HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 化学反应的过程

化学反应的过程

时间:2023-06-21 08:55:03

化学反应的过程

化学反应的过程范文1

如氨氧化制硝酸、甲苯氧化制苯甲酸、乙烯氧化制环氧乙烷等。

(1)氧化的火灾危险性

①氧化反应需要加热,但反应过程又是放热反应,特别是催化气相反应,一般都是在250~600℃的高温下进行,这些反应热如不及时移去,将会使温度迅速升高甚至发生爆炸。

②有的氧化,如氨、乙烯和甲醇蒸气在空中的氧化,其物料配比接近于爆炸下限,倘若配比失调,温度控制不当,极易爆炸起火。

③被氧化的物质大部分是易燃易爆物质。如乙烯氧化制取环氧乙烷中,乙烯是易燃气体,爆炸极限为2.7%~34%,自燃点为450℃;甲苯氧化制取苯甲酸中,甲苯是易燃液体,其蒸气易与空气形成爆炸性混合物,爆炸极限为1.2%~7%;甲醇氧化制取甲醛中,甲醇是易燃液体,其蒸气与空气的爆炸极限是6%~36.5%。

④氧化剂具有很大的火灾危险性。如氯酸钾,高锰酸钾、铬酸酐等都属于氧化剂,如遇高温或受撞击、摩擦以及与有机物、酸类接触,皆能引起着火爆炸;有机过氧化物不仅具有很强的氧化性,而且大部分是易燃物质,有的对温度特别敏感,遇高温则爆炸。

⑤氧化产品有些也具有火灾危险性。如环氧乙烷是可燃气体;硝酸虽是腐蚀性物品,但也是强氧化剂;含36.7%的甲醛水溶液是易燃液体,其蒸气的爆炸极限为7.7%~73%。另外,某些氧化过程中还可能生成危险性较大的过氧化物,如乙醛氧化生产醋酸的过程中有过醋酸生成,过醋酸是有机过氧化物,性质极度不稳定,受高温、摩擦或撞击便会分解或燃烧。

(2)氧化过程的防火措施

①氧化过程中如以空气或氧气作氧化剂时,反应物料的配比(可燃气体和空气的混合比例)应严格控制在爆炸范围之外。空气进入反应器之前,应经过气体净化装置,消除空气中的灰尘、水汽、油污以及可使催化剂活性降低或中毒的杂质,以保持催化剂的活性,减少着火和爆炸的危险。

②氧化反应接触器有卧式和立式两种,内部填装有催化剂。一般多采用立式,因为这种形式催化剂装卸方便,而且安全。在催化氧化过程中,对于放热反应,应控制适宜的温度、流量,防止超温、超压和混合气处于爆炸范围之内。

③为了防止接触器在万一发生爆炸或着火时危及人身和设备安全,在反应器前和管道上应安装阻火器,以阻止火焰蔓延,防止回火,使着火不致影响其他系统。为了防止接触器发生爆炸,接触器应有泄压装置,并尽可能采用自动控制或调节以及报警联锁装置。

④使用硝酸、高锰酸钾等氧化剂时,要严格控制加料速度,防止多加、错加,固体氧化剂应粉碎后使用,最好呈溶液状态使用,反应中要不间断搅拌,严格控制反应温度,决不许超过被氧化物质的自燃点。

⑤使用氧化剂氧化无机物时,如使用氯酸钾氧化生成铁蓝颜料,应控制产品烘干温度不超过其着火点,在烘干之前应用清水洗涤产品,将氧化剂彻底除净,以防止未完全反应的氯酸钾引起已烘干的物料起火。有些有机化合物的氧化,特别是在高温下的氧化,在设备及管道内可能产生焦状物,应及时清除,以防自燃。

⑥氧化反应使用的原料及产品,应按有关危险品的管理规定,采取相应的防火措施,如隔离存放、远离火源、避免高温和日晒、防止摩擦和撞击等。如是电介质的易燃液体或气体,应安装导除静电的接地装置。

⑦在设备系统中宜设置氮气、水蒸气灭火装置,以便能及时扑灭火灾。

2 还原

如硝基苯在盐酸溶液中被铁粉还原成苯胺、邻硝基苯甲醚在碱性溶液中被锌粉还原成邻氨基苯甲醚、使用保险粉、硼氢化钾、氢化锂铝等还原剂进行还原等。

还原过程的危险性分析及防火要求:

(1)无论是利用初生态还原,还是用催化剂把氢气活化后还原,都有氢气存在(氢气的爆炸极限为4%—75%),特别是催化加氢还原,大都在加热、加压条件下进行,如果操作失误或因设备缺陷有氢气泄漏,极易与空气形成爆炸性混合物,如遇着火源即会爆炸。所以,在操作过程中要严格控制温度、压力和流量;车间内的电气设备必须符合防爆要求。电线及电线接线盒不宜在车间顶部敷设安装;厂房通风要好,应采用轻质屋顶、设置天窗或风帽,以使氢气及时逸出;反应中产生的氢气可用排气管导出车间屋项,并高于屋脊2m以上,经过阻火器向外排放;加压反应的设备应配备安全阀,反应中产生压力的设备要装设爆破片;安装氢气检测和报警装置。

(2)还原反应中所使用的催化剂雷氏镍吸潮后在空气中有自燃危险,即使没有着火源存在,也能使氢气和空气的混合物引燃形成着火爆炸。因此,当用它们来活化氢气进行还原反应时,必须先用氮气置换反应器内的全部空气,并经过测定证实含氧量降到标准后,才可通人氢气;反应结束后应先用氮气把反应器内的氢气置换干净,才可打开孔盖出料,以免外界空气与反应器内的氢气相遇,在雷氏镍自燃的情况下发生着火爆炸,雷氏镍应当储存于酒精中,钯碳回收时应用酒精及清水充分洗涤,过滤抽真空时不得抽得太干,以免氧化着火。

(3)固体还原剂保险粉、硼氢化钾、氢化铝锂等都是遇湿易燃危险品,其中保险粉遇水发热,在潮湿空气中能分解析出硫,硫蒸气受热具有自燃的危险,且保险粉本身受热到190℃也有分解爆炸的危险;硼氢化钾(钠)在潮湿空气中能自燃,遇水或酸即分解放出大量氢气,同时产生高热,可使氢气着火而引起爆炸事故;氢化锂铝是遇湿危险的还原剂,务必要妥善保管,防止受潮。保险粉用于溶解使用时,要严格控制温度,可以在开动搅拌的情况下,将保险粉分批加入水中,待溶解后再与有机物接触反应;当使用硼氢化钠(钾)作还原剂时,在工艺过程中调解酸、碱度时要特别注意,防止加酸过快、过多;当使用氢化铝锂作还原剂时,要特别注意,必须在氮气保护下使用,平时浸没于煤油中储存。前面所述的还原剂,遇氧化剂会猛烈发生反应,产生大量热量,具有着火爆炸的危险,故不得与氧化剂混存。

(4)还原反应的中间体,特别是硝基化合物还原反应的中间体,亦有一定的火灾危险,例如,在邻硝基苯甲醚还原为邻氨基苯甲醚的过程中,产生氧化偶氮苯甲醚,该中间体受热到150℃能自燃。苯胺在生产中如果反应条件控制不好,可生成爆炸危险性很大的环己胺。所以在反应操作中一定要严格控制各种反应参数和反应条件。

(5)开展技术革新,研究采用危险性小、还原效率高的新型还原剂代替火灾危险性大的还原剂。例如采用硫化钠代替铁粉还原,可以避免氢气产生,同时还可消除铁泥堆积的问题。

3 硝化

硝化通常是指在有机化合物分子中引入硝基(—no2),取代氢原子而生成硝基化合物的反应。如甲苯硝化生产梯恩梯(tnt)、苯硝化制取硝基苯、甘油硝化制取硝化甘油等。

硝化过程的火灾危险性主要是:

(1)硝化是一个放热反应,引入一个硝基要放热152.2~153 kj/mol,所以硝化需要降温条件下进行。在硝化反应中,倘若稍有疏忽,如中途搅拌停止、冷却水供应不良、加料速度过快等,都会使温度猛增、混酸氧化能力加强,并有多硝基物生成,容易引起着火和爆炸事故。

(2)硝化剂具有氧化性,常用硝化剂浓硝酸、硝酸、浓硫酸、发烟硫酸、混合酸等都具有较强的氧化性、吸水性和腐蚀性。它们与油脂、有机物,特别是不饱和的有机化合物接触即能引起燃烧;在制备硝化剂时,若温度过高或落入少量水,会促使硝酸的大量分解和蒸发,不仅会导致设备的强烈腐蚀,还可造成爆炸事故。

(3)被硝化的物质大多易燃,如苯、甲苯、甘油(丙三醇)、脱酯棉等,不仅易燃,有的还兼有毒性,如使用或储存管理不当,很易造成火灾。

(4)硝化产品大都有着火爆炸的危险性,特别是多硝基化合物和硝酸酯,受热、摩擦、撞击或接触着火源,极易发生爆炸或着火。

4 电解

电流通过电解质溶液或熔融电解质时,在两个极上所引起的化学变化称为电解。电解在工业上有着广泛的作用。许多有色金属(钠、钾、镁、铅等)和稀有金属(锆、铪等)冶炼,金属铜、锌、铝等的精炼;许多基本化学工业产品(氢、氧、氯、烧碱、氯酸钾、过氧化氢等)的制备,以及电镀、电抛光、阳极氧化等,都是通过电解来实现的。

如食盐水电解生产氢氧化钠、氢气、氯气,电解水制氢等。食盐水电解过程中的危险性分析与防火要点:

(1)盐水应保证质量 盐水中如含有铁杂质,能够产生第二阴极而放出氢气;盐水中带入铵盐,在适宜的条件下(ph<4.5时),铵盐和氯作用可生成氯化铵,氯作用于浓氯化铵溶液还可生成黄色油状的三氯化氮。

3c12+nh4cl——4hcl+ncl3

三氯化氮是一种爆炸性物质,与许多有机物接触或加热至90℃以上以及被撞击,即发生剧烈地分解爆炸。爆炸分解式如下:

2ncl3——n2+3c12

因此盐水配制必须严格控制质量,尤其是铁、钙、镁和无机铵盐的含量。一般要求mg2+<2mg/l,ca2+<6mg/l,so42-<5mg/l。应尽可能采取盐水纯度自动分析装置,这样可以观察盐水成分的变化,随时调节碳酸钠、苛性钠、氯化钡或丙烯酸胺的用量。

(2)盐水添加高度应适当 在操作中向电解糟的阳极室内添加盐水,如盐水液面过低,氢气有可能通过阴极网渗入到阳极室内与氯气混合;若电解槽盐水装得过满,在压力下盐水会上涨,因此,盐水添加不可过少或过多,应保持一定的安全高度。采用盐水供料器应间断供给盐水,以避免电流的损失,防止盐水导管被电流腐蚀(目前多采用胶管)。

(3)防止氢气与氯气混合 氢气是极易燃烧的气体,氯气是氧化性很强的有毒气体,一旦两种气体混合极易发生爆炸,当氯气中含氢量达到5%以上,则随时可能在光照或受热情况下发生爆炸。造成氢气和氯气混合的原因主要是:阳极室内盐水液面过低;电解槽氢气出口堵塞,引起阴极室压力升高;电解槽的隔膜吸附质量差;石棉绒质量不好,在安装电解槽时碰坏隔膜,造成隔膜局部脱落或者送电前注入的盐水量过大将隔膜冲坏,以及阴极室中的压力等于或超过阳极室的压力时,就可能使氢气进入阳极室等,这些都可能引起氯气中含氢量增高。此时应对电解槽进行全面检查,将单槽氯含氢浓度控制在2%以下,总管氯含氢浓度控制在0.4%以下。

(4)严格电解设备的安装要求 由于在电解过程中氢气存在,故有着火爆炸的危险,所以电解槽应安装在自然通风良好的单层建筑物内,厂房应有足够的防爆泄压面积。

(5)掌握正确的应急处理方法 在生产中当遇突然停电或其他原因突然停车时,高压阀不能立即关闭,以免电解槽中氯气倒流而发生爆炸。应在电解槽后安装放空管,以及时减压,并在高压阀门上安装单向阀,以有效地防止跑氯,避免污染环境和带来火灾危险。

5 聚合

将若干个分子结合为一个较大的组成相同而分子量较高的化合物的反应过程为聚合。

如氯乙烯聚合生产聚氯乙烯塑料、丁二烯聚合生产顺丁橡胶和丁苯橡胶等。

聚合按照反应类型可分为加成聚合和缩合聚合两大类;按照聚合方式又可分为本体聚合、悬浮聚合、溶液聚合和乳液聚合、缩合聚合五种。

(1)本体聚合

本体聚合是在没有其他介质的情况下(如乙烯的高压聚合、甲醛的聚合等),用浸在冷却剂中的管式聚合釜(或在聚合釜中设盘管、列管冷却)进行的一种聚合方法。这种聚合方法往往由于聚合热不易传导散出而导致危险。例如在高压聚乙烯生产中,每聚合1公斤乙烯会放出3.8mj的热量,倘若这些热量未能及时移去,则每聚合1%的乙烯,即可使釜内温度升高12~13℃,待升高到一定温度时,就会使乙烯分解,强烈放热,有发生暴聚的危险。一旦发生暴聚,则设备堵塞,压力骤增,极易发生爆炸。

