息的管理,通过该模块,可实现统计有哪些读者订阅图书馆推送的信息和统计读者喜欢订阅哪些信息。

一、系统设计目标

系统设计的基本原则是根据图书馆推送服务的内容设置来设计,可实现:

(1)使用网页阅读,无须安装阅读器

(2)方便读者订阅和使用

(3)个性化界面,可根据需要进行更改

(4)可对用户信息和数据统计

二、可行性研究

可行性研究是指能使该系统达到以最小的开发成本取得最佳的开发效果。可行性研究的目的是对要开发的信息服务系统从技术上、经济上、资源上和管理上进行是否可行的研究,以保证资源合理使用、避免失误和浪费时间的重要工作。经济上的可行性:因为开发与运行环境没有特殊的要求,只要有台配置一般的PC机和几种常用软件外就可以了。

技术上的可行性:在技术上主要采用ASP动态网页技术,简单的数据库技术,Ajax体系结构,MD5加密算法,当然还包括RSS技术。这些技术有的已经非常成熟,有的是现在的热门技术并且有了广泛的应用,可以找到参考文献资料,所以实现起来是可行的。

资源上的可行性:图书馆有充足的文献资源、先进的计算机设备和网络,设计工作人员具有多年图书馆业务管理经验和自动化管理经验,为系统开发提供了足够的保障。

管理上的可行性:帐户管理方面,系统提供登录和注册功能并能根据帐号管理自己的资源。图书馆本身的自动化管理系统拥有全校师生的完整数据信息,通过转换,可以方便将数据转入本系统的用户数据库中,读者可不必注册直接登录即可。对于校外的用户可以通过注册登录。

三、RSSfeed的设计与实.现

RSS是一种基于XML的信息内容描述、和信息聚合技术,通过支持标准的RSSfeed(RSS信息源)格式实现信息内容的聚合和订阅。随着RSS技术的普及和广泛应用,国内外图书馆界开始积极尝试采用RSS来提高自己的服务水平。使用者如果想获得RSS服务,只需要通过阅读器来订阅RSSfeed,即可得到推送部门提供的服务。

每个图书馆将会根据本馆的情况设计多个推送频道,本文以推送图书馆新书通报为例,说明RSSfeed设计与实现的方法。

新书通报是图书馆将每批采购经过编目加工后放入借阅流通的新书以一定的方式介绍给读者,使读者能够及时了解图书馆最新图书动态并找到自己所需要的图书,提高图书的利用率。为此图书馆可以设计一个RSS新书通报频道,读者一旦订阅,就可以及时获得该信息。具体实现通过先获取新书的相关数据,然后生成RSSfeed.

(1)获取新书的相关数据,生成文本文件

以我校图书馆为例,现图书馆使用的是先进的图书馆自动化管理系统,该系统可以实现图书的自动化管理,并支持图书按照国际标准格式(MARC)进行编目。编目后的数据,可以通过管理系统的报表功能将一定时期的书目数据输出,输出的书目数据用规范的字段和子字段代码揭示每一种图书的内容,并形成规范的文本格式。(2)RSSfeed生成方法

RSSfeed本质上是一个XML文件,由多个XML标签((tag)构成。一个RSSfeed包括两部分:描述feed的静态信息和构成feed的每一条目的动态信息。静态信息描述RSS的版本、编码和频道名称等信息;每一个动态条目以<item>标签开始,包括Title,Link和Description等标签,并对应与之匹配的结束标签。

(3)核心代码片断

通过JAVA程序实现了定期自动生成RSSfeed。以下为实现的部分核心代码:

根据读取的数据,构造RSSfeed中每个<item>内容

while((sline=br.readLine())!=null)

{

通过subString()函数对每条数据做拆分,读出题名、出版说明、ISBN号等生成<item>内容}

(c)输出RSSFeed

Filef=newFile(“..//newbook.xml");//建立输出的XML文件

FileOutputStreamfis=newFileOutputStream(f);//建立文件输出流

OutputStreamWriterisr=newOutputStreamWriter(fis);

BufferedWriterbr=newBufferedWriter(isr);

Br.write(head+content十tail);//将字符串写入文件newbook.xml.

本文针对网上各种免费阅读器进行研究,发现,网上免费阅读器功能强大,但是缺乏管理与统计的个性化功能。设计的目的是以网页形式来阅读,不需要安装阅读器和插件。阅读器开发平台:ultraedit编辑器和Dreamveaver2004;操作系统:WindowXP和IIS系统组件。

四、阅读器页面设计结果

第2篇

1测速原理

测量系统设计结构如图1所示,两个相同匝数和相同结构的线圈内嵌于炮管制退器中,保证两组线圈的中心轴线与炮管轴线中心线共线,两组线圈相距D。将三轴磁阻传感器组成测量系统尽量安装于弹丸质心,保证弹丸在飞行过程中三轴磁阻传感器不会有晃动。在两组线圈通电后,由电磁感应原理可知线圈产生磁场,磁场方向为平行于制退器中心轴。弹丸发射后经过第一组通电线圈时,磁阻传感器在感知到线圈产生磁场后产生一个脉冲信号,启动计时器,通过第二组线圈时,磁阻传感器再次感知线圈产生感应磁场后,产生第二个脉冲信号,停止计时器,根据这两个脉冲信号之间的时间间隔可得到弹丸经过两组线圈的所用的时间Δt;根据公式(1)可以求得弹丸经过两个线圈时平均速度vv=D/Δt,(1)式中v为弹丸飞行出炮口的速度;D为两组通电线圈的距离;Δt为定时器测得的通过两组线圈的时间。由于相对弹丸在高速飞行状态下,所用的时间短,距离D也很短,可近似认为这段距离的平均速度为弹丸炮口初度。

2总体方案设计

如图2所示,两组线圈串联上电,弹丸飞行通过第一组通电线圈时,磁阻传感器感知到较大磁场,产生一个较大脉冲,将此信号进行信号调理(放大、滤波)后,经A/D采集数据,进行上下限阈值比较,若大于阈值,响应中断请求,定时器开始计时;否则,继续采集。弹丸飞行通过第二组通电线圈时,同理,磁阻传感器感知到较大磁场,产生一个较大脉冲信号进行滤波、放大后,经过A/D转换模块转换为数字量,进行上下限阈值比较,大于阈值时,响应中断请求,定时器停止计时,通过定时器计时可得弹丸飞行经过两组线圈的时间,实时解算出弹丸炮口速度。

3硬件系统设计

如图3,硬件电路包括传感器电路、信号调理电路与A/D转换采集单元及MCU运算模块。本设计中选用Honeywell公司研制生产的HMC1043三轴AMR磁传感器,该传感器具有体积小的特点、其封装只有3mm×3mm×1.4mm,带宽为5MHz,可以测量500kHz以下信号,符合在弹载测量环境中的体积小、动态性能高的测量要求。磁阻传感器的放大和滤波电路如图4所示,AD8426是双通道、轨到轨型输出的仪表放大器,并且体积较小,仅为4mm×4mm×0.85mm。其中一个通道提供信号调理模块的抬高电压,另一通道运用外接电阻器设置放大倍数。为了使系统设计具有体积小、动态性能高的特点,炮口测速系统MCU选择使用由ST公司生产的Cortex—M4内核的高性能微型控制器STM32F405,该芯片内部自带集成的三个12位的A/D转换外设,不用外接A/D转换器,所以,可以达到减小系统体积的目的,此外,其转换速率和分辨率等也符合测量要求。

4软件系统设计

软件流程如图5所示,程序主要包括系统初始化模块、A/D转换采集模块、定时器模块、中断模块和解算模块。模块间通过发送命令字和返回字来控制程序的执行过程,程序初始化后开始擦除FLASH,然后进行A/D转换采集数据,判断是否大于阈值,如是打开定时器开始计时,等第二次再次达到阈值定时器停止计时,最后进行初始速度解算和存储。

5实验验证

整个测量系统由产生磁场的两组通电线圈和弹丸内部磁传感器的信号采集和调理电路组成。地面实验采用100mm空气炮,空气炮激光测速仪如图6所示。由于实验条件限制没有空气炮炮口制退器,选用110mm的PVC管代替,其口径大小和制退器一致,PVC管两端分别绕上两组线圈,每组线圈缠绕400匝,两组线圈相距100mm。整个实验装置如图7所示。 将线圈通电,炮弹上膛发射,采集三轴传感器输出数据和空气炮测速仪数据。图8(a)所示的激光测速仪测得的脉冲信号进行解算后得到的炮口速度为81.5256m/s。将图8(b)所示的数据事后进行解算为81.3687m/s,同时将本测量系统实时解算出的速度信息通过上位机读出为81.3650m/s,与事后解算值相差0.0037m/s,与激光测速仪测得的速度相比,相对误差相差0.197%。

