时间:2023-07-14 17:35:07
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇高层建筑抗震结构设计,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
关键词:高层建筑;抗震结构;设计;问题;措施Abstract: The development of modern city to the continuous increase in high-rise building, seismic structural design is becoming more and more important. This paper does research and analysis on the seismic design of tall building structure design andputs forward various problems in the structural design in high-rise buildings, and the corresponding methods and measures.
Key words: high-rise building; seismic structure; design; problem; measures
中图分类号:[TU208.3] 文献标识码:A文章编号:
随着我国经济的快速发展,高层建筑也越来越多,在这种情况下必须做好抗震设计。设计人员在高层建筑抗震设计中,都是按照抗震结构设计规范进行的,他们希望设计的结构能够达到强度、刚度、延性及耗能能力等方面达到最佳,从而经济地实现“小震不倒、中震可修、大震不倒”的目的,但是在实际设计中,却不能达到这种效果。本文将从抗震结构设计的基本原则、我国高层建筑抗震设计常见的问题以及提高抗震性能措施三个方面对高层建筑的抗震结构进行阐述。
一、高层建筑抗震结构设计的基本原则
1、结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能。(1)结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则;(2)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力;(3)承受竖向荷载的主要构件不宜作为主要耗能构件。
2、尽可能设置多道抗震防线。由于每次强震之后都会伴随多次余震,因此在建筑物的抗震设计过程中若只有一道设防,则其在首次被破坏后而余震来临时其结构将因损伤积累而倒塌。因此,建筑物的抗震结构体系应由若干个延性较好的分体系组成,在地震发生时由具有较好延性的结构构件协同工作来抵挡地震作用。当遭遇第二设防烈度地震即低于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏,但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防度的罕遇地震时,结构虽然破坏较重,但结构非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保证了人员的安全。
3、对可能出现的薄弱部位,应采取措施提高其抗震能力。(1)构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础;(2)要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中;(3)要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调;(4)在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能。
二、我国高层建筑抗震设计常见的问题
1、工程地质勘查资料不全
在设计初期,设计人员应该及时掌握施工场地的地质情况,但是往往在设计过程中,却没有建筑场地岩土工程的勘察资料,就不能很好的进行地基设计,给建筑物的结构带来安全隐患。
2、建筑材料不满足要求
对于材料而言,我们要明确这样一个道理:地震对结构作用的大小几乎与结构的质量成正比。一般说在相同条件下,质量大,地震作用就大,震害程度就大,质量小,地震作用就小,震害就小。所以,在建筑物的楼板、墙体、框架、隔断、围护墙以及屋面构件中,广泛采用多孔砖、硅酸盐砌块、陶粒混凝土、加气混凝土板、空心塑料板材等轻质材料,将能显著改善建筑物的抗震性能。
3、建筑物本身的建筑结构设计
建筑物如果平面布置复杂,致使质心与刚心不重合,在地震作用下产生扭转效应,加剧了地震的破坏作用,海城地震和唐山地震中有不少类似震害实例。台湾9.21地震中,一栋钢筋混凝土结构由于结构平面不规则,在水平地震作用下,结构产生严重扭转效应而破坏倒塌,同时撞坏相邻建筑上部的阳台。
4、平面布局的刚度不均
抗震设计要求建筑的平、立面布置宜规正、对称,建筑的质量分布和刚度变化宜均匀,否则应考虑其不利影响。但有的平面设计存在严重的不对称:一边进深大,一边进深小;一边设计大开间,一边为小房间;一边墙落地承重,一边又为柱承重。平面形状采用L、π形不规则平面等,造成了纵向刚度不均,而底层作为汽车库的住宅,一侧为进出车需要,取消全部外纵墙,另一侧不需进出车辆,因而墙直接落地,造成横向刚度不均。这些都对抗震极为不利。
5、防震缝设置不规范
对于高层建筑存在下列三种情况时,宜设防震缝:(1)平面各项尺寸超过《钢筋混凝土高层建筑结构设计与施工规程》(JGJ3- 91)中表2.2.3 的限值而无加强措施;(2)房屋有较大错层;(3)各部分结构的刚度或荷载相差悬殊而又未采取有效措施;但有的竟未采取任何抗震措施又未设防震缝。
6、结构抗震等级掌握不准
结构抗震等级有的提高了,而有的又降低了,主要是对场地土类型、结构类型、建筑高度、设防烈度等因素综合评定不准造成。上述这些问题的存在,倘若不能得到改正,势必对建筑物的安全带来隐患。上述这些问题的原因是多方面的,这就需要设计人员从设计的角度避免这些问题的出现,防止将这种问题带入施工中,应该高层建筑的抗震性能。
三、提高抗震性能措施
1、选择合理结构类型
在高层建筑中,其竖向荷载主要使结构产生轴向力,而水平荷载主要使结构产生弯矩,随着高度的增加,在竖向荷载不变的情况下,水平荷载作用力增加,此时竖向荷载所引起的建筑物侧移很小,但是水平荷载参数的侧移就非常大,与高度层四次方变化,因此在高层建筑中,主要对水平荷载进行控制,在设计过程中,应该在满足建筑功能及抗震性的前提下,选择切实可行的结构类型,使其具有良好的结构性能。目前大多数的高层建筑都采用了钢混结构,这种结构具有较大的刚度,空间整体性好,材料资源丰富,可组成多种结构体系。但是其变形能力差,造价相对较高,当场地特征周期较长时,容易发生共振现象。
2、减小地震能量输入
具有良好抗震性能的高层建筑结构要求结构的变形能力满足在预期的地震作用下的变形要求,因此在设计过程中除了控制构件的承载力外还应控制结构在地震作用下的层间位移极限值或位移延性比, 然后根据构件变形与结构位移的关系来确定构件的变形值,同时根据截面达到的应变大小及分布来确定构件的构造要求,选择坚硬的场地土来建造高层建筑等方法来减小地震能量的输入。
3、减轻结构自重
对于同样的地基条件下进行建筑结构设计若减轻结构自重则可相应增加层数或减少地基处理造价,尤其是在软土基础上进行结构设计这一作用更为明显,同时由于地震效应与建筑质量成正比,而高层建筑由于其高度大重心高等特点,在地震作用时其倾覆力矩也随之增加, 因此, 为了尽量减小其倾覆力矩应对高层建筑物的填充墙及隔墙尽量采用轻质材料以减轻结构自重。
4、尽可能设置多道抗震防线
当发生强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。
五、结语
总之,面对中国的高层建筑抗震结构存在的诸多问题,限于我国作为一个发展中国家的财力、物力,探讨、研究有效的建筑抗震措施的任务仍然十分艰巨。与此同时,我国政府相关部门也应该加强规范力度,发挥好对高层建筑防震措施的检查、检验效力。
参考文献
[1]范俊梅.有关高层建筑结构设计抗震的几点思考[J].中国新技术新产品,2009.