(2)溶液聚合

溶液聚合是选择一种溶剂,使单体溶成均相体系,加入催化剂或引发剂后,生成聚合物的一种聚合方法。这种聚合方法在聚合和分离过程中,易燃溶剂容易挥发和产生静电火花。

(3)悬浮聚合

悬浮聚合是用水作分散介质的聚合方法。它是利用有机分散剂或无机分散剂,把不溶于水的液态单体,连同溶在单体中的引发剂经过强烈搅拌,打碎成小珠状,分散在水中成为悬浮液,在极细的单位小珠液滴(直径为0.1um)中进行聚合,因此又叫珠状聚合。这种聚合方法在整个聚合过程中,如果没有严格控制工艺条件,致使设备运转不正常,则易出现溢料,如若溢料,则水分蒸发后未聚合的单体和引发剂遇火源极易引发着火或爆炸事故。

(4)乳液聚合

乳液聚合是在机械强烈搅拌或超声波振动下,利用乳化剂使液态单体分散在水中(珠滴直径0.001~0.01um),引发剂则溶在水里而进行聚合的一种方法。这种聚合方法常用无机过氧化物(如过氧化氢)作引发剂,如若过氧化物在介质(水)中配比不当,温度太高,反应速度过快,会发生冲料,同时在聚合过程中还会产生可燃气体。

(5)缩合聚合

缩合聚合也称缩聚反应,是具有两个或两个以上功能团的单体相互缩合,并析出小分子副产物而形成聚合物的聚合反应。缩合聚合是吸热反应,但由于温度过高,也会导致系统的压力增加,甚至引起爆裂,泄漏出易燃易爆的单体。

6 催化

催化反应是在催化剂的作用下所进行的化学反应。例如氮和氢合成氨,由二氧化硫和氧合成三氧化硫,由乙烷和氧合成环氧乙烷等都是属于催化反应。

催化的火灾危险性:

(1)反应操作 在催化过程中若催化剂选择的不正确或加入不适量,易形成局部反应激烈;另外,由于催化大多需在一定温度下进行,若散热不良、温度控制不好等,很容易发生超温爆炸或着火事故。

(2)催化产物 在催化过程中有的产生氯化氢,氯化氢有腐蚀和中毒危险;有的产生硫化氢,则中毒危险更大,且硫化氢在空气中的爆炸极限较宽(4.3%~45.5%),生产过程中还有爆炸危险;有的催化过程产生氢气,着火爆炸的危险更大,尤其在高压下,氢的腐蚀作用可使金属高压容器脆化,从而造成破坏性事故。

(3)原料气 原料气中某种能与催化剂发生反应的杂质含量增加,可能成为爆炸危险物,这是非常危险的。例如,在乙烯催化氧化合成乙醛的反应中,由于催化剂体系中常含有大量的亚铜盐,若原料气中含乙炔过高,则乙炔就会与亚铜盐反应生成乙炔铜。乙炔铜为红色沉淀,是一种极敏感的爆炸物,自燃点在260~270℃之间,干燥状态下极易爆炸,在空气作用下易氧化成暗黑色,并易于起火。

7 裂化

裂化有时又称裂解,是指有机化合物在高温下分子发生分解的反应过程。裂化可分为热裂化、催化裂化、加氢裂化三种类型。

(1)热裂化

热裂化在高温高压下进行,装置内的油品温度一般超过其自燃点,若漏出油品会立即起火;热裂化过程中产生大量的裂化气,且有大量气体分馏设备,若漏出气体,会形成爆炸性气体混合物,遇加热炉等明火,有发生爆炸的危险。在炼油厂各装置中,热裂化装置发生的火灾次数是较多的。

(2)催化裂化

催化裂化一般在较高温度(460~520℃)和0.1~0.2mpa压力下进行,火灾危险性较大。若操作不当,再生器内的空气和火焰进入反应器中会引起恶性爆炸。u形管上的小设备和小阀门较多,易漏油着火。在催化裂化过程中还会产生易燃的裂化气,以及在烧焦活化催化剂不正常时,还可能出现可燃的一氧化碳气体。

(3)加氢裂化

由于加氢裂化使用大量氢气,而且反应温度和压力都较高,在高压下钢与氢气接触,钢材内的碳分子易被氢气所夺取,使碳钢硬度增大而降低强度,产生氢脆,如设备或管道检查或更换不及时,就会在高压(10~15mpa)下发生设备爆炸。另外,加氢是强烈的放热反应,反应器必须通冷氢以控制温度。因此,要加强对设备的检查,定期更换管道、设备,防止氢脆造成事故;加热炉要平稳操作,防止设备局部过热,防止加热炉的炉管烧穿或者高温管线、反应器漏气而引起着火。

8 氯化

以氯原子取代有机化合物中氢原子的过程称为氯化。如由甲烷制甲烷氯化物、苯氯化制氯苯等。常用的氯化剂有:液态或气态氯、气态氯化氢和各种浓度的盐酸、磷酸氯(三氯氧化磷)、三氯化磷(用来制造有机酸的酰氯)、硫酰氯(二氯硫酰)、次氯酸酯等。

氯化过程危险性分析与防火要点:

(1)氯化反应的火灾危险性主要决定于被氯化物质的性质及反应过程的条件。反应过程中所用的原料大多是有机易燃物和强氧化剂,如甲烷、乙烷、苯、酒精、天然气、甲苯、液氯等。如生产1t甲烷氯化物需要2006m3甲烷、6960kg液氯,生产过程中同样具有着火爆炸危险。所以,应严格控制各种着火源,电气设备应符合防火防爆要求。

(2)氯化反应中最常用的氯化剂是液态或气态的氯。氯气本身毒性较大,氧化性极强,储存压力较高,一旦泄漏是很危险的。所以贮罐中的液氯在进入氯化器使用之前,必须先进人蒸发器使其气化。在一般情况下不准把储存氯气的气瓶或槽车当贮罐使用,因为这样有可能使被氯化的有机物质倒流进气瓶或槽车引起爆炸。对于一般氯化器应装设氯气缓冲罐,防止氯气断流或压力减小时形成倒流。

(3)氯化反应是一个放热过程,尤其在较高温度下进行氯化,反应更为剧烈。例如在环氧氯丙烷生产中,丙烯需预热至3000℃左右进行氯化,反应温度可升至500℃,在这样高的温度下,如果物料泄漏就会造成着火或引起爆炸。因此,一般氯化反应设备必须有良好的冷却系统,并严格控制氯气的流量,以免因流量过快,温度剧升而引起事故。

(4)由于氯化反应几乎都有氯化氢气体生成,因此所用的设备必须防腐蚀,设备应保证严密不漏。因为氯化氢气体易溶于水中,通过增设吸收和冷却装置就可以除去尾气中绝大部分氯化氢。

9 重氮化

重氮化是使芳伯胺变为重氮盐的反应。通常是把含芳胺的有机化合物在酸性介质中与亚硝酸钠作用,使其中的胺基(-nh2)转变为重氮基(-n=n-)的化学反应。如二硝基重氮酚的制取等。

重氮化的火灾危险性分析:

(1)重氮化反应的主要火灾危险性在于所产生的重氮盐,如重氮盐酸盐(c6h5n2cl)、重氮硫酸盐(c6h5n2h504),特别是含有硝基的重氮盐,如重氮二硝基苯酚[(no2)2n2c6h2oh]等,它们在温度稍高或光的作用下,即易分解,有的甚至在室温时亦能分解。一般每升高10℃,分解速度加快两倍。在干燥状态下,有些重氮盐不稳定,活力大,受热或摩擦、撞击能分解爆炸。含重氮盐的溶液若洒落在地上、蒸汽管道上,干燥后亦能引起着火或爆炸。在酸性介质中,有些金属如铁、铜、锌等能促使重氮化合物激烈地分解,甚至引起爆炸。

(2)作为重氮剂的芳胺化合物都是可燃有机物质,在一定条件下也有着火和爆炸的危险。

(3)重氮化生产过程所使用的亚硝酸钠是无机氧化剂,于175℃时分解能与有机物反应发生着火或爆炸。亚硝酸钠并非氧化剂,所以当遇到比其氧化性强的氧化剂时,又具有还原性,故遇到氯酸钾、高锰酸钾、硝酸铵等强氧化剂时,有发生着火或爆炸的可能。

(4)在重氮化的生产过程中,若反应温度过高、亚硝酸钠的投料过快或过量,均会增加亚硝酸的浓度,加速物料的分解,产生大量的氧化氮气体,有引起着火爆炸的危险。

10 烷基化

烷基化(亦称烃化),是在有机化合物中的氮、氧、碳等原子上引入烷基r—的化学反应。引入的烷基有甲基(-ch3)、乙基(-c2h5)、丙基(-c3h7)、丁基(-c4h9)等。

烷基化常用烯烃、卤化烃、醇等能在有机化合物分子中的碳、氧、氮等原子上引入烷基的物质作烷基化剂。如苯胺和甲醇作用制取二甲基苯胺。

烷基化的火灾危险性:

(1)被烷基化的物质大都具有着火爆炸危险。如苯是甲类液体,闪点-11℃,爆炸极限1.5%~9.5%;苯胺是丙类液体,闪点71℃,爆炸极限1.3%~4.2%。

(2)烷基化剂一般比被烷基化物质的火灾危险性要大。如丙烯是易燃气体,爆炸极限2%~11%;甲醇是甲类液体,闪点7℃,爆炸极限6%~36.5%;十二烯是乙类液体,闪点35℃,自燃点220℃。

(3)烷基化过程所用的催化剂反应活性强。如三氯化铝是忌湿物品,有强烈的腐蚀性,遇水或水蒸汽分解放热,放出氯化氢气体,有时能引起爆炸,若接触可燃物,则易着火;三氯化磷是腐蚀性忌湿液体,遇水或乙醇剧烈分解,放出大量的热和氯化氢气体,有极强的腐蚀性和刺激性,有毒,遇水及酸(主要是硝酸、醋酸)发热、冒烟,有发生起火爆炸的危险。

(4)烷基化反应都是在加热条件下进行,如果原料、催化剂、烷基化剂等加料次序颠倒、速度过快或者搅拌中断停止,就会发生剧烈反应,引起跑料,造成着火或爆炸事故。

(5)烷基化的产品亦有一定的火灾危险。如异丙苯是乙类液体,闪点35.5℃,自燃点434℃,爆炸极限0.68%~4.2%;二甲基苯胺是丙类液体,闪点61℃,自燃点371℃;烷基苯是丙类液体,闪点127℃。

11 磺化

磺化是在有机化合物分子中引入磺(酸)基(-so3h)的反应。常用的磺化剂有发烟硫酸、亚硫酸钠、亚硫酸钾、三氧化硫等。如用硝基苯与发烟硫酸生产间氨基苯磺酸钠,卤代烷与亚硫酸钠在高温加压条件下生成磺酸盐等均属磺化反应。

磺化过程危险性分析:

(1)三氧化硫是氧化剂,遇比硝基苯易燃的物质时会很快引起着火;另外,三氧化硫的腐蚀性很弱,但遇水则生成硫酸,同时会放出大量的热,使反应温度升高,不仅会造成沸溢或使磺化反应导致燃烧反应而起火或爆炸,还会因硫酸具有很强的腐蚀性,增加了对设备的腐蚀破坏。

化学反应的过程范文2

[关键词]药物合成反应;课程;教学

中图分类号:R9-4;G642.4 文献标识码:A 文章编号:1009-914X(2017)12-0334-01

药物合成反应是制药工程专业的一门专业基础课程,具有相当大的重要性。主要是在有机化学课程的基础上形成,可实现对有机药物合成反应、反应的影响因素、反应的选择性及其实际应用进行系统的学习。同时也为药物化学以及药物工艺学等课程打下坚实基础。因药物合成反应课程涉及多方面的化学反应,在教学时存在较大难度。我们必须通过合理的手段以及方法实现对药物合成课程反应趣味性的有效提高。

1 重视绪论,引发学生对《药物合成反应》课程的重视和兴趣

现阶段使用的药物合成反应课程教学,教材主要是由化学工业出版社出版的第三版教材,主编是闻韧教授。该教材在普通高等教育十一五部级规划教材涵盖范围之内,条理清晰、层次分明是该教材内容的显著优势与特征。但也存在一定的缺陷,没有实现编排绪论就是其主要缺点。在实际进行教学实践时我们如果按照教材内容进行,具体的化学反应就是第一节课需要讲述的内容,在这种情况下学生不能实现对课程的全面认识,学习,、目标不明确现象也普遍存在,最终导致学生对学习失去兴趣。因此,教师必须提高对绪论部分教学的重视程度,在实际对教材内容讲解之前给学生介绍药物合成反应课程的主要内容。同时实现与有机化学药物化学制药工程学课程之间的联系进行科学研究。学习这门课程对以后的学习以及工作有极大的帮助,在学习过程中必须采用科学的方法以及有效的手段,同时帮助学生对课程的研究对象内容以及特点等进行明确的认识。药物合成反应与有机化学之间存在密不可分再联系。需要在有机化学的基础上实现对药物合成反应的学习。因此在实际进行药物反应学习之前学生科首先对有机化学进行熟悉,然后对课程内容设置的一同进行科学的比较。这可在一定程度上消除学生队课程畏难心里。