6结论

第3篇

1.1系统设计

根据某省电力公司的具体情况,本文所设计的电力行业统计分析系统的总体架构分为数据源、数据仓库架构、数据访问架构以及元数据管理等。

1.2ETL设计

用OWB(OracleWarehouseBuilder)工具对ETL进行实现,其任务为侦测ETL事件,以便启动处理过程,同时跟踪ETL处理日志。ETL的处理过程如下:通过Excel导入管理工具或者OWB将数据源的数据抽取、转换、加载到ODS层的数据缓冲区的增量数据库中;将ODS层的数据缓冲区的增量库的数据抽取、转换、加载到ODS层的数据缓冲区的历史库;将ODS层的数据缓冲区的历史库的数据抽取、转换、加载到ODS层的统一视图信息区的增量库;将ODS层的统一视图信息区的增量库的数据抽取、转换、加载到ODS层的统一视图信息区的全量库;将ODS层的统一视图信息区的全量库的数据抽取、转换、加载到ODS层的对外数据服务接口区;将ODS层的统一视图信息区的全量库的数据抽取、转换、加载到DW(数据仓库)层。

1.3系统数据结构设计

1.3.1ODS设计

存放经过清洗、转换、标准化以后的数据,并对外提供数据服务。为企业提供统一的数据视图,满足业务部门实时获取数据和业务部门间对企业级的数据共享的需求。因此将ODS设计划分为两大部分:数据区、服务区。并按主题进行组织、近实时的集成数据存储,以便最终用户能够快速查询近期细节生产数据。

1.3.2DW(数据仓库)设计

数据仓库模型分为两个区域:核心数据区(企业核心数据历史细节区域)和轻度汇总数据区。核心数据区的数据模型设计依据企业数据模型进行设计,但是每个实体都要加上相应的时间戳。核心数据区的模型相对稳定。轻度汇总数据区的模型设计依赖于分析需求。数据仓库模型是符合3NF的带有时间戳的关系模型。具体操作时应对数据仓库需求进行分解,按业务主题进行组织,将业务主题相关的数据组织成主题域,并对各指标进行分析。

1.3.3DM(数据集市)设计

数据集市的数据分为两类:一类是基于数据仓库的细节数据或轻度汇总数据进行的统计分析,另外一类数据是基于统计分析进一步分析挖掘的数据。数据集市的建模方法是通过调研企业经营的战略目标、综合查询分析系统、同业对标系统、业务管理目标、业务报表等,对这些资料进行分析。根据一体化平台关于分析主题进行细化,构建统一的核心数据集市模型。数据集市模型采用星形模型建模。

1.4元数据管理设计

元数据存储在专用的数据库中。有一类独立于其它工具,被称为元数据知识库(MetadataRepository)的工具,它们为元数据提供一个集中的存储空间。本设计中采用基于OracleOWB(OracleWarehouseBuilder)的元数据管理方案,各个工具集中通过OWB进行管理其中,元数据管理流程主要包括:元数据获取流程(手动和自动)、元数据访问权限管理流程以及元数据流程。元数据知识库通过元数据获取流程,来整合多个源(工具、数据库和流程)中的不同元数据。通过元数据获取流程,将元数据存入知识库中后,为了有效的维护和管理元数据,保持其对于整个数据仓库系统的有效性、准确性和及时性,还需要完成许多管控工作。元数据的方式有很多种:包括从属关系图(dependencydiagrams),数据沿袭表(datalineage),影响分析(impactanalysis),高级搜索,柔性报表,元数据术语表等。在实际工作中,应该有一套具体的流程来使用这些元数据方式,使得用户的查询请求能得到及时有效的反馈。

2系统的实现

第4篇

水平控制系统闭环控制结构如图1所示,图2是系统硬件结构框图。系统主要由姿态测量部分、非线性控制器与液压执行部分组成,各部分作用是:姿态测量部分检测平地铲水平倾角,非线性控制器根据倾角信息对电磁阀施加PWM脉宽控制信号,液压执行部分通过扭矩输出使平地铲保持在水平位置。系统的硬件包括Cotex-M3处理器、ADIS16355及SD卡存储器等。Cortex-M3处理器使用了ARMv7-M体系结构,具有较高的性能和较低的动态功耗[9]。从性能能上看,Cortex-M3处理器可以作为本文的融合算法以及控制算法的硬件实现。Cortex-M3处理器使用SPI接收来自ADIS16355的数据并保存在SD卡存储器。其采样得到的三轴角速度和加速度计数据通过传感器信息融合测量,从而得到平地铲水平倾角;数码管用于显示当前测量角度和控制参数等,可通过按键改变显示模式和参数调整,两者组成简单的人机界面,易于调试;RS232串口主要用于接收高精度姿态航向参考系统AHRS500GA发送的数据。

2融合算法与控制算法

2.1基于卡尔曼滤波的姿态解算算法利用加速度计对重力矢量进行观测,以观测值同重力常量的误差值修正陀螺对姿态角的测量值,设计卡尔曼滤波器对状态进行融合估计[10]。根据该方案,传感器信息融合处理过程如下:1)利用式(6)计算更新四元数,并转换为姿态角。2)观测矩阵

2.2控制系统数学模型根据平地铲运动特征,建立平地铲的抽象物理模型,如图3所示。按以下方法建立平地铲运动的载体坐标系xoy:以平地铲质心o为零点,系统输入量x为液压系统阀芯位移,输出量y为油缸位移,平地铲转动倾角为θ,建立传递函数模型。

2.3控制器的算法设计

2.3.1适用于平地铲运动的控制算法考虑水田激光平地机的作业特点,控制系统在设计上必须保证平地铲在倾角角度情况下能够迅速回位到水平位置,并且尽量减少超调和避免振荡。传统PID控制有较好的适应性,但是还不能提供最优控制,其结果是导致超调失效而影响控制效果。目前,基于动态补偿的最优控制在工业中得到应用,其特点是能够准确反映信号的变化趋势,产生有效的早期修正信号,以增加系统的阻尼程度,从而改善系统的稳定度[12]。本文鉴于非线性系统近似最优PD控制的特性,引入其算法,针对平地机做出相应修改,进行相应尝试。控制器框图如图4所示,姿态测量单元提供位置反馈θ。积分控制、比例控制以及微分控制的作用如下:①积分控制放在前馈通道,其作用是抑制平地铲在受到外界恒定负载情况下产生的输出误差,增益输出为y0=K1θ。②比例控制作用输出为y3,等于两次连续位置反馈值的差值,增量y1等于信号y0减去y3,通过数字积分器累加。③微分反馈信号y2提供参考速度,其大小正比于平地铲输出转速,与参考信号y1组成一个局部的速度内环。微分控制器设计目的是适合平地铲在大干扰情况下的操作。④系统输出转矩的参考值为Trf,送入零阶保持器,输出力矩实际值为Tcm。Tcm正比于零阶保持器的输出。

2.3.2控制器参数的确定平地铲运动机构近似于二阶系统,有以下方程成立。

2.3.3辅助补偿器的设计采用Lyapunov再设计方法设计辅助补偿器以补偿非线性部分和外界扰动对PID控制器的影响。对于渐进稳定的线性系统,必存在实对称正定矩阵P,满足以下关系。

3试验与分析

为了验证本文提出的平地铲水平控制系统,本文进行融合算法的验证试验以及平地机田间试验。

3.1传感器融合算法验证试验

3.1.1试验方法通过AHRS500GA同步测量平地铲姿态信息并作为准确数据,验证基于ADIS16355的姿态测量单元有效性。美国Crossbow公司生产的AHRS500GA是高精度惯性姿态测量器件,其采样频率为100Hz,测量精度为:航向角0.2°RMS、俯仰角0.03°RMS、横滚0.03°RMS[15]。融合算法的验证实验步骤如下:①在平地机上安装水平控制系统,保证系统坐标系与载体坐标系一致;②启动系统,人为摇动平地铲,同步记录ADIS16355与AHRS500GA数据;③PC平台上运行MatLab融合程序对采样的数据进行处理。

3.1.2试验结果分析图5为一次典型的试验结果,图5(a)为平地铲倾角测量值对比,图5(b)为局部放大结果。1)从图5(a)、6(b)中可见,0~400s区间平地铲振动较小时,利用加速度计计算倾角值较准确;当外界扰动导致振动加剧时,误差可达±5°以上,无法单纯用加速度计解算姿态角。2)本设计姿态测量单元能准确测量平地铲动态倾角。由图5(b)可见,在动态环境下融合结果能与AHRS500GA提供的参考倾角结果呈现良好的一致性,其误差绝对值不超过±1°。3)通过传感器实时判断平地铲运动状态,利用加速度计对重力矢量观测值来修正陀螺漂移,可以有效降低姿态角计算误差。