【关键词】:高层建筑;抗震;结构设计
中图分类号:[TU208.3] 文献标识码:A 文章编号:
1.剪力墙的连梁设计
连梁是指与剪力墙相连允许开裂可作刚度折减的梁。当PKPM建模后进入STAWE计算时,程序对全楼所有的梁都进行了判断,把两端都与剪力墙相连且至少在一端与剪力墙轴线的夹角不大的梁,隐含定义为连梁。在高层剪力墙结构中,连梁的设计常受多因素制约,连梁的内力和结构抗侧力刚度与相连墙肢刚度、连梁跨高比等因素有关。联系墙肢的连梁,对剪力墙的受力会产生较大的影响,其本身的受力条件也比较复杂,如果连梁发生破坏,那么联肢墙各墙肢间会失去约束而形成几个单独受力的墙肢,造成整片剪力墙水平位移加大。承载力下降的状况。震害调查和试验结果证明,对联肢墙来说,连梁的设计是非常重要的。连梁的破坏将会导致剪力墙最终丧失承载能力。按照《建筑抗震设计规范》要求。宜选用跨高比偏大的连梁。按常规设计方法配筋,进行截面抗剪设计,使其不过早地发生剪切破坏,从而使连梁具有足够的延性。在工程设计时,根据计算的基本假定,可以忽略连梁的轴力,但绝大多数的墙体洞口尺寸的宽度是不大的,因此大多数连梁的跨高比较小。其尺寸类似于深梁。试验表明,连梁的剪切变形较大,容易产生斜裂缝.在反复荷载作用下。斜裂缝会发展成沿梁跨的对角线状,较大地降低了连梁的抗剪能力。为了避免连梁的剪切破坏,要求连梁有足够的截面尺寸和一定数量的抗剪箍筋。抗震结构还应考虑非弹性变形阶段,连梁是首先屈服并形成塑性铰的耗能机构,应调整内力,对连梁刚度进行折减,这是避免连梁在弯曲屈服前出现剪切破坏的有效措施,从而控制结构最终形成延性破坏机制。在结构计算时,设计人员都会发现,往往会出现部分连梁超筋的情况,分析其原因主要是因为连梁跨高比较小,刚度较大,吸收地震力较多。造成连梁的约束弯矩和剪力过大,致使连梁抗剪能力不能满足规范对连梁剪压比的限值。当连梁剪力超过其剪压比限值时,连梁将产生脆性破坏。剪力墙结构的一个设计原则是强墙弱连梁。如果对剪力墙连梁刚度进行折减,人为限制连梁梁端的抗弯承载力。进行塑性再调幅。则连梁梁端将产生裂缝,变形增大,形成塑性铰.其剪力值将达不到按弹性计算的剪力值。连梁刚度折减后。如计算分析结果仍有部分连梁不能满足剪压比限值,且连梁的跨高比不大于2.5时,建议按《混凝土结构设计规范》GB50010-2010第11.7.10条,配置斜向交叉钢筋,以提高连梁的剪压比限值。以确保在正常使用条件下或较小的地震作用下连梁出现裂缝。故《建筑抗震设计规范》要求折减系数不宜小于0.5,要满足正常使用状态下极限承载力的要求。
2 .位移比和周期比的控制
地震作用对结构的损害与扭转反应的大小有直接关系,对于要求地震的建筑,一方面,要求结构布置规则、对称,其关键是要求平面布置刚度均匀。以减少扭转。另一方面,要求加强结构的抗扭强度和抗扭承载力。这已成为重要的概念设计内容。而在实际工程中,由于建筑造型的要求.建筑场地的限制或建筑功能的需要,在高层建筑结构设计中,大多数结构的平面布置和竖向布置很难达到《建筑抗震设计规范》所要求的“规则”标准。为此需对结构进行调整,限制平面扭转效应。
结构自振周期表示结构自身的性能。其中扭转周期的相对大小反映了结构抗扭刚度的大小,抗扭刚度小的结构,其扭转周期长,地震时这样的结构扭转反应一般较大。不利于抗震,因此《高层建筑混凝土结构技术规程》对结构扭转为主的第一周期与平动为主的第一周期的周期比进行限制。限制结构的抗扭刚度不能太弱,从而使结构的层间扭转角不致过大。因结构在水平地震作用下的扭转振动不仅与扭转为主的周期有关,也与平动为主的结构周期有关,因为所有振动都是耦连的,当平动为主的第一周期较长时,和它相应的结构扭转振动可能也较大,导致结构层间扭转角加大。这对结构抗震是不利的,因此对结构平动为主第一周期也应考虑不宜过长。周期比是控制结构扭转效应的重要指标,当周期比不满足要求时,通常采取降低结构中间构件的刚度,在建筑周边设置刚性构件。增加抗扭刚度,使周期比满足要求。实际上,控制周期和控制位移是一样的。控制结构扭转周期就是控制结构在地震作用下的扭转位移。结构位移和结构自振周期互相关联,位移随着周期的增大而增长。位移比是控制结构平面不规则性的重要指标,其值《高层建筑混凝土结构技术规程》中有明确规定,当位移比超过1.2时为不规则结构,超过1.5时为严重不规则结构。当位移比不满足《高层建筑混凝土结构技术规程》要求时,常常是因为结构的抗侧力构件布置不均匀引起的。所以,在高层建筑中,抗侧力构件布置时应按照均匀、对称、分散的原则,尽量使结构的质心和刚心重合或接近,提高抗扭刚度在一定程度上可减小位移比,这也是概念设计中改进结构抗震性能的重要措施之一。
3. 转角窗布置的设计
塔式高层住宅中,由于建筑功能的需要,建筑师常常在建筑平面外墙转角处采用转角窗,使用户充分享受室外绿化景观和满足室内采光要求。而建筑物角部是结构设计的关键部位,一般均设置L型剪力墙,这种情况下角部构件内力较大,程度不同地显示出剪力滞后现象,应力集中,受力复杂。同时转角墙具有较大扭转刚度且抗震性能较好.若开设转角窗,实际上是取消角部的墙体.代之以角部曲梁,使角部附近的构件受力更加复杂,对结构抗震更加不利。使得与之相连的暗柱增加了平面外的弯矩,角窗下的连梁受扭。一般来说,当该楼层的最大水平位移大于该楼层平均值的1.2倍时,就超过国家规范对高层住宅结构的扭转变形限值,需重新调整结构平面。
关键词:高层建筑 , 结构设计 ,抗震设计,短柱,措施
Abstract:The high-rise buildings aseismic design and construction work has been building the key, and summarizes the principle of seismic design of high-rise building, the architecture of the short column seismic necessary theoretical analysis, and the seismic measures must be taken. In order to avoid short column in high-rise building brittle failure occurs in, I think, first of all to correctly determine the short columns, and then the short column to take some structural measures or processing, improve the short column and the ductility of the seismic performance.
Keywords: high building, structure design, seismic design, short columns, measures
中图分类号:TU318文献标识码:A文章编号:
1 高层建筑抗震设计的原则
1.1 结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能①结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。②对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。③承受竖向荷载的主要构件不宜作为主要耗能构件。
1.2 尽可能设置多道抗震防线①一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架—剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。②强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。③适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。④在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。
1.3 对可能出现的薄弱部位,应采取措施提高其抗震能力①构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。②要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。③要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。④在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。
2 高层建筑抗震中短柱的正确判定
柱净高H与截面高度h之比H/h≤4为短柱,工程界许多工程技术人员也都据此来判定短柱,这是一个值得注意的问题。因为确定是不是短柱的参数是柱的剪跨比λ,只有剪跨比λ=M/Vh≤2的柱才是短柱,而柱净高与截面高度之比H/h≤4的柱其剪跨比λ不一定小于2,亦即不一定是短柱。按H/h≤4来判定的主要依据是:①λ=M/Vh≤2;②考虑到框架柱反弯点大都靠近柱中点,取M=0.5VH,则λ=M/Vh=0.5VH/Vh=0.5H/h≤2,由此即得H/h≤4。但是,对于高层建筑,梁、柱线刚度比较小,特别是底部几层,由于受柱底嵌固的影响且梁对柱的约束弯矩较小,反弯点的高度会比柱高的一半高得多,甚至不出现反弯点,此时不宜按H/h≤4来判定短柱,而应按短柱的力学定义——剪跨比λ=M/Vh≤2来判定才是正确的。
框架柱的反弯点不在柱中点时,柱子上、下端截面的弯矩值大小就不一样,即Mt≠Mb。因此,框架柱上、下端截面的剪跨比大小也是不一样的,即λt=Mt/Vh≠λb=Mb/Vh。此时,应采用哪一个截面的剪跨比来判断框架柱是不是属于短柱呢?笔者认为,应该采用框架柱上、下端截面中剪跨比的较大值,即取λ=max(λt,λb)。一般情况下,在高层建筑的底部几层,框架柱的反弯点都偏上,即Mb>Mt。
在层高一定的情况下,为提高延性而降低轴压比则会导致柱截面增大,且轴压比越小截面越大;而截面增大导致剪跨比减小,又降低了构件的延性,轴压比与延性比关系图如图1所示,因此,在高层特别是超高层建筑结构设计中,为满足规程对轴压比限值的要求,柱子的截面往往比较大,在结构底部常常形成短柱甚至超短柱。
图1 轴压比与延性比关系图
3 提高短柱抗震性能的措施
有抗震设防要求的高层建筑除应满足强度、刚度要求外,还要满足延性的要求。钢筋混凝土材料本身自重较大,所以对于高层建筑的底层柱,随着建筑物高度的增加,其所承担的轴力不断增加,而抗震设计对结构构件有明确的延性要求,在层高一定的情况下,提高延性就要将轴压比控制在一定的范围内而不能过大,这样则必然导致柱截面的增大,从而形成短柱,甚至成为剪跨比小于1.5的超短柱。众所周知,短柱的延性很差,尤其是超短柱几乎没有延性,在建筑遭受本地区设防烈度或高于本地区设防烈度的地震影响时,很容易发生剪切破坏而造成结构破坏甚至倒塌。
混凝土短柱的延性主要受轴压比的影响,同时配箍率、箍筋的形式对混凝土短柱的影响也很大。高层混凝土结构短柱,特别是结构低层的混凝土短柱,其轴压比很大,破坏时呈脆性破坏,其塑性变形能力很小。提高混凝土短柱的抗震性能,主要也就是提高混凝土短柱的延性。因此,可以从以下几方面着手,采取措施提高混凝土的抗震性能。
3.1提高短柱的受压承载力
提高短柱的受压承载力可减小柱截面、提高剪跨比,从而改善整个结构的抗震性能。减小柱截面和提高剪跨比,最直接的方法就是提高混凝土的强度等级,即采用高强混凝土来增加柱子的受压承载力,降低其轴压比;但由于高强混凝土材料本身的延性较差,采用时须慎重或与其他措施配合使用。此外,可以采用钢骨和钢管混凝土柱以提高短柱的受压承载力。
3.2 采用钢管混凝土柱
钢管混凝土是套箍混凝土的一种特殊形式,由混凝土填入薄壁圆形钢管内而形成的组合结构材料。由于钢管内的混凝土受到钢管的侧向约束,使得混凝土处于三向受压状态,从而使混凝土的抗压强度和极限压应变得到很大的提高,混凝土特别是高强混凝土的延性得到显著改善。同时,钢管既是纵筋,又是横向箍筋, 其管径与管壁厚度的比值至少都在90以下,相当于配筋率2至少都在4.6%。