2 综合比较,帮助学生将各章节中的内容有机联系起来

《药物合成反应》课程所涉及的有机反应非常多,内容繁杂,学生在学习过程中容易产生畏难心理。通过综合比较,可以帮助学生将各章节中的内容有机联系起来,增强各章节热萘系性,便于学生理解和掌握。例如第一章卤化反应,涉及的化学反应包括不饱和烃的卤加成反应、烃类的卤取代反应、羰基化合物的卤取代反应、醇酚醚的卤置换反应、羧酸的卤置换反应以及其他官能团化合物的卤置换反应,可从反应过程中所用卤化剂的类型着手,分析各反应的特点。卤加成反应大多是通过亲电加成的反应机理进行,这就要求卤化剂在反应过程中能够提供正离子作为亲电试剂参与反应,卤化剂卤素、次卤酸(酯)、N-卤代酰胺能够提供卤正离子,而卤化氢能够提供氢正离子;烃类的卤取代反应、羰基化合物的卤取代反应是用卤素取代化合物结构中的氢,大多是通过亲电取代的反应机理进行,要求卤化剂在反应过程中能够提供卤正离子作为亲电试剂参与反应,可以选用卤素、次卤酸(酯)、N-卤代酰胺等能够提供卤正离子的卤化剂,而卤化氢只能够提供卤负离子,不适用于卤取代反应;醇酚醚的卤置换反应、羧酸的卤置换反应和其他官能团化合物的卤置换反应是用卤素置换化合物结构中的特定官能团,大多是通过亲核取代的反应机理进行,这就要求卤化剂在反应过程中能够提供卤负离子作为亲核试剂参与反应,不能选用卤素、次卤酸(酯)、N-卤代酰胺等能够提供卤正离子的卤化剂,只能选择氢卤酸、卤化亚砜、卤化磷、有机磷卤化物等能够提供卤负离子的卤化剂[1]。通过对各种类型的卤化反应进行比较,可以帮助学生更深刻的理解卤化反应的机理,掌握各反应的相同之处和不同之处。

3 讲解实例,使学生更好的理解各反应在药物合成中的应用

《药物合成反应》课程涉及的有机化学反应纷繁复杂,学生在学习过程中容易对所学的化学反应有何用途感到迷茫,难以将各单元反应与药物合成联系起来。通过讲解实例,介绍一些学生熟悉的药物的合成过程,可以将《药物合成反应》课程与药物生产实际紧密结合在一起,在理论与实践之间架起一座桥梁。

例如,在介绍羧酸甲酯、乙酯为酰化剂用于脂肪胺的N-酰化时,以中枢神经抑制剂巴比妥类药物的合成为实例,巴比妥类药物都具有环状丙二酰脲母核,在合成的时候可以采用丙二酸二乙酯衍生物和尿素为原料,丙二酸二乙酯属于羧酸乙酯类化合物,作为酰化剂,尿素含有氨基,作为被酰化物,发生脂肪胺的N-酰化可以制得含有酰胺键的环状丙二酰脲母核。之后讲到Claisen反应,可举例苯巴比妥的中间体苯基丙二酸二乙酯的合成,苯基丙二酸二乙酯采用苯乙酸乙酯和乙二酸二乙酯为原料合成,苯乙酸乙酯含α-活泼氢,乙二酸二乙酯不含α-活泼氢,可发生酯与不含α-活泼氢的酯的Claisen反应,然后加热失去一个酰基,得苯基丙二酸二乙酯。再通过比较苯基丙二酸二乙酯与苯巴比妥的化学结构,启发学生思考如何制备苯巴比妥,引导学生通过活性亚甲基化合物与溴乙烷的烃化反应,引入乙基生成乙基苯基丙二酸二乙酯,再通过羧酸乙酯和尿素的N-酰化反应得到苯巴比妥。通过讲解苯巴比妥的合成的实例,不仅让学生更好的理解Claisen反应,同时回顾了活性亚甲基化合物的烃化反应以及脂肪胺的N-酰化反应,也让学生将理论知识具体化,能够与生产实际结合起来。

4 结合实践,进一步加深学生对理论知识的掌握

制药工程专业属于工科专业,主要培养应用型人才,因此在教学过程中需要重视提高学生的实验动手能力和思考问题、解决问题的能力,要求结合教学实践及学生的实际情况,充分利用学校教学资源,更有效的开展实验教学。结合教学实践及学生的实际情况将实验课程分为单元反应实验、综合性实验和设计性实验三个部分,三部分实验内容从易到难循序进行,有助于学生接受和理解。单元反应实验较为简单,可通过一步或两步反应完成,如苯丙酮的制备、对硝基苯甲醛的制备等,主要涉及理论课所学习的卤化反应、烃化反应、酰化反应、缩合反应、重排反应、氧化反应、还原反应等单元反应。

5 结语

综上所述,《药物合成反应》课程所涉及的有机化学反应、反应机理较多,教学内容难度较大,课堂教学容易枯燥无味,可以从重视绪论,引发学生对《药物合成反应》课程的重视和兴趣;综合比较,帮助学生将各章节中的内容有机联系起来;讲解实例,使学生更好的理解各反应在药物合成中的应用;结合实践,进一步加深学生对理论知识的掌握四个方面着手提高药物合成反应课程的趣味性。

参考文献

化学反应的过程范文3

化学平衡(第1课时)

化学平衡贯穿高中必修与选修内容,主要体现在必修二“化学反应与能量”和选修四“化学反应速率与化学平衡”、“水溶液中的离子平衡”等主题中,承前而又启后,是学生认识化学、学习化学过程中不可缺少的一部分。但是从化学平衡中抽象出的化学平衡模型往往是学生的认知难点,因此化学平衡这一节不仅是中学化学教学的重点也是难点。

一、单元课程理念分析

本单元主题为“化学反应速率与化学平衡”,从化学反应速率入手,延伸到影响化学反应速率的影响因素,最后过渡到化学平衡。化学反应速率与化学平衡不仅是高中化学学习的重点与难点,同时它也遍布在我们的日常生活中、工业生产中,在这一单元的学习中,教师应该注重引导学生进行实验探究,并进行归纳总结。从课程基本理念来看,通过本单元的学习,教师应该引导学生进一步学习化学的基本原理与基本方法,形成科学的世界观;要从学生的已有经验和将要经历的社会生活实际出发,包括生活经验以及前面已经学习过的化学知识,帮助学生认识化学与人类生活的密切关系,关注人类面临的化学相关的社会问题,培养学生的责任感、参与意识和决策能力。贯彻落实以化学实验为主的课程理念,使学生体验科学究过程,激发学生学习化学的兴趣,强化科学探究意识,促进学习方式的转变,培养学生的创新精神和实践能力。同时,教师应该用更加多元化的评价方式对学生进行评价,学生也应该主动的进行自我评价。

二、内容标准分析

在义务教育的化学学习过程中,已经学习过饱和溶液以及溶解度的概念,这对于学生理解蔗糖的溶解、结晶平衡很有帮助。在必修二“化学反应与能量”的学习过程中,学生学习了化学反应速率的概念以及浅显的化学反应限度问题,并学习了催化剂温度对化学反应速率的影响,以及炼铁高炉尾气中存在的化学反应的限度问题。但是前面学习的这些内容仅是学习化学平衡章节的铺垫内容,虽然有部分交叉,但却是螺旋式上升的知识结构,在内容标准的要求上也有很大不同,但是也有着紧密的联系。

内容标准对比:

教材章节

内容标准

活动与探究建议

九年级下册第九单元第二节:溶解度

1.认识溶解现象,知道水是最重要的溶剂,酒精、汽油等也是常见的溶剂。

2.了解饱和溶液和溶解度的涵义。

3.了解结晶现象。

4.了解溶液在生产、生活中的重要意义。

①利用溶解性表或溶解度曲线,查阅有关物质的溶解性或溶解度;依据给定的数据绘制溶解度曲线。

探究氯化钠、硝酸铵、氢氧化钠三种物质在水中溶解时的温度变化。

必修二第二章第三节:化学反应的速率和限度

1.认识提高燃料燃烧效率的重要性。

2.通过实验认识化学反应的速率和化学反应的限度,了解控制反应条件在生产和科学研究中的作用。

①实验探究:温度、催化剂对过氧化氢分解速率的影响。

②设计实验:证明某些化学反应的可逆性。

选修四第二章第三节:化学平衡

1.描述化学平衡建立的过程,知道化学平衡常数的含义,能利用化学平衡常数计算反应物的转化率。

2.通过实验探究温度、浓度、压强对化学平衡的影响,并能用理论加以解释。

3.认识化学反应速率和化学平衡的调控在生活、生产和科学研究领域中的重要作用。

①实验:温度、浓度对溴离子与铜离子配位平衡的影响。

②讨论:化学反应的趋势和速率。

③讨论:合成氨反应条件选择的依据。

从内容标准的动词上来看,从初中时期的知道、认识阶段,到必修二认识、了解阶段,再到本章节的探究、解释阶段,可见对于化学平衡的学习是一个不断进阶的过程,也是一个螺旋上升的过程。初中时期学过的溶解度概念是我们研究溶解、结晶平衡的基础;必修二中的化学反应的速率和限度引入了化学反应速率的概念,并通过实验初步探究了可逆反应的限度问题,并认识到控制反应条件在生产生活中的重要应用。而在本章节的学习中,学生要进一步深入了解可逆反应、可逆过程,掌握可逆反应到达平衡时的特征,描述平衡的建立过程,并能够将可逆过程的平衡状态迁移到化学平衡状态,能够判断反应是否达到平衡。进一步认识化学反应速率和化学平衡的调控在生活、生产和科学研究领域中的重要作用,培养对化学学习的兴趣以及对社会的责任感。

从活动与探究建议来看,实验探究贯穿三个板块,可见教师在讲授化学平衡这一章节时,一定要注重运用探究性教学,引导学生进行合作学习,提高学生探究能力、合作意识以及归纳总结的能力。

三、单元知识类型分析

从化学知识的分类上来看,本单元主要涉及化学用语、概念原理、化学计算以及化学实验四种知识类型。

化学用语

元素符号、化学式、化学方程式

概念原理

可逆过程、可逆反应、化学平衡

化学计算

浓度的计算、化学反应速率的计算,

化学平衡状态时一些简单的逻辑推理运算

化学实验

蔗糖溶解、结晶平衡,二氧化氮与四氧化二氮的可逆平衡

四、单元概念图的概念编排顺序及特点

从这一单元的概念图来看,化学平衡是与化学反应速率以及反应进行的方向同一层级的概念,不同的是,化学反应速率是化学动力学问题,而化学平衡与反应进行的方向是化学热力学问题。化学平衡下面是发散出的更加细化的相关的概念,化学平衡是基于可逆反应的平衡,因此可逆反应是下层概念,可逆反应又有自己的下层概念,即它自身具有可逆性和限度。化学平衡的改变带来的就是平衡的移动,因此平衡移动是与可逆反应平行的下层概念,而影响平衡移动的因素以及解释平衡移动的勒夏特列原理又是平衡移动的下层概念。化学平衡常数作为衡量可逆反应是否到达平衡的有效手段,也是化学平衡的下层概念。影响化学平衡的三大因素作为影响化学平衡因素这一概念下的三个平行概念。不难看出,化学反应作为本节的中心概念向外辐射,概念与概念之间层层递进也层层细化。

五、教材分析

化学平衡这一节位于选修四第二章第二节,承接必修二第二章第三节的化学反应速率与限度,同时也是选修四第三章水溶液中的离子平衡的理论基础,地位十分重要,同时也是教学的和学生学习的重难点。

栏目分析:

先行组织者分析——P25页第一段作为本节内容的先行组织者,通过例举了几个学生之前就已经接触过的化学反应,提出我们从前没有考虑反应的限度问题。然后通过物质的溶解引入溶解平衡这一物理平衡,引导学生在可逆过程平衡的基础上,构建可逆反应的化学平衡。从学生已有的经验入手,利于学生理解,进行知识建构;从哪可逆过程到可逆反应,从简到易,符合学生的认知顺序。

P25资料卡片——详细讲解了固体溶质的溶解、结晶过程作为可逆过程的特点,便于学生理解可逆过程以及可逆过程的平衡,同时有助于学生深入了解溶液理论。

P26资料卡片——对可逆反应进行了明确定义,并将反应限度为100%以及为0%的反应作为特殊情况处理,那么所有的化学反应就实现了统一。有利于学生加深对于可逆反应的理解,在可逆反应的基础上建构化学平衡。