3.2平地机田间试验

3.2.1试验方法组装好平地机的高程和水平控制系统,在水田进行平地试验,开启以上系统并保证正常工作,记录相关数据。图6所示为水田激光平地机田间作业后的场景,可以看出平地效果良好。

3.2.2试验结果分析图7所示曲线为平地机平地过程中控制系统所测量的平地铲水平倾角。田间试验结果分析如下:1)从图7(a)可知,平地铲倾角变动基本控制在±1.5°以内且渐进稳定,满足平地机作业要求。2)从图7(b)和7(c)可知,在外界干扰较大导致平地铲晃动严重时,水平控制系统起作用,通过PWM输出反向力矩,使平地铲恢复到水平位置,其过程是渐进稳定的。3)由于在控制算法推导过程中,平地铲的传递函数是简化和抽象的,如忽略机械连接部分的间隙、挠度,液压油缸对于控制系统的响应有延迟现象等,最终导致了控制系统的效果受到影响。

4结语

第5篇

系统由分布在育苗架中的多个传感器节点、数据采集单元、设备控制单元和存放在嵌入式ARM设备中的监控软件4部分组成,如图1所示。育苗架由钢制材料构成,共有4层。每一层上面都布有4个温度传感器和加热、加湿装置,苗架内布有1个湿度传感器。苗架工作时处于完全密封状态,苗体生长所需的温湿度环境均由外部智能控制。数据采集单元负责向传感器节点发送指令,进行温湿度数据采集,并通过处理、打包过程,将数据通过RS-485总线接口发送到嵌入式设备上的智能监控软件中,数据传输所使用的协议为Modbus[3]。智能监控软件收到采集单元发来的数据之后,进行解包、分析、处理等过程,然后显示到用户界面上,同时软件具有记录历史数据的功能。用户在监控软件上可以设定期望达到的温度、湿度值,软件会发送包含这些期望值的指令给数据采集单元。数据采集单元收到这些指令之后,会判断当前是否符合条件。当条件符合后,数据处理单元会自动调用设备控制单元对育苗架进行相应的加热、加湿操作[4]。

2系统硬件设计

2.1嵌入式平台

嵌入式平台CPU型号为博通公司的BCM2835,采用ARM11微架构,主频为700MHz,同时平台配有512MBDDRRAM和8GBNandFlash,提供高效、稳定的运行和存储环境。平台配有HDMI高清视频接口,用来外接显示器,可以直观地显示系统操作界面。配有RJ-45网络接口和多个USB接口,用来连接网络、键盘鼠标和USB转RS-285数据线。平台搭载开源的嵌入式Linux操作系统,该操作系统稳定性好并且具有丰富的扩展功能,适合作为嵌入式监控平台[5]。

2.2传感器节点和设备控制单元

温度传感器采用Pt100。Pt100温度传感器是一种将温度变量转换为可传送的标准化输出信号(4~20mA)的仪表,其本质是铂热电阻,阻值会随着温度的变化而改变,主要用于温度参数的测量和控制,测量量程为-200℃~+200℃,精度为0.1℃。湿度传感器采用NWSF-1AT,它是一种集传感、变送为一体的湿度传感器,适于室内环境的湿度测量。其测量量程为0~100%RH,精度为±5%RH,响应时间小于15s,是一种两线制的标准化输出信号(4~20mA)传感器。设备控制单元采用继电器控制。加热装置分布在育苗架的每一层,且可以独立工作,加热装置的核心是碳纤维加热毯,它使用碳纤维作为加热介质。碳纤维(carbonfiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。碳纤维的导热性能好,热膨胀系数小且具有各向异性。因此,碳纤维加热毯的功耗低、加热速度快,适合在农业上使用。加湿装置分布在育苗架的每一层,核心是双向高压喷头,可以均匀覆盖待加湿区域。本单元既可以接收由数据采集单元发来的指令,打开或者关闭加热、加湿装置;也可以设定一个阈值,自动地打开或者关闭加热、加湿装置。

3系统软件设计

系统软件设计由通信协议和上位机程序两部分组成。其中,通信协议采用Modbus、上位机程序使用Qt开发。

3.1通信协议

Modbus协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一种控制器请求访问其它设备的过程,制定了消息域格局和内容的公共格式。Modbus协议规定,在进行通信时,每个控制器需要设定唯一的设备地址,交换消息时根据设备地址进行响应,确保一条指令对应的设备是唯一的。Modbus协议查询指令数据示例如表1所示。其中,数据均为16进制,CRC错误校验位高位在前、低位在后。

3.2上位机程序

本系统上位机程序采用Qt开发,它是一款开源的界面设计库,使用C++类编写。其最大特点是跨平台,支持市面上所有主流平台,如Windows、桌面Linux、嵌入式Linux、MacOS、Android等。用户只需要编写一次代码,就可以在不同平台上进行编译、运行,可移植性较好。在正式编写Qt代码之前,需要在目标平台上搭建相应的开发环境,即本系统需要搭建适用于嵌入式Linux的Qt开发环境,Qt版本为4.8.5。首先将Qt源代码解压,在其根目录下执行./configure命令,对源码进行配置;然后执行make和makeinstall命令编译源码,并安装编译好的库文件到lib文件夹下;最后将这些库文件拷贝到嵌入式平台根目录下的lib文件夹中,并为其增加export变量路径:exportQTDIR=/usr/local/Trolltech/Qt-4.8.2exportPATH=/usr/local/Trolltech/Qt-4.8.2/bin:$PATHexportMANPATH=$QTDIR/man:$MANPATHexportLD_LIBRARY_PATH=$QTDIR/lib:$LD_LIBRARY_PATH至此,Qt环境搭建完毕。嵌入式平台用户界面如图2所示。上位机程序由查询指令发送模块、查询指令接受模块、控制指令发送模块、历史记录生成模块和通信控制模块组成。对各模块进行独立开发,最后在主界面中采用多线程机制进行结合,将各模块分别放置在单独线程中执行,既确保了各模块的独立性,又提高了程序的安全性和总体的运行效率。系统总体的软件流程如图3所示。系统启动后,会首先初始化硬件(内部寄存器、串口等)和传感器节点[6]。采集单元通过RS-485串行通信口与嵌入式设备进行通信。本系统可以选择手动查询模式或自动查询模式。安装在ARM设备上的上位机程序能够给数据采集单元发送查询或控制指令。当发送查询指令之后,采集单元会根据指令中包含的设备地址信息,匹配相应的传感器节点,并采集数据;将采集到的数据进行压缩、打包,然后传回上位机程序;上位机程序接收到数据之后,进行分析、解包、处理,最终显示到用户界面上,同时自动存储历史数据。当上位机发送控制指令之后,采集单元会把待设定的参数传递给控制单元,使其可以根据需求对加热、加湿装置进行控制[7]。

4实验及结果

为了验证系统的性能,将育苗架放置在室内环境中,分多个时间点记录育苗架周边环境的温度、湿度数据。给育苗架分别设定一个温度目标值和湿度目标值,每10min记录一次育苗架内的温湿度情况。为保证精度,周边环境的温湿度数据由小型气象站采集。育苗架内部的传感器放置如下:每层分成4个区域,每个区域的中心放置1个温度传感器,传感器距离每层顶部距离为20cm,用来采集温度数据;在育苗架内同时放置1个湿度传感器,用来采集湿度数据。育苗架内部的加热、加湿装置放置如下:加热装置铺在每层底部,使该层各部分可以均匀受热,且加热装置下再铺一层隔热层,避免每层热量相互串扰;加湿装置安装在每层的顶部,距离顶部5cm,采用360°双向设计,保证可以对该层各部分进行加湿。数据采集单元放置在苗架的外面,并且对苗架内的连线进行密封处理[8]。

4.1温度控制实验

将苗架温度目标值设定为25℃,湿度不设定,连续采集6h并记录数据,作出变化曲线图。图4为育苗架内温度曲线图,图中虚线为苗架外环境温度变化曲线。

4.2湿度控制实验

将苗架湿度目标值设定为40%Rh,温度不设定,连续采集6h并记录数据,做出变化曲线图。图5为湿度曲线图,图中虚线为苗架外湿度变化曲线。由两次实验可知,在系统刚开始工作的时候,不论苗架内外的温度还是湿度情况基本一致,各点的温度情况处于混沌状态,苗架内的温度和湿度都不等于设定值。随着时间的推移,苗架内各点的温度均趋向于设定值(25℃),湿度能维持在设定值(40%Rh)左右,且可以稳定保持。