当选用了高强混凝土和合适的套箍指标后,柱子的承载力可大幅度提高,通常柱截面可比普通钢筋混凝土柱减小一半以上,消除了短柱并具有良好的抗震性能。
3.3 采用分体柱
由于短柱的抗弯承载力比抗剪承载力要大得多,在地震作用下往往是因剪坏而失效,其抗弯强度不能完全发挥。因此,可人为地削弱短柱的抗弯强度,使抗弯强度相应于或略低于抗剪强度,这样,在地震作用下,柱子将首先达到抗弯强度,从而呈现出延性的破坏状态。分体柱方法已在实际工程中得到应用。人为削弱抗弯强度的方法,可以在柱中沿竖向设缝将短柱分为2或4个柱肢组成的分体柱,分体柱的各柱肢分开配筋。在组成分体柱的柱肢之间可以设置一些连接键,以增强它的初期刚度和后期耗能能力。一般,连接键有通缝、预制分隔板、预应力摩擦阻尼器、素砼连接键等形式。
关键词:超限高层;错层结构;加强措施
1工程概况
该工程位于兰州市七里河区,主楼地上十九层,房屋高度57.35m;裙房二层,房屋高度9.45m。主楼采用钢筋混凝土剪力墙结构。建筑平面如图1所示。本工程按8度抗震设防,设计基本地震加速度0.2g,设计地震分组第三组。一~二层(底部商业)为乙类,其余为丙类。场地类别为二类。地上一~二层抗震等级均为一级,其余均为二级。
2结构计算模型及超限判断
2.1结构计算模型楼层错层在计算模型输入时通常有两种方法:①通过修改节点标高和输入层间梁、层间板的方式实现。此类方法适用于错层面积较小的情况,但由于标高繁冗较容易出错;②增加标准层的方式。此类方法适用于错层面积较大的情况。两种方法均能实现相同楼层,标高不同的目的。本工程采用第二种方法输入模型。依据《高层建筑混凝土结构技术规程》第10.4.3条规定,当采用错层结构时,为了保证结构分析的可靠性,相邻错开的楼层不应归并为一个刚性楼层计算。故在计算时,错层处楼板按弹性膜处理。2.2结构超限判断(1)楼板不连续:①局部有效楼板宽度小于典型楼面宽50%。即7.8/17.35=45%<50%;②楼板局部错层如图2所示。(2)凹凸不规则:平面凸出的尺寸大于相应投影方向尺寸的30%。即20.8×30%=6.24<6.5。(3)扭转不规则,考虑偶然偏心下,错层楼层处扭转位移比大于1.4,小于1.5。由于底部三层裙房局部楼板不连续导致楼层抗侧力刚度与楼层抗剪承载力比值较小,但均满足规范要求。根据住建部《超限高层建筑工程抗震设防专项审查技术要点》具有以上三点的高层建筑工程应进行超限高层建筑工程抗震设防专项审查。
3结构计算结果分析
根据《建筑抗震设计规范》(GB50011-2010)第3.4.3条规定,凡具有上述三项或三项以上不规则者均为特别不规则的建筑。故采用《多层及高层建筑结构空间有限元分析与设计软件SATWE》和《复杂空间结构分析与设计软件PMSAP》(2011年9月版)两种结构计算软件进行整体分析比较,以保证力学分析结构的可靠性。并采用弹性动力时程分析、弹塑性静力时程分析(PUSH)进行了补充计算。通对分析计算,结果表明:①PMSAP与SATWE计算结果基本一致,均满足相关规范要求。说明SATWE计算能较为真实反映结构实际受力情况,结构整体设计时可采用SATWE计算结果;②弹性动力时程分析,每条时程曲线计算所得结构底部剪力均不小于振型分解反应谱计算结果的65%,七条时程曲线计算所得结构底部剪力的平均值不小于振型分解反应谱计算结果的80%。平均反应的最大楼层剪力曲线、最大楼层位移角曲线均小于CQC法计算结果,结构无明显薄弱层或薄弱部位;③罕遇地震作用下弹塑性静力时程分析(PUSH),结构在罕遇地震作用下的薄弱层弹塑性层间位移角最大值1/136,均不大于1/120,在罕遇地地震作用下结构不会出现整体垮塌。
4结构构造加强措施
本工程属于超限高层建筑,结构设计除满足规范的一般要求外,还针对不同超限内容采取一定的构造加强措施。4.1凹凸不规则的加强措施整体计算时,采用分块刚度板假设,将凹凸连接薄弱部位楼板指定为弹性膜,以改善结构变形能力。4.2扭转不规则的加强措施针对扭转不规则情况,查找扭转较大位置的结构构件,加大该部位竖向边缘构件的配箍特征值,一层至裙房顶上一层剪力墙约束边缘构件最小构造配筋率不小于1.45%,配箍特征值比规范规定增大10%。周边墙体中增设暗梁,提高结构延性,降低扭转不规则带来的不利影响。4.3楼板不连续的加强措施主要内容:①错层处楼板按弹性膜输入;②错层部位及上下各一层楼板板厚不小于120mm,双层双向配筋,单层单向配筋率不小于0.3%。4.4楼板局部错层的加强措对于结构错层处剪力墙墙后不应小于250mm,抗震等级提高一级,混凝土强度等级不应低于C30,水平和竖向分布钢筋的配筋率不应小于0.5%。
5结束语
本工程通过对结构布置的不断优化,对各种结构电算结果的计算分析,采取相应的结构加强措施,使得结构主要控制指标能满足规范有关要求,可以达到预期的抗震目标,结构安全可靠。
参考文献:
关键词:建筑结构 抗震设计 理念趋势
1 抗震设计思路的概述
我国结构计算理论经历了经验估算、容许应力法、破损阶段计算、极限状态计算,到目前普遍采用的概率极限状态理论等阶段。现行的《建筑结构可靠度设计统一标准》(GB50068-2001)则采用以概率理论为基础的结构极限状态设计准则,以使建筑结构的设计得以符合技术先进、经济合理、安全适用的原则。概率极限状态设计法更科学、更合理,但该法在运算过程中还带有一定程度近似,只能视作近似概率法,并且仅凭极限状态设计也很难估算建筑物的真正承载力。事实上,建筑物是一个空间结构,各种构件以相当复杂的方式共同工作,并非是脱离结构体系的单独构件。
地震具有随机性、不确定性和复杂性,要准确预测建筑物所遭遇地震的特性和参数,目前是很难做到的。而建筑物本身又是一个庞大复杂的系统,在遭受地震作用后其破坏机理和破坏过程十分复杂。且在结构分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,也存在着不确定性。因此,结构工程抗震问题不能完全依赖“计算设计”解决。应立足于工程抗震基本理论及长期工程抗震经验总结的工程抗震基本概念,从“概念设计”的角度着眼于结构的总体地震反应,按照结构的破坏过程,灵活运用抗震设计准则,全面合理地解决结构设计中的基本问题,既注意总体布置上的大原则,又顾及到关键部位的细节构造,从根本上提高结构的抗震能力。
2.建筑结构抗震规范
建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件,它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。他虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。
3.抗震设计的理论
3.1.拟静力理论拟静力理论是20世纪10――40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构力为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。
3.2反应谱理论。 反应谱理论是在加世纪40――60年展起来的,它以强地震动加速度观测记录的增多和地震底面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。
3.3.动力理论动力理论是20世纪70――80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和实验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,他它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震的输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物得地震论证,从而完整抗震的设计工作。
4.高层建筑抗震结构设计的基本原则1.1结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能(1)结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。(2)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。(3)承受竖向荷载的主要构件不宜作为主要耗能构件。1.2尽可能设置多道抗震防线(1)一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架―剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。(2)强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。(3)适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。(4)在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。1.3对可能出现的薄弱部位,应采取措施提高其抗震能力(1)构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。(2)要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。(3)要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。(4)在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。
5.高层建筑抗震分析和设计的趋势
5.1基于位移的结构抗震设计
我国现行的结构抗震设计,是以承载力为基础的设计。即:用线弹性方法计算结构在小震作用下的内力、位移;用组合的内力验算构件截面,使结构具有一定的承载力;位移限值主要是使用阶段的要求,也是为了保护非结构构件;结构的延性和耗能能力是通过构造措施获得的。为了实现基于位移的抗震设计,第一步需要研究简单结构(例如框架及悬臂墙)的构件变形与配筋关系,实现按变形要求进行构件设计;进而研究整个结构进入弹塑性后的变形与构件变形的关系。这
就要求除了小震阶段的计算外,还要按大震作用下的变形进行设计,也就是真正实现二阶段抗震设计,这是结构抗震设计的发展趋势。
5.2动力时程响应分析的状态空间迭代法
该种方法把现代控制理论中的状态空间理论应用到高层建筑结构动力响应问题,根据结构动力方程,引入位移与速度为状态变量,导出状态方程,给出非齐次状态方程的解,进而建立状态空间迭代计算格式。经工程实例验算,具有较高精度。特别对多自由度体系的多输入、多输出等问题的动力响应解法,效率较高。
5.3材料参数随机性的抗震模糊可靠度分析
该种方法从结构整体性能出发,改变过去对结构抗震可靠度的研究只考虑荷载的不确定性而忽略了其他多种不确定因素,综合考虑了材料参数的变异性,地震烈度的随机性及烈度等级界限的随机性与模糊性对结构抗震可靠度的影响。其研究成果可用于对现有的结构进行抗震可靠度评估,并可用于指导基于可靠度理论的结构抗震设计。
5.4隔震和消能减震设计的推广和应用
目前我国和世界各国普遍采用的传统抗震结构体系是“延性结构体系”,即适当控制结构物的刚度,但容许结构构件(如梁、柱、墙、节点等)在地震时进入非弹性状态,并目具有较大的延性,以消耗地震能量,减轻地震反应,使结构物“裂而不倒”。这种体系,在很多情况下是有效的,但也存在很多局限性。
随着社会的不断发展,对各种建筑物和构筑物的抗震减震要求越来越高,使“延性结构体系”的应用日益受到限制,传统的抗震结构体系和理论越来越难以满足要求,而由于隔震消能和各种减震控制体系具有传统抗震体系所难以比拟的优越性,在未来的建筑结构中将得到越来越广泛的应用。
结语:
各国历次大地震对人类造成的严重灾害的经验教训,使世界各国地震工程学者及抗震设计人员逐步取得了较为一致的认识,经济与安全的关系,是结构抗震设计的重要技术政策,从长远观点看,如何从我国高层建筑设计现状及国际高层建筑抗震设计发展趋势出发,探求一种实用可行的合理抗震设计分析方法,是处于地震设防区域高层建筑发展的新方向.