六、学情分析(三维目标起点状态)

知识与技能:

1、了解溶解度的概念,明确蔗糖在水中不能无限溶解,在过饱和溶液中会有结晶析出。

2、了解温度能够影响固体物质在水中的溶解度。

3、了解化学反应速率的概念并能够进行简单计算。

4、知道催化剂与温度能够影响化学反应速率。

5、对可逆反应有一定的了解。

过程与方法:

1、有一定实验探究与合作学习的能力。

2、有一定的知识迁移能力但是不强。

3、抽象思维能力不强。

情感态度价值观:

1、认识到控制化学反应速率在生产生活中有重要的意义。

2、知道在工业生产(高炉炼铁)中存在化学反应的限度问题,改变化学反应的限度可以提高转化率。

七、三维目标设计

知识与技能:

1、通过对溶解平衡这一可逆过程的理解和迁移,使学生建立起化学平衡的概念,并理解可逆反应,明确可逆反应的表达方式。

2、通过实验探究以及小组合作学习,提高实验探究能力、科学素养以及团队协作能力。

2、通过对化学平衡概念的理解,归纳出一个可逆反应达到平衡状态时的特征。3、能用平衡状态的特征来判断可逆反应是否达到平衡。

过程与方法:

1、从学生已有关于溶解的知识——溶解平衡,导入化学平衡,通过对溶解平衡的理解和迁移,使学生建立起化学平衡是个动态平衡的概念。

2、通过实验探究以及小组合作学习的形式探究可逆过程、可逆反应以及化学平衡的特点。

3、引导学生理解化学平衡的概念,讨论并归纳出反应达到平衡时所具有的特征。

4、通过适当的练习让学生用已归纳的平衡特征来判断在一定条件下,一个可逆反应进行到某种程度时是否达到平衡。

5、通过课下查阅资料,提高搜集信息、筛选信息以及提取信息的能力。

情感态度价值观:

1、认识到化学平衡普遍存在于在我们的日常生活中与工业生产中,改变化学平衡在人类的生产生活中具有重要的意义。

2、化学平衡的核心内容——动态平衡,日常生活中的溶解平衡、环保等平衡问题与化学理论密切联系在一起——化学与生活息息相关。

八、教学重难点分析

教学重点:

1、对可逆过程以及可逆反应的认识和理解。

2、化学平衡状态的建立过程以及概念理解。

3、化学平衡状态的特征。

4、化学平衡状态的判断。

教学难点:

1、化学平衡状态的建立过程。

2、化学平衡状态的特征以及判断。

重难点确定理论依据:

对于本节内容而言,一切教学活动都是围绕化学平衡展开,化学平衡这一节是下一章“水溶液中的离子平衡”的理论基础,同时也是选修二“化学反应速率与限度”的延伸,无论在教材中还是在化学学科的知识体系中,都有着十分重要的地位,因此是对于可逆过程以及可逆反应的认识和理解、化学平衡状态的建立过程以及概念理解、化学平衡状态的特征以及化学平衡状态的判断都是教师教学的重点。

对于学生而言,他们对可逆过程以及可逆反应的认识都比较浅显,而在此基础上建立起来的化学平衡又十分抽象,不利于他们的理解,因此化学平衡状态的建立过程、化学平衡状态的特征以及判断是教学难点。

九、教学方法

多媒体演示法、提问法、谈话法、实验探究法、讲解法

十、教学过程

教学环节

教师活动

学生活动

设计意图

环节一

可逆过程及平衡

【提问】:大家结合我们的日常生活并回顾以前学过的知识,思考一下,蔗糖能够在水中无限的溶解吗?

【讲解】我们以前就已经学习过蔗糖、食盐等固体是不能在水溶液中无限溶解的,因为他们都有一定的溶解度。

【PPT展示】展示一杯饱和蔗糖溶液,杯内仍有没有溶解的蔗糖固体。

【提问】大家思考一下,当蔗糖溶液达到饱和的时候,溶解现象还存在吗,如果存在,如何通过实验验证呢?

【教师引导】向饱和蔗糖溶液中加入继续加入蔗糖晶体,蔗糖晶体的总质量不会再减少,但是如果蔗糖晶体能够在别的地方析出,就能证明蔗糖在析出的同时也在不断的溶解,因为在一定温度下,蔗糖的溶解度是一定的。大家思考一下,我们可以通过什么样的手段让蔗糖在别的地方析出呢?

【PPT展示】播放向蔗糖溶液中插入棉线并有蔗糖晶体在棉线析出的视频,验证先前提出的假设。

【板书】蔗糖溶液

可逆过程

在溶液达到饱和时,v溶解=v结晶

【总结】蔗糖溶解是一个可逆过程,溶液达到饱和时,并非是一个静止的过程,而是蔗糖晶体的溶解速度与析出速度相同。

【提问】既然溶液中一直存在着溶解和结晶的过程,那在溶液还未达到饱和前,这两种过程间的关系是怎样的呢?在过饱和的情况下,这两种过程之间的关系又是怎样的呢?引导学生阅读P25资料卡片。

【总结并板书】

未饱和时:v溶解>v结晶

过饱和时:v溶解

【思考并回答】

蔗糖在水中有一定的溶解度,因此不会无限度的溶解。

【仔细观察】通过观察图片确定自己回答的正确性。

【思考并进行交流】溶解现象可能仍然存在,只不过溶解过程与结晶过程速度一样。

【实验设计】通过回顾初中知识,想到向饱和蔗糖溶液中插入棉线,观察是否有蔗糖晶体析出。

【仔细观察实验现象】得出饱和蔗糖溶液中同时存在溶解与结晶两个过程,且v溶解=v结晶的结论。

【思考并回答】在没有达到饱和前,v溶解>v结晶;在过饱和的情况下v溶解

回顾溶解度概念,让学生明确蔗糖在水溶液中的溶解是有一定

“限度”的。

温故知新,在溶解度、饱和溶液的基础上进一步通过实验探究蔗糖的溶解是一个可逆过程,在饱和溶液状态下溶解与结晶达到平衡。

实验设计过程如果学生没有想到插入棉线,其他可行的方案也可以,教师可以进行适当干预

明确蔗糖溶解过程是一个可逆过程,在达到平衡时正过程与逆过程的进行速度一样。在没有达到饱和前,v溶解>v结晶;在过饱和的情况下v溶解

环节二

可逆反应

【导入】我们刚刚研究了蔗糖溶解这一可逆过程,但是我们不仅接触过像蔗糖溶解这样的可逆过程,还接触过可逆反应,比如说在高炉炼铁中存在的焦炭和氧气生成一氧化碳的反应,以及我们工业上的合成氨反应。

【板书】可逆反应

高炉炼铁:

2C+O2=2CO

工业及合成氨:

2N2+3H2=2NH3

【讨论】我们现在已经举出了几个可逆反应的例子,让我们来归纳一下,到底什么样的反应叫做可逆反应,可逆反应应该用什么特殊的表示符号呢?

这个反应叫做可逆反应吗?

【总结】在相同的条件下能够同时从正向和逆向两个方向进行化学的化学反应称为可逆反应,可逆反应要用可逆符号来表示。

【回顾】回顾从前学过的可逆反应,以及他们在工业生产的体现。

【交流讨论】可逆反应是正向和逆向均能进行的反应,但是要在同样的条件下,氧气与氢气生成水的过程与水电解生成氢气和氧气的过程反应条件不一样,所以不是可逆反应;可逆反应要用可逆号而不是等号来表示。

从可逆过程过渡到可逆反应,是知识进阶,也是知识迁移的一个过程,符合学生的认知顺序,能够让学生更好的把握可逆过程与可逆反应之间的关系。

通过交流讨论以及教师引导明确可逆反应的定义以及基本特征,能够判断可逆反应。

环节三

化学平衡

【类比探究】我们已经研究过,对于可逆过程,当它达到平衡时,存在v溶解=v结晶的动态平衡,那么可逆反应作为可逆过程的一种,是不是也存在这样的平衡呢?

【追问】那在达到平衡之前,这个可逆反应是怎样进行的呢?

【PPT展示】二氧化氮在容器里的反应过程,并引导学生仔细观察气体颜色。预测达到平衡时的现象。

【继续PPT展示】将刚刚的实验装置进行热水浴操作,气体颜色改变,引导学生思考原因。

【讲解】气体颜色的改变意味着v正≠v逆了,说明平衡发生了移动,这意味化学平衡是可以改变的。

【回顾总结】在到达平衡时,这个体系有什么特点呢?

【总结归纳并板书】化学平衡

定义:

研究对象:可逆反应

标志:各组分浓度都不再改变

实质:v正=v逆

特征:

①逆:只有可逆反应才有化学平衡

②等:v正=v逆

③动:反应并没有停止,而是达到了动态平衡。

④定:各组分的物质的量浓度都不在改变。

⑤变:化学平衡是可以改变的。

【思考交流并回答】可逆反应同样存在这样的平衡,在达到平衡时v正=v逆,反应物不再减少,生成物也不再增加。

【回答】在到达平衡之前v正>v逆,,

反应物不断减少,生成物不断增加。

【观察并思考】

反应达到平衡时,v正=v逆,反应物与生成物的浓度不再改变,装置里的气体颜色不再改变。

【思考并回答】NO2变少了N2O2变多了,反应进行的程度加深了一些。

【归纳思考并回答】到达平衡时v正=v逆,反应物与生成物的浓度不再改变,化学平衡会因为环境的影响而发生改变。

通过类比推理、知识迁移,以及小组间的合作交流,发掘出可逆反应的平衡特征。

教师引导,通过类比和迁移,自我构建化学平衡的建立过程。

通过实验探究,归纳思考、讨论交流等方式发现化学平衡的特征

通过归纳总结以及教师讲解,在化学平衡建立的基础上掌握化学平衡的特征。

环节四

巩固提升

【习题巩固】

【例1】

在一定温度下,可逆反应达到平衡的标志是 (AC

A.

C的生成速率与C分解的速率相等

B.单位时间内生成nmolA,同时生成3nmolB

C.

A、B、C的浓度不再变化

D.

A、B、C的分子数比为1:3:2

【例2】

下列说法中可以充分说明反应:

在恒温下已达平衡状态的是(

B

A.反应容器内压强不随时间变化

B.P和S的生成速率相等

C.反应容器内P、Q、R、S四者共存

D.反应容器内总物质的量不随时间而变化

【例3】

下列说法可以证明反应已达平衡状态的是(

AC

)

A.1个NN键断裂的同时,有3个H-H键形成

B.1个NN键断裂的同时,有3个H-H键断裂

C.1个NN键断裂的同时,有6个N-H键断裂

D.1个NN键断裂的同时,有6个N-H键形成

【教师讲解】

【思考作答】

回顾刚刚讲到的化学平衡的相关知识,并通过逻辑推理,简单运算等方式来确定答案。

【聆听讲解】仔细听教师讲解,审查自己的错误以及思维漏洞。

这是三道均是判断可逆是否达到平衡的题目,但是切入点却不一样,即从不同的方面来判断各组分是否还在变化,可逆反应是否达到平衡。有利于学生对化学平衡更加深层次的理解,同时也增强他们逻辑推理能力。

环节五

情感升华

【PPT展示】合成氨工业在人类历史上起着至关重要的作用,如果没有合成氨工业,就不会有今天迅猛发展的农业,也就不能养活地球上的七十多亿人口,尽管合成氨工业给人类带来了极大的收益,但事实上反应:

2N2+3H2=2NH3

它的转化率并不高,而提高合成氨的转化率,仍然是科学家们一直在研究的问题,如何让反应朝我们希望的方向进行?请大家思考这个问题并查阅相关资料,我们下一节课会讲解影响化学平衡移动的因素。

【倾听、思考】感受化学给人类文明带来的巨大贡献,并结合合成氨工业中的可逆反应,加深对本节课知识的印象,同时积极思考老师留下的问题并进行资料的查找。

通过讲述化学在工业生产中的重要应用以及贡献,让学生感受化学的魅力,提高学习化学的兴趣,同时增强对社会发展的责任感。

十一:板书设计

主板书

三、化学平衡

研究对象:可逆反应

定义:在一定条件下的可逆反应里,当正反应速率和逆反应速率相等,反应混合物中各组分的百分含量(浓度、质量、质量分数、体积分数)保持不变的状态。

标志:各组分浓度都不再改变

实质:v正=v逆

化学平衡特征:

逆、等、动、定、变

主板书

一、可逆过程

在溶液达到饱和时,v溶解=v结晶

未饱和时:v溶解>v结晶

过饱和时:v溶解

二、可逆反应

特点:在相同的条件下能够同时从正向和逆向两个方向进行化学的化学反应。

表示:可逆符号

到达平衡:v正=v逆

未达平衡:v正>v逆

副板书

练习题目的一些讲解

十二:教学设计反思

困难:

1.

不能准确判断一课时教学具体能够进行到什么地方,因为没有进行过具体授课,因此无法确定每一部分的教学过程具体需要多长时间。

2.

评价方式比较单一,只有习题和口头提问。

3.