5结论

第6篇

1气象信息共享平台总体系统设计方案

气象信息共享平台的建设围绕两个目标开展:一是建立数据接收的快速通道,提供统一的数据访问接口,为共享服务提供高效、规范的数据;二是统一数据管理各项功能的操作,提供规范、友好的操作界面,建立一体化的解决方案。结合两个系统设计目标,共享平台首先定位为气象信息共享数据的源头,负责存储、管理气象资料数据,最大限度的将省、市、县相关部门气象资料存储在统一的平台之上,为上层业务应用提供数据访问服务;其次,平台提供一个可扩展的气象信息存储服务框架,满足未来气象业务和探测手段不断发展、资料种类不断增加的需要,并提供对已有功能模块进行扩展、定制的支持。为此,平台遵循“可靠稳定、构件封装,先进成熟,开放扩展,统一规范,便捷维护”的总体系统设计原则。整体采用框架系统设计,各子模块之间功能独立,可根据用户的需要进行组合,各子模块之间没有直接耦合,而是通过数据库之间的联系由框架进行组合;同时,框架程序利用构件技术,采用面向对象方法进行系统设计。在框架的组织下,平台的适应性、灵活性增强,同时通过复用、可配置等技术降低了平台的开发和维护风险,且具有良好的可扩展性。

2气象信息共享平台体系结构

为实现由业务资源服务应用的无缝化,气象信息共享平台采用如图1所示的体系结构,即从上到下分为应用层、服务层和数据层。2.1数据层数据层是平台各种数据的来源,包括实时数据库、历史数据库、行业共享库、实时专用库和目录文件。在各类数据库中既存在结构化数据,也存在诸如文档之类的非结构化数据,数据的格式均不相同,如按传统的方法实现,工作量大,难以维护。因此平台构建了数据访问逻辑构件和业务实体构件,为各种应用提供了统一的数据接口,以实现不同来源数据的统一处理,做到程序与数据源松耦合。2.2服务层服务层包含了大量的服务,这些服务在流程引擎的驱动下,与业务流程绑定,组合成为功能更为强大的组合服务,供不同的业务模型调用,从而满足用户的需求;该层服务采用SCA1.0标准来实现,将构件库中的构件,装配成服务的方式提供给其他构件、服务或者其它系统。该层提取了气象共享服务的共性需求,通过数据服务、策略服务、业务服务、流程服务和表示服务为气象部门内部各业务系统的开发提供支撑。可以看出,平台通过把与气象数据共享业务相关的功能模块,以标准化的服务形式进行封装,形成一系列网络环境下的服务,然后通过结合业务进行流程编排,即可完成相关功能的定制。2.3应用层应用层主要完成平台搭建并为用户提供操作界面,平台运行模式采用基于B/S的方式,根据业务要求,技术架构的选择需要具备较强的伸缩性、开放性和安全性。考虑到JAVAEE的特点,平台应用层开发运行环境选择基于JAVAEE的应用服务器中间件平台。

3气象信息共享平台数据表系统设计

省级气象信息共享平台管理的气象数据主要包括区域自动站数据、地面气象观测站数据、探空数据、加密观测数据、农气数据、雷达数据和卫星数据。其中:(1)区域自动站采集的数据包括区站号、日期时间、风速、风向、雨量、气温、湿度和气压等,这些数据通过GPRS传输到位于移动的服务器中,并存入数据库,之后再定时导入到省局的数据库中;(2)地面气象观测站所观测的要素比区域自动站多,共有53个要素,但包括所有区域自动站的观测要素;(3)探空数据由探空报和高空报组成,包括PPAA、PPBB、PPCC、PPDD、TTAA、TTBB、TTCC和TTDD;(4)加密观测数据不是按时次每日记录的数据,也没有固定由哪些站点观测,因此加密观测数据一般由用户不定时人工上传,且用户上传的加密观测数据为文本格式(非结构化),因此上传之后平台需自动将文件中的各数据项解析出来,存入数据表中;(5)农气数据包括农气咨询中心内部业务系统收集的数据和业务系统产生的上报文件;(6)雷达入库数据包括雷达速度强度图(图像文件)和雷达基数据;(7)平台接收卫星系统传输的数据(图像文件),并直接存储至后台核心存储设备中;卫星包括风云二号卫星云图和风云三号卫星数据,其中入库数据为风云二号卫星云图(图像文件)和风云三号卫星观测原始数据及图像文件。为了实现上述气象数据的管理,平台主要系统设计以下数据表(限于篇幅,此处仅列出表名):等值面配色信息表、等值面表、行政区划表、农气AB报表(保存农气报的基本观测数据信息)、农气AB报作物表(保存农气报的作物生长信息)、农气AB报灾害表(保存农气报的灾害信息)、负氧离子观测数据表、区域自动站降水分钟数据表、自动气象站观测数据表、自动站侯数据统计表、自动站旬统计表、自动站日要素统计表、自动站日风表、自动站数据报监控表、自动站月统计数据表、micaps结构的探空报数据表、探空报基本信息表、等值线图片信息表、雷达回波图信息表、卫星云图信息表、土壤水分观测数据表、土壤水分月统计表、台站基本参数表、气象台站类型表、台站类型表和能见度观测数据表。

4气象信息共享平台功能系统设计

结合气象信息共享的业务需求,平台整体由气象数据应用、数据入库管理、台站管理和系统管理四大模块构成。其具体功能划分如图2所示。

4.1气象数据应用模块该模块是整个气象信息共享平台的核心部分,主要实现自动站数据、基本气象要素、农气数据、雷达回波图、卫星云图数据、土壤水分数据、人工地面观测数据和探空数据的查询、分析和统计。其核心可归纳为数据查询、数据统计分析、WebGIS展示和数据下载。(1)数据查询。数据查询为数据应用的主要方式,包括自动站数据、区域自动站数据、土壤湿度观测数据、能见度观测数据和负氧离子观测数据的查询。可以根据选择的站点、时次、时段、要素(可选多要素),以表格形式显示查询结果;同时实现表格行列可自定义、查询结果可打印、查询结果可生成TXT文件供用户下载、查询结果可导出为EXCEL文件等功能。(2)数据统计分析。可统计和查询任意时段内某要素的平均值、该时段内极大值和极小值;统计时支持站点可选、时次可选和要素可选,站点为单站、多站,时次为单一时次、连续时次;可统计和查询任意时段内单站气象要素值,提供曲线图。(3)WebGIS展示。采用开源WebGIS平台,在“自动站图集”的基础上,实现基本的地图操作功能,包括地图放大、缩小、察看全图等;实现自动站点空间定位及实时数据查询显示(气温分布图、降雨分布图、风力分布图、综合信息图、气象要素按数值大小绘制全省分布的色块图等)。(4)数据下载。选择任意时次/连续时次、任意站点、任意观测项目数据后,生成文本文件,供用户下载。

4.2数据入库管理包括入库参数配置和日志管理两个子模块,实现本应用数据库与基础数据库的表、字段对应信息的配置,以及相关数据操作的日志管理功能。

4.3台站管理实现台站类型管理和台站基本信息管理。

4.4系统管理实现平台内的用户管理、用户类型管理,组织结构管理,权限管理和日志管理等工作;该模块具有自主功能,能根据增加的栏目或功能将管理内容自动添加到管理系统中;能够实现所有栏目和功能的权限指定,具有自动和自主增加权限功能;能够对每类气象数据的每个要素或字段指定浏览/下载/修改/添加/删除等控制权限;能够进行用户级别设置,可自定义不同级别,每个级别能划分不同权限;能够对不同用户根据需要进行不同级别指定,能对同一用户同时指定不同级别,能对用户单独添加某种权限;能够对每个管理模块根据不同内容进行详细指定,如日志管理可划分为系统日志、用户日志、管理日志、数据日志和权限日志等。

5结语

第7篇

1.1导致油的粘度变差。

一旦粘度变差,就会使得设备面对如下三个方面的问题。零件和系统中的油液出现大量的渗漏,泵的容积率受到影响。油液流经节流小孔或隙缝式阀口的流量增大,此时之前的工作速率就会发生改变,干扰到稳定性,而且会导致精度明显的变低。除此之外,一旦粘度变差还会导致零件表层的膜变得非常薄,此时机械就会更容易受到磨损。

1.2导致氧化速率变快。

如果温度大于55℃时,每当温度增加10℃,其使用年限将降低一半。而且,氧化还会生成很多的胶装物体,使得零件的小孔拥堵,干扰系统的活动。

1.3零件因为受热而发生形变。

一旦温度变高,就会使得零件因为受热而发生变形现象,此时之前零件之间的缝隙就会改变,导致阻力变大,有时候还会导致阀门卡死。另外,这种热变形还会使得零件接触区域的油膜发生变化,致使磨损变严重,进而导致液压系统的泵、阀、马达等的精密配合面因过度磨损而失效或报废。