参考文献:
关键词:高层建筑;建筑结构;抗震设计;设计应用
中图分类号:TU97文献标识码: A
引言
地震作为最严重的自然灾害之一,一旦发生,就会给社会带来巨大的人员伤亡和经济损失。近几年来,国内外地震灾害频发,无情地剥夺了上百万人的生命。而这些伤害基本上都是由于建筑物的倒塌引起的,尤其是高层建筑。若在建筑结构的设计当中能加强抗震概念的设计,将会从一定程度上减小损失。因此,如何才能够提高高层建筑的抗震性能的概念设计已经成为了建筑行业研究的重点工作。
一、抗震概念设计
传统的结构设计理论为建筑结构设计提供了一些计算方法,但是这些方法主要是针对结构设计中的一些细节,而忽略了对整体结构的考虑。因此,传统的结构设计理论并不能完全地适用于高层建筑的抗震设计,照本宣科式的结构设计不能满足现代建筑物的要求。在高层建筑的抗震设计当中,设计师们都会融入概念设计。抗震概念设计是指根据以往的工程经验和地震灾害的发生情况,从整体上研究工程项目的抗震决策,包括使用材料的种类、抗震方案以及结构的内部构造等等方面。
二、高层建筑结构设计中抗震概念设计的意义
高层建筑结构设计中应该非常重视抗震概念设计,因为高层建筑结构非常复杂,当发生地震时具有动力不确定性特点,人们对地震时对结构认识的局限性,再加上材料性能和施工安装的变易性、模拟地震波的模糊性等因素,导致计算结果和实际之间具有很大的差异。简单的依赖数值计算获得结构并不能有效的解决高层建筑的实际抗震问题,尤其是地质特征的差异性原因,导致许多国家甚至是地区指定的抗震规范都有明显的差异。高层建筑结构抗震概念设计在依据数值计算的基础上,还增加了实践经验元素,并且结构概念设计甚至比分析计算更重要,使得这一抗震设计理念能够满足区域差别下从事高层建筑结构设计的实际需求。强调高层建筑结构设计中抗震概念设计的重要性,其目的是为了引起高层建筑结构工程是在进行建筑结构设计时,特别重视相应的结构规程以及抗震概念设计中的相关规定,从而摆脱传统的结构设计中只重视计算结果的误区,要求结构工程师严格的按照结构设计计算原则,再结合地区的抗震规范,以此保证高层建筑结构的抗震性能。
三、高层建筑结构设计中抗震概念设计的原则
(1)结构的整体性。在高层建筑结构中,楼盖的整体性对高层建筑结构的整体性起到十分重要的作用,其相当于水平隔板,不仅要求聚集和传递惯性力至各个竖向抗侧力的子结构,还要求这些子结构具有较强的抗震能力,能够抵抗地震作用,尤其是当竖向抗侧力子结构的分布不均匀、结构布置复杂以及抗侧力子结构的水平变形特征存在差异时,整个高层建筑就依靠楼盖使抗侧力子结构进行协同工作。
(2)结构的简单性。结构的简单性指的是结构在地震作用下具有明确、直接的传力途径。在高层建筑抗震设计规范中明确规定“结构体系应该有明确的计算简图与合理的地震作用传递途径”,只有结构简单,才能对结构的位移、内力以及模型进行分析,准确的分析出高层建筑抗震的薄弱环节,然后采取相应的措施,避免薄弱环节的出现。
(3)结构的刚度。结构的刚度和抗震能力水平在地震作用下是双向的,确定结构的刚度,然后合理的布置结构能够抵抗任意方向上的地震作用。通常状况下,地结构沿着平面上两个主轴方向都应该具有足够的刚度与抗震能力,结构的刚度不仅仅应该控制结构的变形,还应该尽可能降低地震作用对高层建筑结构的冲击,如果结构发生较大的变形,将会产生重力二阶效应,导致结构失衡而被破坏,降低高层建筑的抗震可靠性,因此,在抗震概念设计中,应该重视结构的刚度设计。
(4)结构的规则性与均匀性。高层建筑的竖向和立面的剖面布置应该规则,结构侧向刚度的变化应该巨晕,避免侧向刚度以及抗侧力结构承载力的突变。沿着建筑物的竖向,机构布置和建筑造型应该规则和相对均匀,避免传力途径、刚度以及承载力的突变,防止结构在竖向上的某一楼或者少数楼层之间出现薄弱的环节。
四、抗震概念设计在高层建筑结构设计中的应用
(1)抗震概念设计应该重视高层建筑的结构规律。在高层建筑的抗震概念设计应用中,应该对高层建筑的体型设计进行科学的修正,保证在质量、刚度、对称、规则上分布均匀,保证设计的整体性,避免局部出现刚度过大的问题。高层建筑的结构布局对抗震概念设计具有十分重要的作用,简单、对称的建筑在地震中的应力分析和实际反映很容易做到,并且能够达到相一致,但是在凹凸的立面与错层设计的高层建筑中,当地震发生时将会产生复杂的地震效应,很难做到对高层建筑抗震效果的最佳分析。因此,高层建筑的抗震概念设计应该重视结构的规律性。
(2)抗震概念设计在结构体系上的应用。高层建筑抗震结构体系是抗震概念设计的关键,抗震概念设计在结构体系上的应用依据高层建筑物的高度以及抗震等级选择合适的抗侧力体系,通过概念近似手算确定结构设计方案的可行性以及主要构件的基本尺寸。抗震结构方案选择的合理性,直接影响建筑抗震概念设计的经济性与安全性。合理的选择建筑结构体系,应该注意以下三个方面:其一,选择建筑结构体系时,应该对因为部分结构或者部分构件的破坏而导致整体建筑结构体系丧失对抗震能力或者重力荷载的承载能力,应该坚持抗震设计原则中的赘余度功能和内力重分配功能,这一原则的重要性在许多建筑物地震后的实际状况中都得到了很好的印证;其二,选择建筑结构体系时,不仅仅应该要求建筑体系的受力明确、传力合理以及传力路线,还应该有合理的地震作用传递途径和明确的计算简图,这些都应该和不间断的抗震分析相符合;其三,其中延性是建筑结构中的重要特性之一,结构体系的变形能力取决于组成结构的构件和连接的延性水平,提高结构构件的延性水平,是提高高层建筑抗震设计概念在建筑结构设计应用中的重点问题,通过采用竖向和水平向混凝土构件,能够增强对砌体结构的约束,当配筋砌体在地震中即使产生裂缝也不会倒塌或者散落,保证高层建筑早地震中不至于丧失对重力荷载的承载能力。
(3)抗震概念设计在结构构件上的应用。高层建筑抗震的实现需要各个构件的支撑,因此,抗震结构体系中的各个构件都必须具有一定的刚度与强度,并且还应该具有可靠的连接性。高层建筑的结构体系是一个多层次超静定结构,因此其抗震结构也应该设置多道抗震防线,这样在地震作用下,即使一部分构件先被破坏,剩余的构件依然具备支撑的作用,形成独立的抗震结构,承受地震力与竖向荷载。因此,合理的预见高层建筑结构先屈服或者破坏的位置,适当的调整构件的强弱关系,形成多道抗震防线,实现对高层建筑结构体系的合理控制,这是结构抗震耗能的一种有效措施,是建筑抗震结构概念设计的重要内容。
结束语
高层建筑的结构设计不仅仅是种技术,某种程度上更是一门艺术。无论什么设计,它都没有唯一的答案,只有通过不断的比较、研究,才能找到最优方案。这就要求设计师们不懈努力地去追求完善的设计方案。随着社会的发展,高层建筑的设计已经不能盲目地照搬课本上的规范和计算机程序,需要创新。总而言之,一幢建筑物,要想做到“小震不坏,中震可修,大震不倒”,就应该要做好文中所提到的几个重点。高层建筑物中的抗震结构设计使建筑结构的设计更加人性化,更加合理化。除此之外,抗震概念设计不仅拓宽了建筑结构设计的思路,同时还为高层建筑的设计提供了新的方向,在建筑行业当中发挥了重要的作用。
参考文献
[关键词]抗震结构;高层混凝土建筑;设计
文章编号:2095-4085(2015)10-0066-02
目前,我国建筑行业发展迅速,建筑工程逐渐向高层建筑发展。高层建筑工程的抗震性与一般建筑工程相比显得更为重要。高层混凝土建筑抗震结构设计是一种新型的建筑结构,抗震性能更为良好,在高层建筑工程的施工过程中得到了广泛的应用。
1建筑抗震结构设计的必要性
在高层建筑设计中,做好抗震结构设计是非常必要的。随着我国的城市化进程不断加快,城市中的人口和土地的矛盾逐渐增大。在这样的背景下,高层建筑得到了迅猛发展,并且迅速成为城市建筑发展的主流方向。但是,建筑高度越高,其自身的重量也就越大,对于震动的抵抗能力越差,如果高层建筑的设计还按照普通建筑设计的方法,一旦遭遇地震,必然会导致建筑的损坏或倒塌,引发严重的后果。因此,设计人员应该充分重视建筑抗震结构设计,确保结构能够在强度、刚度、延性等方面达到最佳,实现“小震不动、中震可修、大震不倒”的目的,保障建筑的使用安全。