教学设计过程中,不能准确判断哪一种教学活动更有助于学生理解。

解决策略:

1.

上网查找一些精品课程,同时学习老师发的一些案例,将一课时教学内容确定在影响化学平衡的因素之前。

2.

应该设计导学案对学生进行评价。

化学反应的过程范文4

关键词:有机化学;教学;反应机理

中图分类号:G642;O62-4 文献标识码:A 文章编号:1671-2064(2017)11-0211-01

目前已知的有机化合物已经难以确切计数,而每天依然有更多的被发现、被创造出来,由于每个化合物可以进行许多可能的反应,所以有机化合物有可能有数不胜数的反应。除非这些反应过程是由相对较少的基本反应组成的,否则掌握有机化学反应是一项非常艰难的任务,有机化学的教学也必然会陷入尴尬境地。

幸运的是我们有了有机化学反应机理这个舞台,学生通过学习反应机理能掌握一系列类似的反应,能独立分析各种“神秘”的反应过程(其实每个反应过程都是由多个学生熟悉基本反应组合而成),之所以“神秘”是因为反应初看起来,似乎神秘,甚至不可能发生,但是通过分析机理常常会揭示隐藏在反应过程背后的秘密。反应机理如此有用,但这部分内容繁杂、抽象枯燥、易懂难记、应用灵活,成为有机化学课程的难点,很多教学改革也是围绕反应机理展开的。南京大学冯骏才教授认为:有机化学教学只要贯彻了以反应机理为主线来讨论反应,不但有利于对有机知识的掌握,还有利于举一反三[1]。正确地引导学生认识反应机理的魅力,通过合适的方法让学生真切地体会到通过机理推导未知、复杂反应的过程犹如一个魔术师的表演,这样有机化学反应机理课会变得生动、有吸引力,学生就会喜欢上有机化学反应机理,这正是我们教学改革的目的。

每讲到烷烃取代反应机理这节课时(这是学生学习有机化学第一次接触的反应机理),我们都会问学生:“喜欢魔术吗?”学生的积极性会一下被调动起来,回答当然是肯定的。当我们接着问:“愿意成为有机化学的魔术师吗?”学生的眼睛都会冒出火花,但每个人心里都有这样的疑问:“可能吗?”此时告诉他们:“今天我们先来体验一把。”于是在这种摩拳擦掌的氛围里有C化学反应机理的学习开始了,好的开始是成功的一半。

魔术之所以吸引观众的眼球是因为它的神秘与震撼,其实有机化学反应亦如此,如果教师在讲解反应之前先给出现象,提出问题,让学生有了一种神秘的感觉,再告诉他们:“现在验证奇迹的时刻到了,让我们进入到该反应机理中去揭示隐藏在反应过程背后的秘密吧!”这种情境的渲染使枯燥难学的反应机理被学生所渴望。兴趣是最好的老师,机理便也变得不再枯燥,整个课堂会立刻被满满的求知欲所包围。

回到上面我们第一节机理课的学习中,烷烃的取代反应也就是卤代反应,鉴于此可以通过提问让学生自己分析可能得到的产物,通常学生会说卤代烃,接着引导他们思考甲烷与氯气反应会生成什么产物?一氯甲烷、二氯甲烷、三氯甲烷甚至会有四氯化碳,这些学生都会想到。如果问他们会不会生成乙烷?他们往往会摇头否定。接着带领充满好奇学生进入到自由基机理的学习过程中。通过链的引发,链的传递及链的终止,学生完全搞明白为什么还会有乙烷生成,这种氛围的渲染使一堂枯燥的机理课变得被学生所喜爱。这只是刚刚开始, 告诉学生在后面的学习中会有更多更亮丽的精彩。

假如我们把反应机理看作是一个“魔术”,教师便是“魔术师”,反应原料、条件相当于“道具”,反应过渡态、中间体就是我们的“托儿”,“道具”和“托儿”在魔术中起着非常重要的作用,让学生掌握反应过程,就是让学生找到并认清楚“托儿”。

吴范宏[2]译的《Advanced Organic Chemistry----Reaction Mechanisms》第一版序言中提到“在背景下介绍理论”;“强烈反对化学课程开始讲授许多化学理论的倾向,如果先介绍化学现象,再介绍解释这些现象的理论,这个课程将会更加有趣。”讲授机理,如果先给出反应和现象,教师在解释反应机理的过程中灵活运用“道具”和“托儿”,会使反应机理更为神秘。如果对每一个反应机理我们多用心去挖掘它的“魔术”魅力,那一定会把最枯燥难学的反应机理变为最具有吸引力的内容。

每学完一种反应机理,学生就会掌握一个“魔术”技巧,如何运用这些技巧分析解决实际问题是有机化学反应机理的难点。只有将这些技巧巧妙组合才能创造更多更新的“魔术”,完成各种复杂的反应过程,学生才会更有成就感,反应机理才会更有魅力。我们通过这样的介绍鼓励学生经常独立分析各种没有见过的反应过程。

可见,只要我们教师努力挖掘课程内容的“魔术”魅力,把枯燥难学的内容变生动、有吸引力,让学生喜欢上有机化学反应机理不是一句空话。

参考文献

化学反应的过程范文5

关键词:促进学生认识发展;中和反应;常见的酸和碱;教学案例;教学设计

文章编号:1008-0546(2014)04-0055-03 中图分类号:G633.8 文献标识码:B

本案例涉及的教学内容为“义务教育教科书 人教版 下册 第十单元 课题2酸和碱的中和反应”。在前面的学习中,了解酸和碱的性质和用途,同时也认识酸和碱的概念及其具有相似性质的原因。本课题的主要内容:中和反应的原理及其应用,溶液酸碱度含义及其测定。本教学设计对本课题教材内容顺序重新调整:第一课时先完成“溶液酸碱度含义及其测定”内容的教学;第二课时也就是本课的教学内容:完成“酸与碱的中和反应及其应用”等内容的教学。本案例教学设计通过引导学生实验探究证明盐酸溶液和氢氧化钠溶液混合过程中是否会发生反应;同时,借助手持技术获取两溶液混合过程中pH的变化,更深入认识中和反应原理;最后让学生理论联系实际,了解中和反应在生产生活的应用。

一、教学目标

认识酸和碱之间发生的中和反应、盐的组成,会书写中和反应化学方程式。

通过分析酸碱中和反应的微观变化图及中和反应过程中pH变化的曲线图,学会用分析、归纳的方法对信息加工处理得出结论;通过探究酸碱之间发生中和反应,学会证明没有明显现象的变化是否发生化学反应。通过了解中和反应在实际中的应用,学生体会到化学与生产、生活密切联系。

二、教学过程

教学活动主题一:从生活走进化学

[设计说明]以学生身边的生活事例导入本课题内容,吸引学生的注意力,激发学生对本课题内容的学习兴趣,让学生认识到化学的学习价值。“从生活走进化学”是化学科“生活教育”的认知思路,让学生养成关注身边的化学,让学生养成应用化学知识去理解生活生产现象或问题。

教学活动主题二:酸碱混合时是否会化学反应?

[设计说明]通过一组学生实验产生认知冲突,引入本环节的主题:酸碱混合时是否会化学反应?学生通过讨论、设计、实验等过程,更深入理解酸碱混合时会发生反应,进一步达成探究“没有现象的混合过程是否发生化学反应”的方法。最后,通过手持技术这一新型教学手段呈观反应过程的曲线表征,为教学提供了丰富的信息。师生双方在共同处理信息过程中,实现了信息的交换。这种促成课堂中信息的多向交流,进一步培养学生收集、处理、评价、应用信息的能力。通过“酸碱混合时是否会化学反应?”这一问题的深入探究,初步掌握了化学学科的认知方法,增强了认知的深度,提升了认知水平。

教学活动主题三:酸碱反应发生什么反应?

[设计说明]本环节经历科学抽象的过程,学生认知过程发生了质的飞跃。从质量守恒定律的角度引导学生从实验现象分析该类反应,抽象出中和反应的反应规律和盐等概念。应用相关的动画或示意图等手段,化抽象为具体,有助于学生更深入理解它们的含义。学生对这类反应的认识产生了理性的飞跃。

教学活动主题四:从化学走向社会

[设计说明]经过科学抽象所获得的一般规律,应用于指导实践,才能体现其价值。同时,学生通过把这些理论知识应用实际中,培养了学生迁移所学知识解释、解决相关的实际问题的能力,同时,也及时检测中和反应知识等教学目标的达成程度。

教学活动五:学生交流学习体会、小结本课题内容

[设计说明]梳理本课内容,让知识系统化、条理化。

迁移拓展

查阅相关资料(有条件可以完成相关的家庭小实验)后,回答以下问题:

(1)厨房清洁剂和厕所清洁剂混合时,会降低它们的功效。为什么?

(2)皮蛋味涩,请你设计一实验检验它呈酸性还是碱性?在食用之前如何用简单的方法除去涩味?

三、案例点评

(1)创设有意义的认知背景,经历认知的过程。教学“从生活走进化学” 开始,抽取有价值的问题,并深入进行探究,抽象出化学概念,最后由“化学走进社会”。体现了生活教育理念和STSE(科学技术社会环境)教育理念。学生经历了认知的完整过程,明确认识的起点在哪里?终点在哪里?深入体会化学在保护环境、促进人体健康的应用价值。

(2)突破认知的难点,初步掌握一类的认知方法。本教学中的难点:部分酸和碱混合过程没有明显的现象变化,如何判断这一混合过程是否发生反应?发生什么反应?如何把“中和反应”应用于解释或解决生产生活中问题?本案例围绕这些认知的难点,让学生深度参与探究的过程,并收集、处理实验现象、曲线、微观动画过程、化学符号等多重表征信息,让学生经历深刻的认知过程,获得探究一类物质变化问题的方法(没有明显现象的溶液混合是否发生化学反应),从理性的高度提升对中和反应的认识。

参考文献

化学反应的过程范文6

    化学反应器中的肥料制造过程中往往是不能够达到反应温度,因为反应不充分,往往产生较多的废物和气体。这样的生产方式不能满足生产和生活的需要,化学反应是不充分的,引起最大的化学产品的生产问题,以及较低的化学反应产率。因为反应不完全严重使化学品的生产效率降低,造成能源和资源的巨大浪费。化学工程在化工生产过程中,整个项目的连续性较差,因此,可能会影响处理正在进行化学反应进展,所以化学工程生产链的整体,是一个很大的整体生产工程。

    目前的化学品制造工序中,不适合的化学品的制造过程,其中有一些生产的主要问题是非常明显的。化学制造过程中,有必要对这些问题采取合理的解决措施,以改善化工生产。最新生产的化学品,需要有效提高化学生产过程的完全反应率,以减少生产过程中所造成的污染。首先,化学品的制造方法中,可提高反应的环境和反应条件进行。为了减少废物的产生,提高了生产效率,实现高效率的生产,化学反应的条件是最重要的生产条件。因此,提高化学品生产的效率,在制造过程中要满足化学反应条件。必须有足够的催化剂和反应条件下,要达到化学反应的标准,以确保生产化学品的制造进一步的提高生产效率,并减少化工生产中产出的废物。化学废物包括废水,废渣和废气。确保这些废物直接排入环境不形成污染,可以选择相对绿色安全的化学品。其次,化学品制造过程中,尽可能的改善生产环境,并提供一个管理系统和废物的处理程序。

    目前,化学工业生产中形成的废物直接排放到自然环境绝对含有重金属和有毒物质。此外,在许多情况下,包含应被视为需要进行适当的废气处理。废水排放,是一般使用化学合成的化学过程所形成的。减轻其废水的有害影响,主要是通过使用沉淀这一种化学反应,最基本的原则,原理是用沉淀的方法在废水中得到重金属。此外,废气处理装置的一个装置,例如,为了确保释放到空气中的安全,废气通过除尘过滤器和有毒气体,进行废气处理中,应严格按照国家规定的标准实施。最后,对化学生产过程中的反应机理与反应条件进行了分析,化学工程实践中,在化学制造工艺技术方面的技术进行讨论,是一种有效的方式。化学制造是最简单的环节,因为它更适合于化学品生产。当然,在不同的环境中,化学反应是随机变化的,化学生产方法与制造原料不同会导致化学反应的不同。采用好的化学原料与好的化学反应方法能够有效的提高生产效率,实现绿色的生产。总之,对化工生产技术进行改进,能够进一步的开发出非常积极的化学生产,完善当前化学生产链。

    上述分析是化学化工生产率提高的探索问题,化学工程和化学品制造过程。注重环境保护和节能减排的要求下,必须增加化学生产过程中,生产的化学品生产效率。不能够以牺牲的自然环境为代价,进行大量的化学品生产。化农是中国的主导产业,环境是农业发展和人类生存的基础,化工环保在化工整体行业的发展起到非常重要的作用,目前已经产生了较为合理的绿色生产,进一步实现化工生产的产业化发展。在化工生产过程中,旨在改善生产效率,提高生产技术得到高产率的化学物质,符合要求的节能环保理念在化学品的制造过程中得到充分的重视。优化化工生产技术,以真实的达到保护环境和能源节约目标的,开发一种化学品后处理的绿色工艺。从根本上解决了合理的化工产品的生产问题,以最大限度地提高化学品的制造过程中的生产效率。

化学反应的过程范文7

学校:___________姓名:___________班级:___________考号:___________

一、单选题

1.