1.4一些零件的老化速率加快。

绝大部分的零件都是橡胶材料的,如果液压油温度太高的话,就会使得这些零件的使用时间大大的缩减。所以,要认真的分析系统高温问题产生的原因,并且采取正确的方法应对。

2液压系统设计缺陷对液压油高温故障的影响分析

通过分析发现,高温问题一般可以分为两个类型。第一是因为系统的设计不当导致温度变高,第二是因为系统的使用或是维护工作开展的不到位导致温度变高。由于设计不合理导致的温度变高,一般是因为设计不当或是没有正确的安装,此时就使得热量大量的产生,或是因为系统生成的热无法尽快的排放,最终导致温度过高。设计不当导致的问题一般涵盖如下的几类。

2.1没有正确的设计油箱。

通过分析发现很多时候的温度升高都是因为没有设计好油箱而导致的。对于该系统来说,油箱存在的意义是存储液压油,而且还有散热以及隔离水的功效。而设计不到位主要体现在油箱太小或是结构方面的问题。如果油箱太小,就会导致储液量非常少,进而使得系统不具备较高的流量,无法把产生的热带走,此时就使得温度变高。而结构方面的问题主要指的是因为吸油管和回油管的间隔太近,中间没有做好隔离工作,此时就会使得绝大多数的油没有合理的冷却就进到吸油管中,将使温度升高。所以,为了避免问题产生,必须要将油箱的体积适当的调整,而且开工至好两个油管间的距离,在两者间做好隔离工作。

2.2没有正确的设计散热体系。

散热系统的设计不合理,主要体现在冷却回路流量过小,空冷器散热能力与系统产热不相匹配两个方面。冷却回路的循环流量必须与液压系统所要求的散热量相匹配。流量过小,则冷却系统的换热能力降低,必将导致液压系统油温的不断升高。冷却同路的循环流量是由冷却回路的阻力特性和液压泵的动力特性共同确定的(冷却回路的流量一阻力特陛曲线与液压泵的流量一扬程特陛曲线的交点对应的流量,即为冷却回路的循环流量),对于冷却回路流量过小的散热系统,可以通过调整冷却回路的阻力特性(管径大小、阀门开度等)或更换输送能力较大的液压泵等措施,提高冷却回路的循环流量。空冷器散热能力与系统产热不相匹配,主要表现在空冷器散热面积过小及空冷器空气侧的对流换热能力不足两个方面。空冷器散热面积过小,主要是由于空冷器热工设计参数选用不合理或设计计算存在错误造成的。对于这个问题,可以在重新进行准确的热T计算的基础上,更换散热面积满足要求的空冷器,以增强空冷器的散热能力;空冷器空气侧的对流换热能力不足,则主要是由于空冷器空气侧的空气流量不足造成的。可以通过采用更换大风量风扇等措施,强化空冷器空气侧的对流换热效果,保证空冷器的冷却散热能力。

2.3没有选择合适的液压零件。

液压系统中的液压元件,主要包括换向阀、溢流阀和顺序阀等。这些元件的选型设计,必须满足液压元件工作压力、所通过流量及所要求的压力和流量的调节范围等方面的要求。其中流量指标是选择液压元件的重要依据。根据流量选择液压元件,其实只是保证所选择的液压元件的局部阻力系数具有合适的取值,以保证液压元件在正常工作状态下的阻力损失不致过大。因此,液压元件选型不合理,主要表现为所选液压元件局部阻力系数过大,从而导致液压系统在正常的工作流量下产生较大的阻力损失。这部分阻力损失最终转化为摩擦热被液压油吸收,从而导致液压油的较大温升。所以,一旦选择的零件型号不当,也会使得设备发生高温问题。

2.4管线设计以及安装工作开展的不到位。

系统管路的阻力有两种,一种是沿程阻力,另一种是局部的阻力。不论是哪种阻力,只要其变大就会导致热量变多,最终使得油温变高。因此,要积极的做好管线系统设计工作,将阻力损失掌控在一定的范围之内。站在控制阻力损失的层面上来看的话,在设计的时候要注意如下几个方面。(1)管径选择。在选择管径的时候要结合回路流量以及设计规定的比摩阻来综合分析,这样就能够防止发生管径太大或是太小的现象了。(2)管路长度。在确保功效合理,运行稳定的前提之下,在设计管路的时候一定要秉承着精简的理念,最好是短一些,这样就能够避免过多的弯折以及转弯等。(3)管路附件。在满足使用要求的前提下,液压油管路尽量减少弯头、变径及不必要的阀门等附件,以减少管路系统的局部阻力损失。

3结束语

第8篇

1.1 研究背景

目前,纵观全国各地高校,学位论文管理系统得以广泛实现应用,有一些学院依旧用手工录入的方式进行管理;经过仔细对比,很多高校使用WEB方式进行论文管理时的相关操作,在功能上及相应的业务流程比较相似;都使用较简单的方式,如都使用论文提交、审核,及搜索模块,基本上来说都没有题目选择或者导师互动等模块。在本课题在这些基础上,加入前期论文题目及导师的互动选择功能,从而使得论文的各个过程都能在网上进行,从而方便了审核人员,导师和学生。在线的论文指导(站内短信)功能可以导师和学生进行方便地进行沟通和交流,另外在线修改功能也能避免线下修改造成的纸张和时间的浪费。

1.2 研究内容

做为一个涉及多个权限用户的系统,这就需要对用户信息数据进行处理,再加载不同的用界面。根据该论文系统需求特点,要求平台建立在网络的基础上,尽可能地使论文的整个过程方便,简单,界面更加友好。整个过程首先由有相应论文指导权限的教师上传可供学生选择的标题,教师所在的单位审查通过后,便开始了基于该网络平台的互动论文选择过程,学生以志愿的方式选择相应的论文标题进行申请,然后相应教师对申请学生进行选择,系统接着对结果进行处理。处理完成后,落选双方进行第二次双向选择,最终完成选题的过程。然后教师与学生论文写作过程,进行开题报告,正文写作等过程,最后教师对论文进行评分。就是基于上面这一个论文过程,进行仔细分析,最后开发出这个系统。

1.3论文综合管理系统的开发环境

1.3.1 LAMP(LINUX+APACH+MYSQL+PHP)

网站主体采用执行效率极高的PHP开发,使用AJAX技术辅助,数据库方面采用与PHP之最佳组合MYSQL,web服务器和操作系统则采用apache和linux,这就是所谓的LAMP建站方案。

2 相关技术综述

2.1 PHP编程技术介绍

PHP是一种公开源代码!运行在服务器端的嵌入式脚本语言,允许程序员将语言嵌入HTML文件当中,并且PHP对不同的技术提供了编程环境与接口,利用它可以方便地开发各种功能完备!交互性强的动态页面,为网站建设提供了简单!实用的解决方案:

2.2 MySQL数据库技术介绍

MySQL是一个精巧的SQL数据库管理系统,虽然它不是开放源代码的产品,但在某些情况下你可以自由使用。由于它的强大功能、灵活性、丰富的应用编程接口(API)以及精巧的系统结构,受到了广大自由软件爱好者甚至是商业软件用户的青睐。

2.3 开发环境

LAMP即操作系统: LINUX,web服务器: APACHE,数据库:MYSQL,服务器端脚本PHP的第一个字母组合。LAMP通过多年的发展,迅速由草根阶层走出来,在世界范围的层面,一旦谈及WEB服务器标准,人们就会自然谈到LAMP。也正是因为LAMP都是开源的组件,不断完善其兼容性,它们的应该场合越来越广泛,普遍。并成为一个相当强大的WEB平台。

2.4 B/S体系与三层配置模式

B/S结构从逻辑上讲分为四个层次:客户机、Web服务器、应用服务器、数据服务器。客户机主要负责人机交互,Web服务器主要负责对客户端应用程序的集中管理,应用服务器主要负责应用逻辑的集中管理,它也可以根据其处理的具体业务不同而分为多个;数据服务器则主要负责数据的存储和组织、数据库的分布式管理、数据库的备份和同步等等。

2.5开发方法:原型法开发

3 系统设计与实现

3.1系统需求分析

本系统作为一套论文综合管理系统,在使用过程中主要呈现出了以下几个特点:

1)系统是根据具有本学院特色的论文管理模式进行编写的,具有通用性,同时也更具有个性化的特点,以方便学院师生论文操作和提高论文效率为核心,采用以管理与先进的计算机网络技术相结合。

2)规范的软件结构搭配先进的软件开发技术。该文管理系统基于B/S结构,并根据软件设计的思想,运用了标准化,模块化,网络化等技术,使得整个系统可靠性,适应性,维护性及安全性得到了很好的保障。

3)方便友好的用户界面。系统采用的浏览界面更加的友好,更加的清晰,布局也更加的合理,无论是那一种角色用户得能方便地操作,提高了他们使用系统完成任务的效率,最大化地使用户得到好的用户体验。

3.2系统设计目标

本系统设计的根本就是为了使得整个论文过程网络化,提高过程的完成效率,减少人工成本,提高论文信息的查询、纪录等工作的速度,使得论文的整个流程更加地完善。以便更加方便、直接、快捷地为我院师生提供服务。