2抗震结构在高层建筑中的设计
2.1科学选定建设位置
高层混凝土建筑的施工过程中,在进行选址时,必须将地质灾害如地震等考虑进去,科学地进行建设位置的选定,对高层混凝土建筑的抗震设计有着非常重要的作用。(1)高层混凝土建筑的施工地点应该尽量远离低洼沼泽还陡峭的山坡;(2)在高层混凝土建筑的周围不能有变电所和火力发电厂等影响其安全性的建筑设施。
2.2选用合适的建筑材料
合理选择高层建结构材料也有利于提高建筑设施的抗震性能。从抗震设计的角度对建筑工程所用材料参数进行有效分析,选用符合高层建筑抗震要求的工程材料。尽量选用高性能混凝土和高强钢筋及其他高强轻质材料,以提高提高构件内力及抗震性能,并应积极运用新型减震、隔震材料。
2.3对建筑主体结构进行合理设计
高层混凝土建筑的主体结构和建筑物的质量有着非常重要的关联。主体结构相同的建筑物应当在相同或相似的地基上进行施工,如果地基的位置出现了液化土、橡皮土和新填土等土层时,由于这些土层的承载力不同,所以要采取一定的处理使基础结构的刚度增强,使地基能够承载建筑物。底框结构的实用性较强,并且经济性也非常的强,在建筑工程中得到了广泛的应用。但是该结构体系的刚度分布不够均匀,有极大的可能导致建筑物的整体结构产生不均匀变形,更有甚者会造成建筑的部分开裂,所以在高设防烈度地区不宜使用这种结构,在进行建筑主体结构的设计时,相关的设计人员必须采取一定的措施保证建筑物的上下部分刚度均匀一致,将高层混凝土建筑的抗震性进行真正的提高。
2.4降低剪力带来的破坏性影响
高层建筑的混凝土结构具有一定的抗剪能力,但是混凝土一旦形成塑性铰,其梁端的抗剪能力会变低,甚至低于非抗震状态的抗剪能力,所以在进行高层混凝土建筑的结构设计时,要加强柱端、梁端和节点的组合剪力值,这样才可以有效的提高高层建筑的混凝土结构抗剪能力。
2.5保证结构的规则性
建筑结构的规则性是指建筑物在平立面外形尺寸承载力分布、抗侧能力构件布置等多方面因素要求。在以往的大部分地震灾害研究中都说明了平立面简单并且结构对称的建筑物在地震时,抗震能力比其他建筑物要高。因为这种结构的建筑物的地震反应容易被估算出来,有利于人们采取有效的抗震构造措施并且对细部进行处理。保证建筑结构的规则性,要求建筑物的平面要对称均匀,体型简单,结构的刚度要沿建筑物竖向变化均匀。
2.6控制扭转效应
地震有水平作用、竖向作用以及扭转作用等多种作用力,在这种情况下,就会很难掌握计算其破坏力,如房屋倒塌、地裂、较强的地势波动等。地震的随时性较大,包含的不稳定因素较多,这就对高层混凝土建筑抗震方面的结构设计提出了更高的要求,要不断加强对地震带来的扭转效应的重视。所有的细节都要与其相关设计要求达到一致,对暴露出问题的地方一经发现,要马上进行相应的调整,尽最大的努力降低地震扭转带来的不良影响。
关键词:高层建筑;抗震结构;优化设计;改进措施
中图分类号:TU97文献标识码: A 文章编号:
高层建筑抗震结构的构建步骤复杂,施工环节细碎,适配流程多样,加之诸如天气因素、自然灾害等外部不确定因素的综合制约影响,从而使得其更容易突发安全生产事故,进行系统规范、切实高效的抗震结构规划设计就显得至关重要。这就要求在实际具体的高层建筑转换层抗震施工作业之前,相关规划设计的技术人员务必做到严密规划、严格设计、切实调整、层层把关,扎实有效地进行高层建筑抗震结构规划设计流程环节的程序操作,迅速有效地将理论创新与实践改进协同统一,最终推进高层建筑抗震结构施工工程的安全、稳定、协调运转。
一、高层建筑转换层施工安全监督管理的瓶颈问题
1、建筑层次规划设计盲目追求高度设计
抗震结构的实效作用来源于架构设计的规范全面,需要严格遵循“强柱弱梁”、“强剪弱弯”、“强节点弱构件”等基本原则进行设计,尤其是对于涉及环节多、操作步骤杂、施工难度大的高层建筑而言,切实规范的建筑实体抗震结构的高度设计就显得至关重要。而现阶段国内建筑实体的实际高度普遍超标,在追求“更高、更强”的产业理念的刺激下,相当一部分建筑工程都无视淡漠国家法规的规范要求,大肆提升建筑楼层高度,从而直接增加了高层建筑的抗震危险系数,导致诸多安全生产问题集中爆发。
2、材料产品选取适用混乱空泛
伴随着我国建筑产业的持续快速推进发展,一些国外地区高层建筑抗震结构的材料产品也开始被引进应用,之前普遍采用的混凝土核心筒、大型钢筋模板也被任意添加修饰。部分设计人员一味追求所谓的“创新多元”、“先锋前卫”,在没有充分认知理解这些“舶来品”的内涵属性以及国内抗震结构规划设计的格局现状的前提下,盲目引进一些标榜新理念、新技术、新设备的抗震建筑材料产品,然后生搬硬套进行移植再造,而这些原料产品大部分材质低劣、抗压度不足、实效坚实系数过低,结果导致大量不切实际、空泛虚无的抗震结构资源被大量闲置浪费,最终在产生一系列抗震安全问题后,附带产生巨大的货币流失与效益亏损。
3、适配设备设置节点缺失,相关维护措施不到位
我国高层建筑抗震结构施工工程在形成规范化、产业化、系统化的综合型经营的同时,也普遍存在着适配辅助的安全设施部分老化、整体作业结构陈旧、整体效率低下等集中性的阶段性问题。尤其是在与抗震结构规划设计紧密相关的梁板模板安装改造、钢筋工程升级换代、混凝土浇筑防裂改进完善等一系列配套措施的设计更新上,还普遍存在着楼板、梁模板安装架设设计有待规范细化,钢筋抽料、超密集部位规划排查不够严格,混凝土浇筑防裂设计相对松散宽泛、监督检测浮于形式等突出问题。这些细微具体环节的抗震设计疏忽松懈的长期存在,不仅滋生了大量安全隐患,而且严重制约影响了高层建筑施工工程的稳定、高效运转。
二、高层建筑转换层施工安全监督管理的针对改进与具体措施
1、加强抗震结构高度设计的规范执行,严格依照规章执行作业
针对现阶段既存的建筑实体盲目追求高度提升、抗震设计难度增加的突出问题,我们必须从问题的根本症结出发,严格落实相关法律规章的细则要求。首先,建筑实体的层次高度规划设计方案务必通过系统周密的论证审核,相关人员需要进行实地勘测、比照,做到实事求是、务实严谨;其次,稳步推进模型振动台试验,通过一系列地震力破坏力模拟测试、数据分析、信息处理,最终确定符合规范、切合实际的楼层高度;第三,加强对外部环境因素的考虑估量,譬如岩土属性安全指标、地质承压荷载取值对比、水文风力作用评估等等,努力做到内外兼顾、周翔全面。
2、改进建筑材料选取方法的切实设计,提升针对操作性
对于目前抗震结构建筑材料选取环节的缺陷,我们应当立足施工实践,选取具备材质扎实牢固、抗压度高、坚实性强的主流材料。由于当前抗震结构基本以钢筋砼体核心筒为主,所以进一步加强提升转换层的安装设置就显得必要而关键。而现阶段抗震结构的加强层、转换层都是相邻设计,各自刚度增大之后必然附带导致层次结构刚度突变,最终出现混凝土核心筒柱体开裂。针对这一情况,我们可以通过采用向混凝土核心筒浇筑试样中添加一定比例的钢纤维、聚合物纤维等改性方法,稳步提升砼体核心筒的抗渗透性、抗磨蚀强度以及抗裂防裂效能。这种方法的选材成本低廉、操作手法简易、排查维护便捷,适宜进行区域范围内试行拓展。
3、提升适配环节的排查设计,稳步拔高安全生产作业效率
针对既存的一系列适配环节设施规划设计的瓶颈问题,我们需要从全面改造安全设施规制、彻底升级作业结构设计的基本立足点出发,有计划、有目的地进行大规模适配环节设备结构规划设计的更新改进。
第一,规范细化模板脚手架的安装架设,彻底改造升级梁板、楼板、梁模板支撑变形的技术应用;其次,稳步提升钢筋工程的安全系数,及时进行抽料设计复核、超密集部位检查、大直径钢筋连接调试,严格按照规定标准规范操作;第三,进一步加强混凝土浇筑防裂机制的监控考核力度,组织相关人员进行定时定点定期检查考核,实行明确统一的奖罚机制,奖励先进积极、严惩落后懈怠。通过一系列适配环节的机构性调整,有效辅助高层建筑抗震结构在规划管理层面的延伸扩展。