用实际参加化学反应的离子符号来表示化学反应的式子叫离子方程式,在离子方程式中,反应前后的电荷是守恒的,原子个数也是守恒的。现有如下离子方程式:RO3n-+F2+2OH-=RO4-+2F-+H2O,由此可知在RO3n-中,元素R的化合价是(    )

A.

+4

B.

+5

C.

+6

D.

+7

二、简答题

2、如图是氢氧化钠与盐酸反应示意图。

(1)反应前后没有发生变化的离子有哪些?

(2)用实际参加反应的离子符号来表示反应的式子叫做离子方程式。请写出氢氧化钠与盐酸反应的离子方程式。

3、酸碱盐之间发生复分解反应的条件是生成物中有沉淀或气体或水生成。根据下列复分解反应的微观实质:

2HCl+Ca(OH)2=CaCl2+2H2O,反应的微观离子方程式:

H++OH-=H2O Na2CO3+BaCl2=BaCO3+2NaCl。

反应的微观离子方程式:CO32-+Ba2+=BaCO3

请你写出氯化铵和氢氧化钙反应的方程式:______。反应的微观离子方程式:______。

4、某实验小组探究HCl和NaOH能否发生反应,设计如下实验方案:

(1)甲同学:将盐酸滴入盛有少量NaOH溶液的试管中,再滴入无色酚酞溶液,溶液变为红色,由此得出结论:HCl和NaOH不能发生反应。

乙同学:认为甲同学的结论不对,进行了如下实验,先向盛有少量NaOH溶液的试管中滴入几滴无色酚酞溶液,溶液变为红色,然后慢慢滴加稀盐酸溶液,边滴加边振荡,一段时间后,溶液变为无色。如图在a点时溶液中的溶质为______,因此甲同学失败的原因是______。

(2)通过溶液导电性实验,我们知道,HCl液和NaOH溶液之所以能够导电是因为HCl和NaOH在溶液中是以______形式存在的。因此,中和反应的实质是______(符号表达式作答)。像这种用实际参加反应的离子符号表示化学反应的式子叫离子方程式。

(3)①请根据上述反应原理写出Na2CO3与H2SO4反应的离子方程式______。

②写出一个与Ca2++CO32-=CaCO3相对应的化学方程式______。

5、初中化学中,我们学习了稀盐酸和氢氧化钠溶液(如图所示)发生中和反应的实质是:H++OH-=H2O,像这种用实际参加反应的离子符号来表示反应的式子叫做离子方程式。以稀盐酸和氢氧化钠溶液反应为例,离子方程式的书写一般按以下步骤:

Ⅰ.写出稀盐酸和氢氧化钠溶液反应的化学方程式:______。

Ⅱ.把易溶于水且易解离的物质写成离子形式,把难溶的物质、气体和水等仍用化学式表示。如上述方程式可改写成:H++Cl-+Na++OH-=Na++Cl-+H2O。

Ⅲ.删去方程式两边不参加反应的离子,继续改写成:H++OH-=H2O。

Ⅳ.检查方程式两边各元素的原子个数和电荷总数是否相等。则:稀盐酸和氢氧化钠溶液反应的离子方程式为:H++OH-=H2O。

请回答:

(1)写出稀盐酸和碳酸钙发生反应的离子方程式______。

(2)酸、碱、盐在水溶液中发生的复分解反应实质上就是两种化合物在溶液中相互交换离子的反应,生成物中有______生成时,复分解反应才可以发生。

6、分类、类比是化学常用的方法,掌握这些方法有助于学生学习化学知识。

(1)初中化学有许多实验都用到了水这种物质,根据“水的作用”可将下列实验中的______(填序号)归为一类,依据是______。

(2)相比于化学方程式,离子方程式更能够体现出反应的实质,例如铁和硫酸铜溶液反应的离子方程式可以表示为Fe+Cu2+=Cu+Fe2+,在此反应中,铁元素的化合价升高,做还原剂,相反,硫酸铜中铜元素的化合价降低,硫酸铜做氧化剂。则铜和硝酸银溶液反应的离子方程式可以表示为______,该反应过程中的氧化剂是______(填化学式)。

7、食盐、碳酸钠和碳酸氢钠是生活中常见的钠盐。请回答下列问题。

(1)碳酸氢钠的水溶液显______性(填“酸”、“碱”或“中”)。碳酸氢钙受热易分解,碳酸氢钠性质与其相似,除去碳酸钠固体中混有的少量碳酸氢钠,反应的化学方程式为______。

(2)等质量的碳酸钠和碳酸氢钠分别与足量盐酸反应时生成的CO2量,前者______后者(填“>”、“

(3)粗盐含有少量杂质(主要为CaCl2、MgCl2、Na2SO4等)。用粗盐制取“化学纯”级的NaCl,步骤为溶解、加过量a、加过量NaOH、加过量b、过滤、加适量盐酸,蒸发结晶得到“化学纯”级的NaCl固体。试剂a、b分别是______(填序号)

A.Na2CO3、BaCl2

B.BaCl2、Na2CO3

C.BaCl2、Na2SO4

(4)工业上用电解饱和食盐水的方法生成氯气和烧碱。

资料一:Cl2+H2O=HCl+HClO

资料二:初中化学中,我们学习了酸和碱发生中和反应的实质是H++OH-=H2O,像这种用实际参加反应的离子符号来表示反应的式子叫离子反应,离子方程式的书写一般按以下步骤:(以Na2SO4与BaCl2反应为例)

①写出Na2SO4与BaCl2反应的化学方程式:______

②把易溶于水,易电解的物质写成离子形式,把难溶的物质、气体和水等仍用化学式表示,上述化学方程式可改写成,2Na++SO42-+Ba2++2Cl-=BaSO4+2Na++2Cl-

③删去方程两边不参加反应的离子:Ba2++SO42-=BaSO4:

④检查方程式两边各元素的原子个数和电荷总数是否相等

⑤某化工厂发生氯气泄漏事件,工作人员喷射NaOH溶液形成液幕,包围并吸收泄漏的氯气,其反应原理______(用离子方程式表示)

资料三:化学反应类型有不同的分法,其中反应前后,有元素化合价变化的化学反应是氧化还原反应。氧化还原反应中有元素化合价升高的反应物是还原剂,有元素化合价降低的反应物是氧化剂,化合价没有发生变化的既不是氧化剂也不是还原剂。

⑥工业上可用氨检验输送氯气的管道是否漏气。反应方程式如下:8NH3+3Cl2=6NH4Cl+N2,该反应______(填“是”或“不是”)氧化还原反应,其中氧化剂和还原剂物质的量之比为______(若是氧化还原反应,此空作答,反之,不作答)

三、探究题

8、初中化学中,我们学习了酸和碱发生中和反应的实质是H++OH-=H₂O.像这种用实际参加反应的离子符号来表示反应的式子叫离子方程式离子方程式的书写般按以下步骤:(以AgNO₃与NaCl反应为例)

①写出AgNO₃与NaCl反应的化学方程式:

②把易溶于水、易电离的物质写成离子形式,把难溶的物质、气体和水等仍用化学式表示。上述方程式可改写成:Ag++NO₃-+Na++Cl-=AgCl+Na++NO₃-

③删去方程式两边不参加反应的离子:Ag++Cl-=AgCl

④检查方程式两边各元素的原子个数和电荷总数是否相等

请回答

(1)AgNO₃与NaCl反应后的溶质成分是什么?______

猜想一:只有NaNO₃猜想二含有NaNO₃和NaCl:猜想三:

(2)写出稀盐酸滴在碳酸氢钠粉末上所发生反应的离子方程式______。

(3)写出一个与离子方程式Cu(OH)₂+2H+=Cu2++2H₂O相对应的化学方程式______。

(4)根据所学知识,你认为下列说法正确的是______(填序号)。

A.从微观上看,复分解反应的实质是溶液中某些离子相互结合使离子数目减少

B.判断化学反应发生,可依据有新物质生成,也可依据某一反应物消失

C.证明复分解反应没有发生,可验证某一反应物依然存在

答案和解析

1.【答案】B

【解析】解:由离子方程式RO3n-+F2+2OH-=RO4-+2F-+H2O,反应后1个RO4-离子带1个单位的负电荷、2个F-离子带2个单位的负电荷,而反应前2个OH-离子带2个单位负电荷,根据反应前后的电荷守恒,可判断n=1,则离子RO3n-为RO3-;

设RO3-离子中R元素的化合价为x,则有x+(-2)×3=-1,

解得x=+5,故选:B。

原子团中各元素的化合价代数和为整个原子团的化合价,根据原子团的化合价可以计算出其中未知元素化合价。

2.【答案】解:(1)由氢氧化钠与盐酸反应示意图,反应前后没有发生变化的离子是钠离子和氯离子。

(2)氢氧化钠与盐酸反应生成氯化钠和水,实际参加反应的离子是氢离子和氢氧根离子,生成水分子,反应的离子方程式为:H++OH-=H2O。

故答案为:

(1)钠离子和氯离子;

(2)H++OH-=H2O。

【解析】(1)根据氢氧化钠与盐酸反应示意图,进行分析解答。

(2)氢氧化钠与盐酸反应生成氯化钠和水,实际参加反应的离子是氢离子和氢氧根离子,生成水分子,进行分析解答。

本题难度不大,掌握中和反应的实质(氢离子和氢氧根离子生成水分子)是正确解答本题的关键。

3.【答案】NaCl、NaOH

氢氧化钠溶液未完全反应

离子

H++OH-=H2O

2H++CO32-=H2O+CO2

Ca(OH)2+Na2CO3=CaCO3+2NaOH(合理即可)

D

【解析】解:(1)氢氧化钠与盐酸反应生成氯化钠和水,在a点时溶液的pH>7,显碱性,其中的溶质为氯化钠和氢氧化钠;甲同学失败的原因是氢氧化钠溶液未完全反应;故填:NaCl、NaOH;氢氧化钠溶液未完全反应;

(2)通过溶液导电性实验,我们知道,HCl液和NaOH溶液之所以能够导电是因为HCl和NaOH在溶液中是以离子形式存在的。因此,中和反应的实质是氢离子与氢氧根离子结合成水分子,符号表达式为:H++OH-=H2O,像这种用实际参加反应的离子符号表示化学反应的式子叫离子方程式;故填:离子;H++OH-=H2O;

(3)①根据上述反应原理可知:Na2CO3与H2SO4反应实质是碳酸根离子与氢离子结合成二氧化碳分子和水分子,离子方程式为:2H++CO32-=H2O+CO2;故填:2H++CO32-=H2O+CO2;

②与Ca2++CO32-=CaCO3相对应的化学方程式有Ca(OH)2+Na2CO3=CaCO3+2NaOH、CaCl2+K2CO3=CaCO3+2KCl等;故填:Ca(OH)2+Na2CO3=CaCO3+2NaOH(合理即可);

5.【答案】NaOH+HCl=NaCl+H2O

CaCO3+2H+=Ca2++H2O+CO2

水或气体或沉淀

【解析】解:稀盐酸和氢氧化钠溶液反应生成了氯化钠和水,化学方程式是:NaOH+HCl=NaCl+H2O。

.(1)稀盐酸和碳酸钙发生反应的离子方程式是:CaCO3+2H+=Ca2++H2O+CO2。

(2)酸、碱、盐在水溶液中发生的复分解反应实质上就是两种化合物在溶液中相互交换离子的反应,生成物中有水或气体或沉淀生成时,复分解反应才可以发生。

6.【答案】CD

水为反应物

Cu+2Ag+=2Ag+Cu2+

AgNO3

【解析】解:(1)A中集气瓶中的水主要作用是有利于容器内温度的降低,节约了实验的时间,同时能吸收生成的五氧化二磷,防止污染空气。B中水的作用是隔绝氧气、提供热量。C中水作反应物,二氧化碳与水反应生成碳酸。D中水作反应物,生石灰与水反应生成氢氧化钙。根据“水的作用”可将下列实验中的CD归为一类,依据是水为反应物。

(2)铜和硝酸银溶液反应生成硝酸铜溶液和银,反应的实质是铜与银离子反应生成铜离子和银,反应的离子方程式可以表示为Cu+2Ag+=2Ag+Cu2+,该反应过程中硝酸银中银元素的化合价降低,硝酸银做氧化剂,其化学式为AgNO3。

故答案为:

(1)CD;水为反应物;

(2)Cu+2Ag+=2Ag+Cu2+;AgNO3。

(1)根据四个实验中水的作用,进行分析解答。

(2)铜和硝酸银溶液反应生成硝酸铜溶液和银,进行分析解答。

本题难度不大,掌握金属的化学性质、常见化学反应中水的作用等是正确解答本题的关键。

7.【答案】碱;2NaHCO3-     Na2CO3+H2O+CO2;

【解析】解:(1)碳酸氢钠的水溶液显碱性;