3.3设计方案

3.5系统描述

该文系统的核心任务是论文的过程管理,它包含了系统管理的多个方面,内容上比较复杂、广泛,必须使得系统核心任务十分稳定,并且与系统其它模块的协作也要十分稳定,流畅。论文系统功能主要包括:论文,人员,以往论文,新闻,系统内短信等功能模块;及能根据系统赋予的角色权限对相应的信息进行相应的查询、统计、修改等操作的功能。

其中核心的论文管理行为包括:

1)本系统的院系管理员负责管理系统各种信息。管理教师和学生用户的论文操作权限;

2)非管理员用户只能检索、查看系统相关资料信息。

4 总结

论文综合管理系统的开发不仅仅是一个网站制作的过程,更重要的是在系统分析和设计阶段所做的工作。在这过程中,我充分利用了网站开发上的灵活和效率高的特点,应用PHP和MYSQL数据库以LAMP架构开发本系统。

在系统的设计过程中,本对系统的设计的过程越来越清晰,也更加熟悉PHP的程序应用,对系统整体的架构设计,模块划,页面的整体布局设计也有了更深的认识,为更好地学习,工作打下更加坚实的基础。

参考文献:

[1] 清华大学图书馆学位论文描述元数据规范课题组.学位论文资源分析报告[J].http://cdls.nstl.gov.cn/cdls2/w3c/2003/SpcMetadata/387298,(AccessedMar.19,2005):12-20.

[2] 朱红.学位论文管理系统的分析与实现[J].四川理工学院学报:自然科学版,2006,19(5):124-126.

[3] 冯建华.数据库系统设计与管理[M].北京:清华大学出版社,2007,5:40-57,100-120 .

[4] Andy Harris.PHP 5 /MySQL Programming for the Absolute Beginner (For the Absolute Beginner) (Paperback) [M].10-180.

第9篇

关键词管孔段长高程管道基础校园网

目前,随着教育的不断发展,有许多高校和中学都在建设新的校区。新建校园是否具有先进的、完整的弱电系统是衡量学校建设水平的一个主要标志。为了满足目前和今后的需要,绝大多数学校在建设时都将校园的弱电系统放在一个很主要的位置。计算机校园网、公共广播、安防与监控、有线电视、多媒体教学、“一卡通”等弱电子系统一应俱全。所有的子系统的布线都将涉及到校园内室外管道,所以室外管道的设计好坏,将直接影响到系统的投资和系统的性能。

弱电室外管道的设计仍然遵循通信管道的设计方法和设计规范,但由于使用的场合和敷设线缆的

种类不同,设计方面也有很大的区别,应分别对待。下面从几个方面进行阐述。

1管道的路由选择

室外管道的路由和整个弱电系统的布置有关,凡是综合布线需要敷设的地方都需要室外管道。新建的校园不可能再采用架空布线的方式。

室外管道从中心(网络中心、监控中心、电视演播中心等)开始延伸到校园的各个角落,以满足校园计算机网、监控、广播等系统敷设线缆的需要。管道的路由一般选择在校园的主要道路上。但由于校园的主干道上的地下管线很多,诸如下水管、供水管、煤气管等等,同时道路相对较窄,因此将弱电管道的路由选择在靠近建筑物的绿化带不失为一个好方法。这样做,一方面降低了与其他管线交叉与间隔等问题,施工难度小,今后受其他管线开挖维修的影响小,系统的安全性得到保证;另一方面,可以减小管道的埋深,降低管道的施工要求,例如管道基础可以不需要采用钢筋混凝土或混凝土基础,管道不需要进行水泥包封等等,节省了工程的投资。

当弱电管道必须和其他管线进行交叉时,尽量选择较少的交越点,即将分支管道集中起来,在一、二处进行交越,交越后,分支管道再向各个方向分散,尽量避免多处交叉的现象出现。在交叉的处理过程中,要考虑弱电管道和其他管道的各自埋深,以及相互之间的间隔距离,要求能够满足相关的标准。

2管道容量、管道材料和孔径的选择

2.1管道的容量

大多数的学校都选择将各个中心设置在一个建筑单体内,如计算机网络中心、监控中心、电视演播中心、广播中心等等,这样便于弱电系统的维护和管理。

出入中心的管道的容量要根据目前所需要敷设线缆的种类、数量来确定,管孔的含线率为50%左右,并且要考虑留有40%左右的富裕量,以满足今后20~30年的需求。在考虑管道容量时,要结合目前弱电各个系统的组成来决定所需敷设线缆的数量和走向。不同系统的线缆如光缆、通信电缆、广播、有线电视电缆、监控用视频应分别敷设在不同的管孔内。

2.2管道材料

管道的材料一般采用UPVC管,只有在一些车辆进出口和管道埋深达不到规定的场所考虑采用钢管。目前,不再采用混凝土的水泥管作为地下通信管道的用材。

2.3孔径的选择

在校园的主干路由和分支路由上,应采用统一规格的管材,一般为φ110UPVC。对于各个弱电系统从管道分支出去的地下管线,由于穿放的线缆种类单一、数量少,可以用φ40的钢管,例如室外广播点、室外监控点等。由于布点分散,当从主干管道分支至这些布点处时,地下管线可以采用φ40的钢管,并且可以缩小这些管线的埋深。

3人孔与手孔的选择

校园管道与电信管道的区别之一就是在人孔(手孔)内,没有或很少有线缆的接头,而且接头的尺寸较小。由于范围不大,从系统的安全性和稳定性来考虑,除了电话通信电缆分支和总线结构的系统需要在室外进行接续外(如室外属于同一广播分区的广播点),各个弱电子系统中的室外线缆尽量不要有接头。在实际的工程设计中,若无法避免接续,一般可以考虑尽量将接头设置在临近的建筑物的弱电间或桥架内。虽然这样要增加线缆的长度,但从接头的防潮角度来说,是非常有利的。

因次,在选择人孔和手孔大小和种类时,一般20孔以上的管道,其人孔选用小号人孔;对于18-12孔管道的人孔,选用标准手孔120mm×170mm×130mm;对于12孔以内的管道,其手孔选用90×mm120×mm110mm规格的手孔。手孔或人孔的井盖仍然采用标准的人孔铁盖和口圈。

对于为了满足各个弱电子系统而敷设的分支管道,如前面所述的广播、监控、安防的红外对射,由于管道的孔径较小,埋深较浅,手孔采用非标准的30mm×30mm×30mm的小手孔,就可以满足实际工程的需要。

4管道的基础、坡度和防水处理

4.1管道的基础

管道基础的好坏直接影响到整个管道的质量,尤其是管道建设在车行道下,如出现下沉而使管孔错位甚至管道断裂等现象大部分都是由于管道基础出现下沉而引起的。因此,在校园管道设计中,对管道基础的设计要充分重视。

对于土质较硬且埋深较深的管道,若管道敷设在人行道下且管孔数量不大于12孔,可以采用细土夯实或灰土做基础,以节省工程造价。对于土质较软,地下水位较高的地区,应采用混凝土基础。只有在沉陷性较大的土壤中建筑管道或有较大的跨越宽带的情况下采用钢筋混凝土基础。

4.2管道的坡度

为了让管道内的水能够流到人孔(手孔)内,避免由于管孔内有积水而使线缆始终浸泡在水中,管道必须要有一定的坡度。

管道的坡度值要取得适中,并要结合道路路面的坡度走向,坡度取得太大,则会增加管道的埋深,增加工程的投资,同时会造成人孔(手孔)的深度加大;坡度取得过小,则起不到作用。适合的坡度在0.2%~0.4%。

管道的坡度有“一字形”和“人字形”两种,可以根据具体情况选定。

当地面的坡度大于0.3%时,管道的坡度取地面的坡度;若地面道路的坡度小于0.3%时,管道坡度取0.3%,个别较长的段长,坡度取0.25%,管道的坡度为“一字坡”,坡度的取向同道路的坡度走向。当管道的段长较长时,可以选择采用“人字坡”,这样可以减少工程量,节省投资。

4.3管道的防水

在校园网的管道设计中,管道的防水应引起足够的重视,由于校园内其他的管线较多,且相互之间靠得很近,因此,必须要考虑管道的防水。对于较大容量的管道(例如8孔及以上),可以采用全程水泥包封的方式,人孔(手孔)内墙面涂抹5层防水砂浆进行防水。