三、结语
抗震结构的规划设计作为高层建筑施工工程的重中之重,在整个高层建筑工程运营系统中占据着安全巩固的关键地位。进一步加强高层建筑抗震结构设计施工的调整优化施行力度,深入细化相关流程环节的切实检测、务实设计,快速有效地降低高层建筑抗震结构施工作业过程中的安全事故的发生率,继而提升整个高层建筑抗震结构作业系统的综合竞争力,最终助推建筑工程产业体系安全、稳定、协调地运营。
参考文献:
[1]曹有龙.基于高层建筑抗震结构设计研究[J].中国房地产业, 2011(5).
关键词:高层建筑;混凝土;抗震结构;设计
中图分类号:S611文献标识码: A
引言
地震影响因素十分复杂,是一种不能预见的外部作用,目前的计算方法依旧处于半经验半理论的方法,在实际工作当中,想要对于建筑的抗震性进行精确的计算有很大的难度,因此,建筑设计师在进行高层建筑时,应重返考虑高层建筑的抗震问题,采取相应的安全防患措施,做到真正的防患于未然。
1、高层建筑混凝土结构的特征
混凝土结构建筑的楼层在10层或10层以上,或者建筑高度超过28m,定义为高层建筑。从定义中可看出高层建筑的特点体现在层数和高度上,而高层建筑更本质的特点是水平荷载设计起到关键作用。在高层建筑中研究建筑的抗侧力能力是抗震设计的重点,地震荷载和风荷载主要作用于建筑的水平力,其中地震荷载起控制的作用。破坏时间短,无规律的作用强度大,水平方向上的振动加以扭转振动是地震力对建筑的破坏特点。在设计过程完全应用弹性理论来设计以提高建筑的抗震性能是不可行的。因为会增加抗侧构件的数量,使结构的自重增加,导致在地震中,由于建筑自身的惯性力过大,使抗震性能降低。
2、建筑抗震级别
我国房屋建筑工程可以分为以下四个抗震设防类别
2.1、特殊设防类
指使用上有特殊设施,涉及国家公共安全的重大建筑工程和地震时可能发生严重次生灾害等特别重大灾害后果,需要进行特殊设防的建筑。简称甲类。
2.2、重点设防类
指地震时使用功能不能中断或需尽快恢复的生命线相关建筑,以及地震时可能导致大量人员伤亡等重大灾害后果,需要提高设防标准的建筑。简称乙类。
2.3、标准设防类
指大量的除1、2、4款以外按标准要求进行设防的建筑。简称丙类。
2.4、适度设防类
指使用上人员稀少且震损不致产生次生灾害,允许在一定条件下适度降低要求的建筑。简称丁类。
3、高层混凝土建筑抗震结构设计原则
3.1、结构布置
平面布置是指在建筑设计的平面图上,将柱和墙的位置以及对楼盖具有的传力作用进行合理的设置。依据建筑的抗震性能来看,最关键的是尽量将建筑结构平面的刚度中心与质量中心相靠近或相重合,以降低地震力对建筑的破坏力。为了减轻建筑自身的重量,在设计时应以结构的平面规则、对称为宜。结构的刚度在竖向上应保持均匀,可尽量较为规则的设计竖向结构,少做平面上的变化。在安全规定内设计结构的高度和宽度,并且需限制两者的比值,以使结构有较好的整体刚度和稳定性。
3.2、防震缝设置
建筑平面结构复杂时,可通过使用防震缝,将复杂面划分为简单且规则的平面,但是在高层建筑中,不宜使用防震缝。如果无法避免设缝,那么应根据不同的结构,按照需要较宽的规定来设置宽度。建筑的高度不超过15m,其防震宽度宜采用70mm;高度大于15m,应根据不同的度数相应的增加高度和防震缝宽度。
4、高层建筑混凝土抗震结构设计分析
4.1、选择场地地基
选择场地地基首先要依据实际工程需求,同时还要考虑地震活动情况。分析天然地基时的抗震承载力要按照不同的场地来进行,此外,根据不同场地来分析地震所导致的危害度。如果有必要,可使用规范的地基来进行处理。可根据地震强度、场地土的厚度、断裂的地质历史来明确避让距离,从而对场地范围内的地震断裂的确定有利。一定要保证避开对不利的建筑地段来进行场地地基的选择,如果依法避开,可以运用合适的抗震措施来进行。
4.2、增加抗弯结构宽度
增加抗弯结构体系的有效宽度,在高层建筑钢筋混凝土结构抗震设计中能提高建筑的抗倾覆力矩,并且侧移三次方的比例能得到减小,利用结构力学中的弯矩平衡法进行计算可更好的理解这一设计方式。在实际的建筑工程的设计中,竖向构件在结构体系中的良好连接是必须要做到的。在框架结构设计中,设计构件应遵循强压弱拉、强柱弱梁、强节点弱杆件和强剪弱弯的原则。在实际当中,为实现框架与剪力墙的协同一致需控制各层楼板的变形量。剪力墙的主要受力是弯曲变形,结构的主要受力是剪切变形,将两者进行有效协调变位,能实现框架抗震。
4.3、设计构件布置方式
结构设计中的抗力构件的布置应发挥最有效的作用,以提高结构的整体协调力,例如斜撑、水平撑及桁架体系等。在实际的设计中,不宜忽略其在结构中的作用,应根据具体受力状态,发挥杆件的抗拉和抗压能力。交叉撑或斜撑是最有效抗衡抗侧力的钢骨混凝土构件,其构件可完全适应受拉或受压的状态,且可充分是钢材抗拉能力和混凝土构件的抗压能力得到发挥的同时,又可在水平方向上增大架构的抗侧移刚度,以增强高层建筑缓凝土结构抗震作用。
4.4、高层混凝土建筑各层结构参数设置
通过在模拟地震中对设施的分析,我们能够根据得到的数据对各层的参数进行设置。例如高层混凝土结构建筑中的墙体承载能力等方面。在预处理阶段,应在充分了解羡慕的地形条件、质量检测等多个方面的基础上,建立设计的框架,应用设计理念做出说明,完成高层混凝土结构建筑的设计工作。在高层混凝土结构设计工作中,最好能够建立设计信息库,便于工程师用查找案例并总结的方法来展开工作。在研究结构综合受理情况时,应选出相应的模型,并以此对建筑结构的合理性进行判断。要对计算机运算结构展开研究,为以后的计算机运算提供一句。高层混凝土建筑要处理包括站东周期、扭转角度等多种参数,因此,对于高结构的设计应经过反复推敲,确保其具有良好的抗震能力。
4.5、重视结构的规则性
在进行高层混凝土结构建筑设计时,应重视高层结构的规则性,对于严重不规则的设计方案买,不能进入选择的行列。合理的布置能够对结构的抗震起到有效的提升,在设计中应提倡平、立面的对称。经过对震害的研究我们呢可以发现,对称建筑在地震中受到的伤害最低,对于采取抗争措施和处理都较为便利。
4.6、增加承受荷载的构件截面
在实际结构的设计中对承受地震力的构件应增大构件的最大部分截面,主要表现为在底部中应用加强层。通常情况下在剪力墙底部的加强层,其高度应设计与底部两层的较大值,或1/8的墙肢总高度相接近。高度大于150m的剪力墙,墙肢总高度的1/10是其底部加强部位的高度。为保证结构的延性需要对截面的尺寸进行限制,以防止产生脆性破坏,尤其对于抗震结构的截面限制条件更为严格,将x设为混凝土受压区域梁端截面构建的高度,考虑钢筋的受力情况,计算结果应符合以下条件;一级,x≤0.25h0;二、三级,x≤0.35h0,H0表示为截面的有效高度。
4.7、发挥楼盖的水平隔板作用
在建筑结构设计中将竖向的受力构件,也设计为是受弯构件,主要抗倾覆构件能在压力作用下,保持整体结构的稳定性。同时能减少增加的构件数量,减轻结构自重,降低工程造价。在高层建筑中,实际楼盖发挥的隔板作用应符合计算假定:假定全部楼层采用刚性楼板。这主要因为结构楼板的刚度足够,楼板有一定的厚度并配有钢筋,且在平面内的开洞进行了限制。如果假定不符合,在地震力的作用下楼板会成为薄弱层,结构会在层高处竖向构件发生破坏,导致结构整体发生垮塌。
4.8、对结构体系要合理的选择
抗震设计要考虑的关键问题就是抗震结构体系,建筑是否安全和经济取决于结构方案是否合理。
4.8.1、在对建筑结构体系进行合理选择时,要考虑到地震作用有合理的传递途径以及计算简图要十分明确,除此以外,受力以及传力路线等都要符合抗震分析。
4.8.2、在选择建筑结构体系时,要考虑到赘余度功能和内力重分配功能,这两个功能是进行抗震概念设计时的重要原则。