碳酸氢钠受热分解生成碳酸钠、水和二氧化碳,反应的化学方程式为:2NaHCO3-     Na2CO3+H2O+CO2。

故填:碱;2NaHCO3-     Na2CO3+H2O+CO2。

(2)碳酸钠、碳酸氢钠和稀盐酸反应的化学方程式及其质量关系为:

Na2CO3+2HCl=2NaCl+H2O+CO2,

106

44

NaHCO3+HCl=NaCl+H2O+CO2,

84

44

由以上质量关系可知,等质量的碳酸钠和碳酸氢钠分别与足量盐酸反应时生成的CO2量,前者

故填:

(3)粗盐含有少量杂质(主要为CaCl2、MgCl2、Na2SO4等)。用粗盐制取“化学纯”级的NaCl,步骤为溶解、加过量氯化钡除去硫酸钠、加过量NaOH除去氯化镁、加过量碳酸钠除去氯化钙、过量的氯化钡、过滤除去沉淀、加适量盐酸除去过量的氢氧化钠和碳酸钠,蒸发结晶得到“化学纯”级的NaCl固体,因此试剂a、b分别是BaCl2、Na2CO3。

故填:B。

(4)①Na2SO4与BaCl2反应生成白色沉淀硫酸钡和氯化钠,反应的化学方程式为:BaCl2+Na2SO4=BaSO4+2NaCl。

故填:BaCl2+Na2SO4=BaSO4+2NaCl。

⑤某化工厂发生氯气泄漏事件,工作人员喷射NaOH溶液形成液幕,包围并且吸收泄漏的氯气,其反应原理是:氯气和氢氧化钠溶液反应生成氯化钠、次氯酸钠和水,反应的离子方程式为:Cl2+2OH-=Cl-+ClO-+H2O。

故填:Cl2+2OH-=Cl-+ClO-+H2O。

⑥8NH3+3Cl2=6NH4Cl+N2,反应过程中,氮元素、氯元素的化合价有改变,因此该反应是氧化还原反应;

其中还原剂是氨气,氧化剂是氯气,发生还原反应的氧化剂的物质的量是3mol,发生氧化反应的还原剂的物质的量是2mol,因此氧化剂和还原剂物质的量之比为:3:2。

故填:是;3:2。

碳酸氢钠受热分解生成碳酸钠、水和二氧化碳;

氯化钡和硫酸钠反应生成白色沉淀硫酸钡和氯化钠,氯化镁和氢氧化钠反应生成白色沉淀氢氧化镁和氯化钠,碳酸钠和氯化钙反应生成白色沉淀碳酸钙和氯化钠,和氯化钡反应生成白色沉淀碳酸钡和氯化钠,稀盐酸和氢氧化钠反应生成氯化钠和水,和碳酸钠反应生成氯化钠、水和二氧化碳。

本题主要考查物质的性质,解答时要根据各种物质的性质,结合各方面条件进行分析、判断,从而得出正确的结论。

8.【答案】硝酸钠

H++HCO3-=H2O+CO2

Cu(OH)2+2HCl=CuCl2+2H2O

AB

【解析】解答思路:(1 )判断反应后的溶质,一般考虑生成物有没有可溶性的物质,比如硝酸钠是可溶性的而氯化银是不可溶性的,所以硝酸钠是反应后的溶质、(2)。书写离子方程式时要保证正负电荷量相等,原子个数守恒

(3)。复分解发生的实质就是有沉淀或水或气体生成,其实在微观上就是溶液中的离子减少

答案:(1)硝酸钠

猜想三:氯化钠

(2)H++HCO3-=H2O+CO2

(3)Cu(OH)2+2HCl=CuCl2+2H2O

(4)AB

1

复分解反应的实质以及反应后的溶质的判断的依据是物质的溶解性2.书写离子方程式时遵循的原则

化学反应的过程范文8

关键词:二氧化钛 光催化氧化 酚 水溶液 动力学方程

对大多数有机物分子而言,光催化反应以表面作用为主。有机物在催化剂表面被氧化要经过扩散、吸附、表面反应以及脱附等步骤。对采用二氧化钛(TiO2)膜的固定相光催化反应,扩散过程可能成为速度控制步骤。在通过控制流速消除了扩散的影响后,如果反应物的吸附和产物的解吸都进行得非常快,则多相光催化的总反应速度只由表面反应所决定。反应速度r为:

r=kθAθOH (1)

式中 k--表面反应速度常数

θA--有机物分子A在TiO2表面的覆盖度

θOH--TiO2表面的·OH覆盖度

在一个具体的恒定的体系中,θOH可以认为不变,假定产物吸附很弱,则θA可由Langmuir公式求得,式(1)可最终变为

1/r=1/kKA·1/CA·1/k

式中 KA--A在TiO2表面的吸附平衡常数

CA--A的浓度

上式即为Langmuir Hinshelwood动力学方程,表明1/r与1/CA之间服从直线关系。分析(2)式可知:

① 当A的浓度很低时,KACA<<1,此时ln(CAo/CA)-t为直线关系,表现为一级反应。

② 当A的浓度很高时,A在催化剂表面的吸附达饱和状态,θA≈1,此时CA-t为直线关系,表现为零级反应动力学。

③ 如果浓度适中,反应级数介于0~1。

所以,L-H方程意味着随反应物浓度的增加,光催化氧化反应的级数将由一级经过分数级而下降为零级。

1 实验装置与方法

TiO2膜的制备及实验装置同文献[1]。采用主波长253.7 nm的紫外光杀菌灯或主波长365 nm的黑光灯作光源。酚浓度采用4-氨基安替比林直接光度法测定[2]。

2 实验结果与讨论

2.1 光催化动力学规律

苯酚水溶液在黑光灯/TiO2膜处理方式下的降解规律与L-H方程揭示的随反应物浓度减少,反应的级数将由零级逐渐过渡到一级的动力学变化过程十分吻合。酚浓度与处理时间的关系见图1。在较高起始浓度时,表现为零级反应动力学,C-t为直线关系。而对起始浓度3.60 mg/L和2.40 mg/L的苯酚水溶液,在60 min以后,其C-t图偏离了直线。但图2反映出此时其ln (C0/C)-t之间服从直线关系,表明已转变为一级反应。表1和表2分别给出了利用最小二乘法求得的黑光灯/TiO2膜光催化氧化不同浓度苯酚水溶液时的零级反应动力学方程或一级反应动力学方程和相关系数以及相应的表观速率常数和半衰期。可见,表观零级速率常数在误差范围内近似相等,表明在起始浓度较高时,光催化氧化的反应速率与反应物的浓度无关,而只与催化剂表面的状态有关。随起始浓度的增大,苯酚降解的半衰期增大。

表1 不同起始浓度的零级反应动力学方程及参数 起始浓度(mg/L)

可见,杀菌灯光催化矿化7.40 mg/L苯酚水溶液时的一级反应速率常数值是黑光灯光催化矿化时的3.5倍。另外,由表3与表5可见,杀菌灯/TiO2膜处理方式下,酚消失反应的表观一级反应速率常数是酚矿化反应的表观一级反应速率常数值的1.5倍,表明酚的矿化反应滞后于酚的消失反应,即在反应过程中有中间产物生成,中间产物再进一步降解为CO2。

3 结论

① TiO2膜光催化氧化苯酚水溶液的动力学可以用Langmuir?Hinshelwood动力学方程描述,但L-H方程只是表面反应的必要条件,并不充分。

② 苯酚水溶液在黑光灯/TiO2膜处理方式下的降解规律与L-H方程揭示动力学变化过程相吻合。在实验起始浓度范围相同的情况下,杀菌灯光催化并没有表现出黑光灯光催化时相同的动力学变化规律,主要原因是此时短波紫外光的光解作用对纯粹的光催化氧化反应的干扰。

③ TiO2膜光催化矿化苯酚水溶液的过程服从一级反应动力学方程。酚的矿化反应滞后于酚的消失反应。

④ 随苯酚起始浓度的增大,苯酚光催化氧化的表观一级反应速率常数减小,半衰期延长。同样反应条件下,杀菌灯光催化氧化苯酚水溶液与杀菌灯光催化矿化苯酚水溶液的表观一级反应速率常数(或起始降解速率)均远大于黑光灯作光源时的对应值。

参考文献

化学反应的过程范文9

学生缺乏对物质在溶液中的存在状态的认识意识。针对“离子方程式的书写步骤是‘写、拆、删、查’,什么物质不拆、为什么不拆”的问题,学生的回答绝大多数是“沉淀、气体和水”、“除易溶于水的强电解质”,至于为什么不拆,大多数学生认为这些物质“难溶于水,或是弱电解质”。这说明学生只是机械地记忆离子方程式的书写步骤和规则,而并非了解电解质在溶液存在的实际状态。离子反应概念学习中,认识的对象是离子反应,因此离子反应实验是学习的基础,也是思维产生的基础。并且,从分子、离子等微粒层面了解溶液中物质的存在及反应的实质具有抽象性,不能简单地通过语言描述和学生讨论的方式来建立,因此必须以化学事实和反应现象为依据。考虑到高一学生对化学思维方式还比较生疏,对离子反应的认识还只能从实验的表观现象“产生水、气体和沉淀”等现象的层次开始,要进一步建立微粒观则需要通过教师引导学生透过现象分析本质,帮助学生真实地了解电解质在溶液中进行反应的微观过程,从而形成水溶液中微粒及微粒间的相互作用的微观认识。

二、离子反应教学中化学实验及教学设计

1.离子反应概念构建的化学实验

实验材料:Ba(OH)2溶液、稀H2SO4溶液、酚酞溶液、烧杯、胶头滴管、铂电极2根、电池、导线、G型电流计实验步骤:(1)如图1所示连接实验装置。(2)在烧杯中加入Ba(OH)2溶液没过电极,滴加1-2滴酚酞,读出电流计示数。(注:实验时用玻璃棒或磁力搅拌器不断搅拌溶液,防止溶液发生微弱电解产生的气体附着在电极表面影响电流计读数。)(3)用胶头滴管往烧杯中缓慢滴加稀H2SO4溶液,观察溶液中的现象和电流计示数的变化。(注:当电流计示数在0-2之间时,要慢慢逐滴滴加稀H2SO4溶液,以免电流计示数变化太快,学生观察不到电流计示数为0的时刻。)(4)当电流计示数为0,再继续滴加稀H2SO4溶液,读出电流计示数。

2.离子反应教学过程设计

要使学生观察到真实的离子反应过程是学生自主建构离子反应概念基本条件。教学过程第一步是观察Ba(OH)2溶液和H2SO4溶液的导电性以及Ba(OH)2与H2SO4反应过程中溶液导电性的变化,引导学生对电流计示数的变化原因进行分析,帮助学生认识到Ba(OH)2和H2SO4在水溶液中的存在形式以及反应过程中离子浓度的变化,使学生认识反应中离子的变化及离子之间的相互作用,初步认识离子反应过程。在实验认识的基础上,通过用化学方程式和离子形式表示的化学方程式认识离子反应的具体过程,认识离子反应,写出离子方程式。然后,通过提供三个离子反应的实例(盐酸与碳酸钠、盐酸与氢氧化钠、铁与硫酸铜),引导学生模拟Ba(OH)2和H2SO4反应实质的思维过程,从微粒角度认识这些化学反应,写出这些反应的化学方程式、离子形式的方程式和表示离子反应实质的方程式———离子方程式。从这些反应的式子总结共性,达到对离子反应本质上的认识,构建离子反应的概念并认识离子方程式。最后,让学生概括出离子反应定义和离子方程式以及离子方程式书写规则,达成离子反应概念的全面意义建构。

三、教学实践研究

1.被试选择与研究方法

本研究选取湖南师大附中(示范高中)和长沙市第十九中(普通中学)高一年级中化学学习水平相近的学生共20名,将各校学生平均分成实验组和对照组(每组10人)。实验组进行离子反应实验教学,对照组采用常规的教师讲授的方式教学。

2.教学结果及分析

(1)学生课堂学习情况分析

按照实验教学设计进行教学,其教学情况列于表1。通过对学生的课堂表现的对比可以看出,在有化学实验的教学中,学生通过完成实验使思维得以有真实的对象,学生的概念构建可以在教师的引导下主动完成,课堂中学生表现出学习的积极性。这是因为学生通过实验观察到实验现象,产生了真实的问题,也就产生了解反应进行的实际过程的愿望。在教师引导下,真正地了解了溶液中离子的反应行为,离子反应的概念不是“听说”的,而是“看到”的,这样在后来的对离子反应的描述(将化学方程式表达成离子形式)及反应实质(离子反应方程式)的表述中顺利形成,因而很自然地构建了概念。而在教师讲授的教学中,学生概念的形成是建立在语言描述上的,并且学生几乎是以接受的方式进行学习,所以学习的积极性不高。其次是因为讲授教学是以语言的形式学习的,学生学习的是一些规则,其思维并没有与真实的离子反应联系起来,因此他们学习的内容是一些语言表达,包括离子方程式的写法,学生对这些写法所表示的真正意义并不了解。