5结束语

在目前的校园网弱电系统的建设中,校园管道是一个主要的环节,它是整个弱电系统的基础之一,它的建设好坏,直接影响到整个弱电系统的性能。因此,需要对此引起足够的重视。

参考文献

第10篇

1系统原理和结构

如图1所示,假设在二维空间的远场有一个单频声波信号源Bcosωt,频率为f,波长λ,传播速度为c,距离为D,接收阵元等间距排列,距离为d。当信号源满足远场条件时(D≥d2/λ),回波信号可以被看为一个平面,信号的入射角为α,则相邻阵元的波程差l=d·sinα,由此可得出相邻阵元间的接收时延τ=d·sinα/c,相位差θ=2πfd·sinα/c,相应第p个阵元接收到的回波信号为xp(t)=Bcos(ωt+pθ),(1)将所有阵元的回波信号进行叠加,并经过几何级数求和后可得y(t)=Bcos(ωt+(p-1)θ/2)·sinnθ2sinθ2.(2)由表达式(2)可以看出叠加信号的大小取决于各信号的相位差θ,当θ为0时,即回波信号垂直于线阵入射时,接收到的能量达到最大值。波束形成的基本原理是为了得到与直线阵元成某一角度α方向上的波束信号,对n个阵元接收到的回波信号进行不同的延时补偿和相位补偿,使这一方向上的信号在x'轴上同相叠加,而其他方向的回波信号则相互抵消衰减,从而达到基于方向的空间滤波效果[6]。便携式三维声纳系统的结构如图2所示,设备可与船体通过线缆相连或者离线工作。液晶显示屏安装在基板下方,与信号处理板连接,实时显示水下三维图像和多项系统参数。电源板可在线缆提供的外部电源和电池电源之间切换,为各板提供数字电和模拟电,基板负责板间互连和结构固定。声纳发射阵和接收阵被安装在前面板上,探测水平方向120°,垂直方向75°范围内的物体。利用波束形成原理,垂直发射线阵的阵元通过不同的相位差向探测空间的各个方向发射多路声纳脉冲信号,每个方向采用一种频率,用于定位垂直方向,如图3所示,发射阵元材料选用PZT—4型压电陶瓷,具有较高的机电耦合系数。水平接收阵材料选用PZT—5压电陶瓷,具有良好的响应特性,获取的回波信号经过带通滤波后同样利用波束形成原理添加相位和延时补偿,将各路阵元结果叠加后得到所需水平方向上的最强信号。经过多轮的发射和接收循环最终在显示屏上刷新出成像结果,实现水下三维探测。

2系统实现

2.1硬件系统设计

如图4所示,系统硬件主要由信号处理板、接收板和发射板组成。信号处理板完成75路发射信号的产生和二级波束信号处理,实现与液晶屏之间的命令和数据通信,并将采集到的数据上传到上位机。接收板连接水平接收阵的120路换能器,完成信号调理和一级波束形成。发射板用于驱动垂直发射线阵工作。接收板首先对从换能器接收到的微弱电信号进行调理,将信号通过一个放大电路和300~600kHz的带通滤波器,有效信号的衰减小于3dB,使信号满足A/D转换要求。然后模拟前端对声纳信号进行增益控制和同步采样,增益范围20~60dB。采用Xilinx公司的Spartan—6系列FPGA完成第一级的波束形成,其内部集成大量的数字信号处理器(DSP),可高效完成波束形成运算。两片FPGA各负责60路信号,通过I2C获取当前量程等参数,到处理板的数据传输通过LVDS接口完成。AFE5851是TI公司推出的面向高密度低功耗设备的新型集成模拟前端,集成了16个可变增益放大器和8个12位64MSPSA/D转换器,系统的采样速率为3MSPS,每通道功耗小于20mW。信号处理板的FPGA扩展1GB内存,从DDR中获取正弦波数字信号,采用查找表的方式生成75路发射信号,最后经过D/A转换器生成模拟信号,同时FPGA接收经过预处理的波束信号,实现二级波束形成,通过PCIe总线将结果传输到处理器,用于实时成像。DM8127是基于低功耗的数字媒体处理器,拥有强大的图形处理能力和丰富的接口,平均功耗小于3W,可保证系统在电池供电时保持较长的续航时间。

2.2FPGA系统设计

接收板的FPGA主要完成模拟前端的控制、数据的采集、120路信号的DFT运算、一级波束形成与上传数据等功能。由于随着阵元数量的增长,波束形成算法对硬件系统的性能要求也显著提高,在有限的成本下难以实时完成波束形成运算。为此,采用分级波束形成算法,以30个阵元为一组子阵并行完成-60°~60°范围内31个方向的一级波束形成,再将4个子阵作为4个阵元完成全阵120个方向的二级波束形成,相比直接获取波束结果可减少90%的运算量[7]。接收板的一级波束形成过程如图5所示,首先对各个阵元的150个离散采样点x1[n]做DFT处理,并根据当前所处的频带k提取频域信号X1(k),再参照各阵元的相移参数θ进行相位补偿[8],最后将所有结果求和则可得到一级波束信号Rα。图5一级波束形成流程Fig5Processoflevel-1beamforming在信号处理板,信号发射模块通过DDR控制器获取当前方向的75路数据,将发射信号发送到D/A转换器。FP-GA进行二级波束形成时,将每个子阵作为一个阵元,阵元的位置是子阵的中心点。在-60°~60°的范围内均分120个方向,形成某个方向的波束时,从各个子阵元选取方向最接近的一级波束信号,经过角度差调整后与一级波束形成类似,进行相位补偿求和,最终获得以接收基阵中心为原点的120个方向波束信息。

2.3软件系统设计

系统的软件功能主要由4个部分组成,如图6所示。通信部分完成处理器与上位机、FPGA和显示屏的数据传输。数据管理部分实现一些重要图像和数据的本地存储和回放。参数控制需要配置发射脉宽、探测距离档位、TVG控制等参数,同时传递人机交互的信息。系统软件的主体是三维建模,处理器从FPGA接收到的波束信号无法直接用于三维成像,需要先将声纳信息解析为三维坐标平面的点阵信息[9]。处理器接收到的声纳信息包括:波束信号在水平方向的角度α,信号频率k,目标图6便携式三维声纳系统软件功能Fig6Softwarefunctionofportable3Dsonarsystem点到阵元的距离D,信号强度B。数据解析过程需要将这些信息转换到以水平接收阵为x轴,垂直阵为y轴,垂直于换能器平面的方向为z轴的三维坐标系(x,y,z)中。转换公式如下[10]x=D×tgβ1+tg2α+tg2槡β,(3)y=D×tgα1+tg2α+tg2槡β,(4)z=D1+tg2α+tg2槡β.(5)其中,β是目标在垂直方向上的角度,发射扇面的每个方向波束采用不同的频率,通过信号频带k可以得到目标在垂直方向的角度β。由于发射波束和接收波束的方向是固定的,为提高转换效率,避免冗余的耗时运算,处理器预先计算出所有方向的正切值存入数组中,进行坐标转换时可利用查找到的正切值直接完成转换。采用三角网格构建将分散的数据点结合成可显示的图像片段。网格构建的方式选用欧氏距离最近邻原则,首先设定一个阈值,若两点间的距离小于此阈值,则可认为这两点间有相邻关系[11]。声纳系统的探测量程是可调的,使用固定的阈值会导致不同量程下出现大量的连接错误,成像效果不理想。为此,采用动态阈值,每当量程改变时,阈值将根据该量程的最大距离进行调整[12]。

3测试结果

为验证分级波束形成算法的可行性,利用Matlab软件对两种算法进行仿真,设定在线阵中心0°方向有一个声波信号源且满足远场条件。仿真得到的各方向波束结果如图7和图8所示,采用分级算法的主瓣宽度在1°左右,具有和直接算法同样高的分辨率,其旁瓣峰值的增量也小于0.5dB,由此证明:分级波束形成算法既能够取得与直接波束形成算法相同的效果,又可以大幅度减少系统资源占用,提高运行效率。为实际测试系统的水下成像效果,在千岛湖实验基地进行试验。图9为10~40m量程下探测到的湖底地形,通过颜色和纹理的变化可以清楚地看出湖底地形状况。图10为放置了圆筒障碍物后探测到的湖底地形。英国CodaOctopus公司开发的EchoscopeMark系列三维声纳采用大规模的平面阵换能器进行波束信号的发射和接收,与本系统样机的技术指标对比如表1所示。本系统样机与MarkII相比,大幅度减少了接收阵的阵元数量,仅仅牺牲了小部分的系统性能,而离线续航时间可达3h以上,更是将水下重量减轻到了0kgf,总体上仍然能够满足水下精确探测和灵活作业的需求。

4结束语

第11篇

PAS200控制系统由控制网络、控制器模块和I/O模块构成,如图1系统结构图所示。工程师站软件组态后通过控制网络将组态的相关信息下载到控制器,控制器运行时加载组态内容。操作站通过控制网络获取连接在各个I/O模块上装置的运行情况,实时监测并进行现场报警【5】。PAS200控制系统冗余的核心部件是控制器模块。控制器采用模块化架构,由电源、控制器、通信卡等构成。对下,通过两路冗余的RS485总线和I/O模块进行数据通信;对上,通过两路冗余的高速以太网实现数据传输。控制器之间通过背板总线进行冗余数据的交换。正常情况下,主控制器和从控制器同步刷新输入数据、执行程序。但只有主控制器进行输出I/O设备的控制。从控制器不断地监测主控制器状态。如果主控制器出现故障,从控制器立即接管对输出I/O的控制,从而实现对系统的冗余控制【6】。