4.9、结构构件的延性要得到提高
对各个构件延性水平的提高是抗震概念设计在建筑结构设计中应用的关键问题。抗震措施主要有:采用竖向和水平向的混凝土构件,从而对砌体结构加强约束。这样一来,配筋砌体在地震中产生裂缝后也不会倒塌,让建筑物在地震中不会完全丧失重力荷载的承载能力。
5、结语
对于高层建筑来说,抗震设计是非常重要的,一个优良的建筑抗震设计,必须是在建筑设计和结构设计相互配合协作共同考虑抗震的设计基础上完成。随着社会经济的发展,很多新型的结构、新的技术不断出现,设计人员要不断利用这些新结构和新技术进行抗震结构设计,从而为人们的生命财产安全做好保障。
参考文献
[1]陈天华.高层混凝土建筑抗震结构设计探析[J].中国科技信息,2011,16:42.
[2]柏芸.试论高层混凝土建筑抗震结构设计[J].门窗,2013,06:201-202.
关键字:高层结构设计抗震
Abstract: The high-rise building is a development direction in the construction industry with its particular meaning. As for a high-rise structure design, the problem may be intricate. This paper analyzes aseismic design of the necessary from the structure of the high-rise building characteristics of buildings, and explores the high-rise building design concept and aseismatic measures. And a high-rise building structure development trend is briefly introduced.Keywords: high-rise building, structure, seismic design
中图分类号:S611文献标识码:A 文章编号:
随着科学的发展和时代的进步,高层建筑如雨后春笋般的出现。高层建筑的高度在一定程度上反映了一个国家的综合国力和科技水平,世界著名的建筑更是建筑史上的纪念碑。但是如果高层建筑因结构设计不清,而造成结构布置不合理,不仅会造成大量的浪费,更重要的是给高层建筑留下了结构质量的安全隐患。因此高层建筑的结构设计就显得尤为重要了。
一 结构设计特点
1.1 水平载荷是设计的主要因素
高层结构总是要同时承受竖向载荷和水平载荷作用。载荷对结构产生的内力是随着建筑物的高度增加而变化的,随着建筑物高度的增加,水平载荷产生的内力和位移迅速增大。
1.2 侧向位移是结构设计控制因素
随着楼房高度的增加,水平载荷作用下结构的侧向变形迅速增大,结构顶点侧移与建筑高度的四次方成正比,设计高层建筑结构时要求结构不仅要具有足够的强度,还要具有足够的抗推强度,使结构在水平载荷下产生的侧移被控制在范围之内。
1.3 结构延性是重要的设计指标
高层建筑还必须有良好的抗震性能,做到“小震不坏,大震能修。”为此,要求结构具有较好的延性,也就是说,结构在强烈地震作用下,当结构构件进入屈服阶段后具有较强的变形能力,能吸收地震作用下产生能量,结构能维持一定的承载力。
1.4 轴向变形不容忽视
高层结构竖向构件的变位是由弯曲变形、轴向变形及剪切变形三项因素的影响叠加求得的。在计算多层建筑结构内力和位移时,只考虑弯曲变形,因为轴力项影响很小,剪力项一般可不考虑。但对于高层建筑结构,由于层数多,高度大,轴力值很大,再加上沿高度积累的轴向变形显著,轴向变形会使高层建筑结构的内力数值与分布产生明显的变化。
二 建筑抗震的理论分析
2.1 建筑结构抗震规范
建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。
2.2 抗震设计的理论
拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。
反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。
三 高层建筑结构抗震设计
3.1 抗震措施
在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。
3.2 高层建筑的抗震设计理念
我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。
三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。
对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。
3.3 高层建筑结构的抗震设计方法
我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。
四 高层建筑结构发展趋势
随着城市人口的不断增加建设可用地的减少,高层建筑继续向着更高发展,结构所需承担的荷载和倾覆力矩将越来越大。在确保高层建筑物具有足够可靠度的前提下,为了进一步节约材料和降低造价,高层建筑结构够构件正在不断更新,设计理念也在不断发展。高层建筑结构也正朝着结构立体化,布置周边化,体型多样化,结构支撑化,体型多样化,材料高强化,建筑轻量化,组合结构化,结构耗能减震化等方向发展。
五 总结
高层建筑物有效地减轻了住房压力,但必然也带来了安全隐患,其结构设计显得尤为重要。随着设计理念的不断发展,高层建筑物必将朝着更加合理的方向发展。
参考文献
[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.11.
关键词:高层建筑;建筑结构;抗震设计
Abstract: the rapid development of urbanization causes the urban construction of the ends of the earth have nervous, therefore, in order to meet the improvement of the living, city buildings can only longitudinal for construction space, which prompted the modern city of the high-rise building has increased. Especially 08 5 ・ 12 earthquake on, high-rise buildings for anti-seismic structure design of increasingly more strict requirements. In the design of anti-seismic structure, not only should reflect scientific, more important is to reflect human nature, pay great attention to the humanistic idea. In this paper, the structure design of high-rise building a brief analysis, face the different design problems, puts forward the corresponding solutions for your reference.