2、系统硬件设计

PAS200冗余控制系统中控制器硬件由电源卡件、控制器卡件、通信卡件、底座等4部分组成。其中,控制器卡件架构如图2所示,其采用AMDGeodeLXProcessor高性能、低功耗嵌入式专用处理器,主频500MHz,在板包含DMA控制器、中断控制器、定时器、实时时钟、256MDDR内存。外部接口有2个串口、3个10/100M自适应网口。其设计充分考虑了恶劣环境下的应用,采取了多种措施,确保系统在各种应用环境中均能稳定、可靠、高效的运行。它采用工业级器件,高智能布线系统,运用防静电及抗干扰电路,尽可能的降低了功耗,提高了可靠性及宽温操作能力。

3、控制器冗余

3.1主从冗余分配

PAS200冗余控制系统中的冗余控制器包括一个主控制器和一个从控制器。主从控制器角色的分配按控制器冗余上电启动两种可能出现的情况进行。一种是两个系统同时上电;在上电后,两个系统将通过同步通道发送信息来相互检测。在一个可配置的时间内一个系统检测到另一个系统,另一个系统回复并且在各自的日期和IEC程序的有效性的基础上,两个系统将协商他们的角色(主或从)。协商首先是根据操作站的联机信息进行主从分配,失败之后再根据自定义条件进行分配。如果必要会建立一个从主系统到从系统的IEC程序同步。然后,两个系统将运行此IEC程序。另一种是一个系统正在运行且另一个系统上电,此情况出现在一个系统掉电并重启的时候。当前,一个系统运行在独立模式且另一个系统上电。已经在运行中的系统成为主系统,上电系统将与主系统程序同步并成为从系统。主系统将在两个任务执行间隙短暂停止,与从系统同步数据。然后,两个系统都执行IEC程序同步。

3.2主从冗余实时通道

PAS200冗余控制系统中的两个控制器都基于Linux+RTAI+RTnet软件平台运行实时系统,并且通过一个实时同步通道同步。实时同步通道基于RTnet实时以太网实现。RTnet是一个基于RTAI的实时网络子系统,其利用标准以太网的硬件设备,支持常用的网络接口控制芯片组,实现了时间确定性的UDP/IP、ICMP和ARP协议,为实时系统的开发提供了一个稳定、实时性高的软件开发平台。这样,通过RTAI及其之上的RTnet就构建了一个实时通道在主从进行数据传输。两个完全相同的控制器并行运行,假设一个系统出现故障,那么另一个系统可以接管,接管使得两个系统紧密的同步在一起。另一个通信通道用于同步实时系统间的时钟源,使两个系统上的调度程序可以选择相同的任务来运行。

3.3主从冗余同步

冗余控制器同步按内容主要划分为任务同步、IEC程序同步、数据同步、时钟同步、RS485通信同步几大部分。其中,任务同步是由主系统的调度程序开始,任务号和全局变量数据发送到从系统;从系统响应一条回复信息;当一个任务完成后,第二个任务同步开始执行。而在RS485通信同步点主系统和从系统都需等待他们的触发信息,此触发信息来自在达到同步点后的主系统。当从系统达到RS485通信同步点后,如果不能收到来自主系统的同步信息,从系统将检测系统状态是否发生变化,如果系统状态未发生变化则报错。当主系统达到RS485通信同步点后,如果不能收到来自从系统的同步信息,主系统记录错误并正常通信。

4、RS485通信冗余

控制器通信扩展卡上有两路RS485通信,系统启动阶段通过诊断获取两路RS485通信状态。如果主控制器上两路RS485均能正常通信。主控制器则选择其中一路RS485作为通信链路,另一路RS485作为诊断链路;从控制器两路RS485都进行监听。如果主控制器上一路RS485能正常通信,另一路RS485不能正常通信。主控制器以能正常通信的那路RS485作为通信链路;从控制器两路RS485都进行监听。如果主控制器上两路RS485均不能正常通信,且从控制器上RS485能正常通信,则主从控制器进行切换。运行阶段,如果主控制器两路RS485通信正常工作,从控制器两路RS485通信就监听。如果主控制器通信链路失败且另一路诊断成功,则切换诊断为通信链路。如果主控制器通信链路失败,另一路诊断失败,且从控制器监听成功,则主从切换。

5、结束语

第12篇

1.1网络结构总体方案

网络结构是整个系统的基础,网络结构的设计直接关系到整个网络的传输质量、业务拓展及运营服务质量。目前,网络结构的设计已从电缆向光纤,从模拟向数字化、宽带化、智能化趋势发展。网络拓扑结构主要分星形网、树形网及环形网,一个网络一般由多种网络结构组合而成,为达到较高的可靠性拟采用环形+星型网络拓扑结构,在主干段以及配线段用光传输系统实现光纤到楼,再建同轴电缆和双绞线重叠网作为用户引入。重叠网在光信号通路上通过共缆分纤方式将电视与数据业务物理分开形成以CATV为基础的重叠式综合业务网络。整个网络拓扑图如图1所示,具体方案为:在小区综合楼内设置一分前端,并入会泽县城域骨干环网,具有自愈传输功能;从分前端到各个光节点采用一级星形结构,尽量延伸光传输距离,使光信号几乎送至用户;从光节点至用户电缆(同轴电缆或双绞线)采用星形无源结构,传输距离不超过100m,最大限度保证信号传输质量。

1.2分前端机房的设置

因要接入城区自愈环中,故机房应配备具有二选一光接收并且具有自动切换功能的光接收机和支持冗余环网拓扑结构的数据传输设备,从而实现来自顺方向及逆方向上信号的冗余。环网光缆采用48芯光缆,以满足今后多业务需求。根据实地情况,机房设于小区中较集中的综合楼内,同时考虑到今后这一区域的发展,在路口设一交接箱,以满足今后小区处用户的接入。

2分配光缆网路由规划

(1)光网络结构:如前所述,分前端后采用一级星形光网络拓扑结构。

(2)光节点芯数:考虑到下一步互动电视及今后其它数据业务的开展,每个光节点设计8芯(一芯下行、一芯上行、两芯数据、四芯备用)。

(3)光节点数:依据一步到位、分步实施、逐步发展的方针,同时根据小区实际情况,为满足星形无源电缆网的要求,尽可能延长光网络范围,以达到高质量传输、易维护的标准,小区内共设光节点38个。

(4)由于全部光缆为地沟敷设,且距离相对较短,考虑到降低施工难度,同时又能达到最高的网络传输标准,所有光节点均用8芯光缆直接铺设至机房。根据以上标准,绘制路由图如。

3CATV系统设计

网络整体结构确定之后,就可以对CATV及相应的数据业务系统进行设计。目前虽然新产品层出不穷,但对于HFC网络来说,网络结构确定之后对CATV系统的设计变得较为容易。

(1)光系统波长:环网节点仍采用以前的1550nm系统主用、1310nm系统备用的方案,分前端之后的分配光网络由于传输距离较短,故采用1310nm系统,具有很大的灵活性。

(2)由于分配光网络采用一级星形结构,故光发射机及分路器在分前端集中分配。

(3)计算出各光节点链路参数,确定所需光发射机参数,每个光节点接收机的输入光功率按-2dB计算,计算过程略。

(4)绘制出光系统分配图。

(5)光机以下的同轴电缆分配网由于采用无源星形入户设计,光机信号经分支分配器后直接至用户,经实地勘察最大传输距离不超过80m,故此部分网络较为简单,同时最大限度地保证了用户端的信号指标(同轴电缆分配图略)。

4数据传输系统设计

小区数据传输系统的设计必须依托于现有的城域骨干网。目前我县城域骨干网是由MSTP系统为切入,以CiscoCatalyst3750M为核心,旁挂BAS做认证设备,采用星形结构联至分前端各汇聚节点CiscoCatalyst3560上的网络构架。同样的,把小区分前端作为一汇聚节点,由于汇聚层不采用环路结构,故用CiscoCatalyst3560直接联至中心机房CiscoCatalyst3750M即可。通过开启CAT3750M的MPLSVPN功能即可满足汇聚层下集团用户对虚拟专用网的需求,同时用BAS实现对个人用户的认证工作。对接入层来说,根据上述网络设计结构,小区内共设38个星形接入点,如果接入点用户有MPLSVPN需求的,要求接入设备必须支持路由功能,否则的话直接采用普通接入交换机,来实现对个人用户的网络接入。数据传输系统结构设计。

5结束语