Keywords: high building; Building structure; Seismic design
中图分类号:[TU208.3]文献标识码:A 文章编号:
一、前言
在众多自然灾害中,地震的不可抗拒性是最强的,而城市的高层建筑所受到的最大威胁也是来自于地震。所以,为了避免地震给人们带来的巨大伤害和损失,在现代高层建筑设计过程中,就必须更加注重高层建筑结构抗震设计,以此来最大限度避免地震所带来的财物损失。在下文中,我们从抗震结构设计的理念和抗震方法两个方面展开,以论证抗震设计在整个建筑设计中的重要性。
二、高层建筑抗震结构设计的理念
(一)在高层建筑结构设计中,建筑结构的构件必须要具备一下几个方面的优势性能:刚度、承载力、延性、稳定性等。
总体上来说,建筑结构的构件要遵循这样的原则:强剪弱弯、强节点弱构件、强柱弱梁、强底层墙。其次,对于在设计和施工中,对可能产生结构相对薄弱的地带或者部位,一定要采取各种合理的强化措施来提高此部位的抗震性能,从而达到整个建筑抗震的均衡性。再次,在设计中,面对纵向载荷的重要构件,为保证整个建筑体的纵向受力平衡,就要尽量避免在此设置主要的耗能构件。
(二)最大限度地设置抗震防线
在一个巨大的建筑体中,抗震系统是根据建筑系统的设计而设计的。所以,整个抗震结构体系不是单一存在的,而是由多个抗震延展性能较好的分体系合理构成,各体系通过合理的连接,才构成了建筑体的抗震体系。例如:剪力墙―框架的设计结构,是由剪力墙和延性框架两个部分构成的,而在剪力墙体系中,则由多肢或者双肢剪力墙组成。
为了抵抗地震以及余震的伤害,一道地震防线难以抵挡强大外力的破坏的,所以在抗震体系的设计中,要尽可能地多设置外部和内部的冗余度,设置合理科学而具有完整体系的分布屈服区。在主要耗能构件的设计中,要尽量采用刚度适当、延性较强的设备。同时,在同一楼层中,采用主要耗能构件屈服后,则需要其他的侧力构件保持足够的弹性,以最大限度保持“有效屈服”。在设计中,一定要避免同一建筑平面出现抗震力出现极度反差的两个地段,避免在设计中出现不合理的加强或者在施工中出现以大带小的现象。
(三)对于可能出现受力薄弱的地段,要采取合理的措施补强
在判断建筑设计中的薄弱地段时,最基本的判断方式就是量化构件的实际承载能力,而构件在地震的过程中,基本上不存在强度的安全储备。在设计和施工中,一定要使得设计计算的弹性和楼层的实际承载能力的比值在总体上保持一个大致的变化范围,倘若有突发位置的比值发生数值巨变,那么就会使得塑性由于内力的重新分布而导致集中产生。在设计中,一定要避免因为加强局部而造成整个建筑体的承载力和刚度产生极度的不协调的情况出现。
三、高层建筑抗震结构设计的方法
(一)最大限度减少地震能量的输入
在设计中,采用合理的设计方法,例如,可以采用基于位移的抗震结构设计,在这个设计中,对各种数据要进行详尽的定量分析,将建筑体的抗震变形承受能能力满足预期地震作用下的变形要求。除了要保证构件的抗震作用,为了最大限度的减少地震能量的摄入,就要考虑到控制结构的因素,在大地震的强力作用下,要保证控制结构的间层位移延性比或者阈值。根据构件位移和构件变形的相互关系,来确定建筑结构中构件的变形值。同时要根据建筑截面的应变分布和应变大小来确定建筑构件的构造分布要求。在建筑选址上,最好在坚硬的地段上建造高层建筑,这样也可以最大限度地减少地震能量的摄入。
(二)推广采用隔震和消能减震的设计方式
我国高层建设的抗震设计一般采用的是“延性结构设计体系”,这种设计体系的原理是通过适当地控制建筑物的刚度,保证建筑物在地震中能够即时进入到非弹性状态,在这种状态下,保持合理的延性,通过延性来释放地震传输的能量,减少地震反应,以达到“裂而不倒”的效果。在设计中,建议在采用“延性结构设计体系”的同时,同时采取滑移隔震、软垫隔震、悬挑隔震、摆动隔震等隔震措施,从而改变建筑结构的整体动力特征,最大限度的降低了地震能量的摄入。同时,建议提高结构阻尼,在设备设计中,最好采用延性较好的构件,这样就可以很好地提高结构的耗能能力,来减少高层建筑各楼层的地震剪力,从而减轻地震作用力。
(三)高层建筑减轻结构的自重
减轻结构自重,要从两个方面入手。第一,首先要看到的是高层建筑的地基承载能力,如果是在相同的地基条件下,减轻建筑结构就意味着通过节省重量来增加了建筑的延伸高度,这种高度的延伸,不涉及到增加地基处理的造价和不增加地基基础。所以,在建设高层建筑时,如果需要在高度上有所增加时,自重的问题就必须要重视起来,这样的情况对于软土地基的影响更为明显。第二,地震的效应和建筑的重量是呈正比的,在建筑结构重量增加的情况下,地震的作用力也是相对增加的。高层建筑因为高度的因素,其中心一般会较高,重心高就意味着在地震外力的作用下,建筑的倾覆力矩也随之增大。所以在设计的过程中,建议高层建筑的隔墙和填充墙最好采用轻质材料。
结语:
相对于其他自然灾害,地震的不可预测性是最大的,因而给人们造成的损失也是最大的,所以建筑设计人员在工程设计中,一定要从建筑结构的整体出发,本着人本主义的理念,处理好建筑安全性能和建筑功能之间的关系,从而来提升建筑的建筑质量,提升高层建筑的抗震能力,以保证人们的生命财产安全,创造出更加安全和谐的人居环境。
参考文献:
摘要:本文论述了高层建筑结构设计中的几个问题和轴压比等常用比值的含义,提出了高层建筑抗震设计的几点心得。
高层建筑目前在我们的城市建设当中所占的比例是越来越大,而建筑结构设计方面的变化也越来越多,很多新兴的结构设计方案以迅猛的速度呈现在我们的城市建设中。建筑类型与功能越来越复杂,高层建筑的结构体系也是越来越多样化,高层建筑结构设计也越来越成为高层建筑结构工程设计工作的难点与重点。面对如此形势,应该把高层建筑的结构设计放在首位加以研究。1高层建筑结构的相关问题分析1.1结构的超高问题:在抗震规范和高规范中,对结构的总高度有着严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A级高度以为,增加了B级高度,处理措施与设计方法都有较大改变。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。1.2短肢剪力墙的设置问题:在新规范中,对墙肢截面高厚比为5~8的墙定义为短肢剪力墙,且根据实验数据和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙,以避免给后期设计工作增加不必要的麻烦。1.3嵌固端的设置问题:由于高层建筑一般都带有二层或二层以上的地下室和人防,嵌固端有可能设置在地下室顶板,也有可能设置在人防顶板等位置,因此,在这个问题上,结构设计工程师往往忽视了由嵌固端的设置带来的一系列需要注意的方面,如:嵌固端楼板的设计、嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌的设置、结构抗震缝设置与嵌固端位置的协调等问题,而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。1.4结构的规则性问题:新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案。”因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动
2高层建筑结构设计中几个限值的意义
2.1轴压比: 指有地震作用组合的柱组合轴压力设计值与柱的全截面面积和砼轴心受压抗压强度设计值乘积的比值,是影响柱子破坏形态和延性的主要因素之一。 为控制结构的延性,规范对墙肢和柱均有相应限值要求。 2.2剪重比:即最小地震剪力系数,主要是控制各楼层最小地震剪力,确保结构安全性,尤其是对于基本周期大于3.5S的结构和有薄弱层的结构。 2.3刚重比: 结构的侧向刚度与重力荷载设计值之比。它是影响重力二阶效应的主要参数,主要为控制结构的稳定性,以免结构产生滑移和倾覆。 2.4侧向刚度比: 结构不同楼层的竖向刚度的比值,主要为控制结构竖向规则性,以免竖向刚度发生突变,形成薄弱层。 2.5层间位移比:楼层竖向构件的最大层间位移角与平均层间位移的比值。主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。2.6周期比: 为结构扭转为主的第一自振周期与平动为主的第一自振周期的比值。主要为控制结构扭转效应,减小扭转对结构产生的不利影响。
3高层建筑抗震设计
高层抗震设计的基本原则:小震不坏,中震可修,大震不倒。高层建筑结构抗震设计中应注意以下几点:
3.1应当注意防震缝的设计,必须留有足够的宽度。 3.2平面形状或刚度应尽量对称,否则会使建筑物产生显著的扭转,震害严重。
3.3结构的竖向布置应均匀,在高层建筑中,竖向体型不宜过大的外挑和内收,竖向刚度不应有突变。 3.4凸出屋面的塔楼受高振型的影响,产生显著的鞭梢效应,破坏严重。 3.5高层部分和低层部分之间的连接构造应合理设计。
3.6基础的埋置深度应符合有关规程的规定,且应满足地基变形和稳定的要求。 4结语近些年来,我国的高层建筑建设发展迅速。但从设计质量方面来看,并不理想。在高层建筑结构设计中,结构工程师不能仅仅重视结构计算的准确性而忽略结构方案的具体实际情况,应作出合理的结构方案选择。高层建筑结构设计人员应根据具体情况进行具体分析掌握的知识处理实际建筑设计中遇到了各种问题。