(2)学习结果及分析

a.学生对离子反应概念延伸认识和离子方程式书写情况及分析

学生对离子反应的认识和离子方程式书写情况分别列于表2和表3。表2数据表明在理解离子反应概念上实验组的学生的正确率都明显高于对照组的学生;表3数据说明学生对于简单离子方程式书写差异不大,但对于难度稍大的题目,实验组的学生的正确率都明显高于对照组的学生。两个题目测试结果表明采用实验教学对学生掌握离子反应概念和离子方程式的书写是大有裨益的。这种学习结果说明:(1)由于常规教学中教师对离子反应的概念只是用语言描述,对照组学生对离子反应的理解基本上是建立在课堂上教师例举的为数不多离子反应实例上,学生对离子反应的认识缺乏完整性;而实验组的学生在动手实验的情境下,思维得以开阔,能够将各种离子反应联系起来,概括出离子反应的共性内涵,形成准确且完整离子反应概念。(2)在书写离子方程式的方面,对于生成物中有难溶、难电离、易挥发的物质的离子反应,实验组和对照组的学生都能正确写出离子方程式,但是当反应物中有难溶的物质时,对照组的正确率就远低于实验组。这是因为对照组的教学中,教师过于强调“写、改、拆、查”的书写规则和离子反应发生的条件,学生对生成物中是否难溶、难电离、易挥发的物质太过关注,而忽略了难溶的反应物。另外常规教学中用硫酸钠与氯化钡的反应作为学习书写离子方程式的例子,给学生造成了离子反应是阴离子和阳离子反应的第一印象的误导。而实验组的教学注重的是物质在溶液中的实际存在的形式,并且通过化学实验,学生对反应过程有完整的认识,对以离子形式存在溶液中的物质还是难溶的物质都有了直观的感受。同时学生对离子方程式的意义能脱离语言层面的理解,写离子方程式时,不再是对规则的单纯记忆,而是理解了规则,对规则有了直觉的认识,所以有很好的知识迁移性。

b.学生微观认识发展结果及分析

学生从微观角度对物质的定性变化和定量变化的认识情况列于表4中。题3主要考查学生思维能力发展中对新问题的判断能力,题4是从量的角度考查学生的思维发展。从上述这两个测试题的结果中可以发现,在具体问题的解决中,对照组的学生是从宏观现象和宏观物质的角度来分析问题,而实验组的学生能够从微观角度对问题进行把握。在针对离子反应中物质变化的题3中,对照组的学生下意识沿用的是初中学习的酸、碱、盐和复分解反应的知识来进行分析,经过提醒后才在书写化学方程式的过程中发现离子方程式的不同。这说明常规方式教学在教师的说明下经过化学方程式的“改、拆、查”后而产生,这样将离子方程式的书写演变成了教师的讲述下的形式学习,将离子方程式演变成了化学方程式的形式转化,导致了学生认为离子方程式是化学方程式的变形结果的错觉,学生的对反应实质认识能力比较薄弱。而实验组教学通过化学实验中电流表的读数反映出物质是以离子形式存在于溶液中,并且通过电流表的读数变化让学生认识到发生的化学变化是离子之间的相互作用,从而将宏观表象和微观粒子反应联系起来,在对物质的变化过程的实质进行探究的同时,实现认识从宏观角度向微观角度转变。另外在解决题4的定量问题中,实验组的学生能从微观角度对化学变化中量的关系进行快速又准确的把握,而对照组的学生仍然要依赖于化学方程式,说明实验教学能促进学生思维能力发展有很好的促进作用。

四、结论

化学反应的过程范文10

1.1化学反应的条件概述

化学反应是个复杂、有趣的过程,其反应条件因反应物的不同而有所差异,一般情况下,较为活泼的物质其化学反应很容易发生反应,如铁与稀盐酸反应制氢气,反应速度快且释放大量热气,反应过程几乎不需要什么特殊条件,反应就能发生的非常激烈。在实践中,很多化学反应的应用都需要满足一定的条件,常见的有燃烧、缓慢氧化、加入催化剂、加压等。其中,燃烧是指可燃物与空气中的氧气发生一中发光发热的反应,如镁在空气中燃烧生产氧化镁(MgO)等;缓慢氧化反应较为常见,如食物的腐烂、动植物的呼吸等,这一反应形式也逐渐的被开发出来并得到应用;催化剂是指将一种或几种物质加入反应物中,这些物质在反应中本身不发生改变,但催化剂可改变化学反应的速度与效果,常见的有光催化剂、固体催化剂、生物催化剂等,在不同化学反应中的应用可改变化学反应的速率和效果,提高工业生产的效率。例如,污水处理中应用光催化剂提高反应的效果,提升污水净化的品质,使其达到更好的净化标准。此外,压强、温度等也是化学反应的条件。

1.2化学反应条件对化学反应的影响

化学反应中,必须客观的对待化学反应的科学性和复杂性,在利用化学反应时,首先,应注重化学反应条的件,一些化学反应虽可以实现,但反应条件极为苛刻,不适合在工业生产中应用。其次,注重考虑反应原理的获得难易程度和价值,必定工业生产的目的是为了获取利益和效益,高昂的反应代价一般在实践中很难应用。再次,注重环境污染问题和资源节约,环境问题早已成为工业生产与社会发展的主要矛盾,因此化学反应的研究中要注重其对环境的污染和资源节约等问题。此外,还要注重操作的简易性,太过复杂会影响化学反应在工业中的应用及生成物杂质含量增加。总之,在化学反应应用中,对化学反应条件的研究非常关键,通过化学反应条件的改善不但可以提高反应生成物的纯度,还可以简化反应过程、加快反应速度等,提高了工业生产的效率,促进了工业发展。

2催化剂分类和应用

2.1催化剂的分类和作用

化学反应中催化剂的应用十分普遍,常见的催化剂类型十分丰富,例如,在石油冶炼中应用的催化剂有催化裂化催化剂、催化重整催化剂、加氢精制催化剂等;又如,其他工业生产中的脱硫催化剂、氨合成催化剂、硫回收催化剂等等,其种类繁多、应用广泛。催化剂最显著的特点是催化剂本身不参与化学反应,但它可以改变化学反应的速度,并对反应物发生作用,使化学反应更为剧烈。例如利用氮、氢为原料合成氨,在这一生产过程中化学式非常简单,但实际操作工艺却十分复杂,反应过程牵扯到热力学、化学动力学等方面,反应条件的条件与温度、压强、催化剂都有关系。综上所述,催化剂的应用,第一,加快了化学反应的速率,有利于工业生产效率的提升,同时,使一些不易发生的反应成为现实,拓展了工业生产的领域,使更多化工产品应用到人类社会的发展和进步中,促进了人类社会发展。第二,降低了生产过程中对环境的破坏,提高了工业生产中的环保效益,例如,热发电过程中在燃煤中加入生石灰,就可以达到减少二氧化硫的排放的目的,从而降低了有害气体对空气的污染。第三,催化剂的使用提高了化学反应应用的经济效益,例如,氨生产中,催化剂加快了氨生产的效率,提高了单位时间内工业生产的价值,提升了企业的生产效益。此外,催化剂的应用还可以提高产品质量,扩展工业生产对化学反应的效益,提高工业产品的附加值,推进社会经济的发展。

2.2催化剂应用的作用

催化剂应用的作用主要表现在以下方面:第一,使一些不可能发生的化学反应发生了反应,拓展了人类社会的物质资源,提高了人类对能源的应用。第二,降低了工业生产成本,一方面,提高了化学反应速率,降低了工业生产中的能源损耗,使工业生产对化学反应的应用更加高效;另一方面,提高了化学反应的产品质量,实现了能源的精加工,提高了工业产品的附加值,同时还降低了工业生产成本,促进了一些低端能源的利用,提高了工业生产效益和发展。第三,催化剂的使用可有效的控制化学反应生产的产物,如脱硫催化剂、硫回收催化剂等,使化学反应生成物的利用效益增加,同时还降低了生产过程中对环境的破坏,大大的提高了工业生产能力。第四,催化剂改善化学反应条件,降低了化学反应原料的标准,提高了化学反应的效果,降低了化学反应的难度,实现了化学反应更广泛、更有效的利用。

3结语

化学反应的过程范文11

摘要:研究近几年高考试题以及带高三的实践经验,书写一些比较简单的反应,重在培养学生分析产物的能力和应用电子守恒、原子守恒、得失电子守恒的能力。这样做不仅可以减轻学生的负担,而且还可以帮助学生写出除了这些反应以外的许多反应的化学反应方程式。

关键词:产物分析;电子守恒;原子守恒;得失电子守恒;氧化还原反应;非氧化还原反应电化学

元素化合物知识是高中化学非常重要的一部分知识,也是教师比较难教、学生比较难学的一部分知识。之所以难,某一方面的体现是化学反应方程式书写的问题,尤其到了高三,没有见过的反应暂且不说,只是那些让学生要掌握的反应就有一百多个。面对这么多的反应方程式,许多教师陷入了一个极大的误区:让学生背化学反应方程式。为了让学生记住这些常见的反应,有些教师将这些反应整理出来让学生背,有些教师则采用罚抄反应方程式的方法督促学生背。这样做可能对平时考试有帮助,但是对高考并没有什么帮助。纵观近几年高考,让学生填写的反应方程式几乎没有一个是学生记住的反应方程式。

笔者一直在反思,既然高考不填写这些反应方程式,那么为什么要书写和记忆它们呢?书写和记忆这些反应的作用到底是什么?通过研究近几年高考试题以及带高三的实践经验告诉笔者,其实书写这些方程式重在培养学生两个能力:分析产物的能力和应用电荷守恒、原子守恒以及得失电子守恒完成反应的能力。如果学生有了这两个能力,不论是见过还是没有见过的反应,笔者相信学生都能写出来。笔者从氧化还原反应和非氧化还原反应角度简单谈一谈如何培养这方面的能力不论是书写哪一个反应,首先必须要准确的分析出产物是什么,如果产物分析错误,那么整个反应就会写错。在非氧化还原反应中,书写过量问题时的化学反应方程式难度较大,可以让学生记住产物。例如:Al3+与少量OH-反应生成Al(OH)3,与过量OH-则生成AlO2-;AlO2-与少量H+反应生成Al(OH)3,与过量H+则生成Al3+;CO2与少量OH-反应生成CO32-,与过量OH-则生成HCO3-;在氧化还原反应中,分析产物时则需要用到化合价升降的方法对产物进行判断,化合价变化的规律一般是元素化合价向着相邻或稳定的价态在转化。例如Cu和HNO3反应,Cu从0价升高为+2价转化为Cu2+,HNO3中+5价的N化合价降低为+2价转化为NO。对于非氧化还原反应,准确的分析出产物以后,再利用电荷守恒和原子守恒就能完成反应方程式的书写。例如:AlO2-与过量H+反应:AlO2-+H+Al3+,观察方程式两边,会发现左边整体不带电,而右边带3个单位正电荷。为了保证方程式两边电荷守恒,在方程式左边需要再添3个H+(一般情况下,配平电荷守恒时溶液显酸性就添H+,溶液显碱性就添OH-)。反应就可以写成AlO2-+4H+Al3+。最后再观察方程式,发现右边缺4个H原子和两个O原子,组成2个H2O填入方程式右边。该反应的反应方程式最终为AlO2-+4H+=Al3++2H2O;AlO2-与Al3+反应;AlO2-+Al3+Al(OH)3,观察方程式两边,会发现右边整体不带电,而左边带2个单位正电荷。为了保证方程式两边电荷守恒,在方程式左边需要再添2个AlO2-。反应就可以写成3AlO2-+Al3+Al(OH)3。再观察方程式右边发现缺3个Al原子,反应就可以写成3AlO2-+Al3+4Al(OH)3。最后观察方程式两边,发现左边缺12个H原子和6个O原子,组成6个H2O填入方程式左边边。该反应的反应方程式最终为3AlO2-+Al3++6H2O=4Al(OH)3。对于氧化还原反应,准确的分析出产物以后,除了应用电荷守恒和原子守恒外,还必须应用得失电子守恒才能完成反应方程式的书写。一般来说,对于氧化还原反应首先要保证得失电子守恒,然后在电荷守恒,最后原子守恒。例如Cu和HNO3反应,Cu+NO3-Cu2++NO,Cu的化合价从0升高为+2,失2个电子,HNO3中N的化合价从+5降低为+2,得3个电子,利用配平氧化还原反应的方法---化合价升降法可使得失电子数相等,因此反应可进一步写为:3Cu+2NO3-3Cu2++2NO。接下来利用电荷守恒和原子守恒的方法完成反应方程式的书写,该反应最终可写为3Cu+2NO3-+8H+=3Cu2++2NO+4H2O。电极反应方程式的书写是原电池、电解池学习的重点内容,新课标高考下考察的原电池反应并不是简单的锌铜原电池,而是一些新型化学电源。这些新型化学电源不仅反应原理较难分析,而且电池反应书写起来难度较大。

通过书写这些比较简单的反应,培养学生分析产物的能力和应用电子守恒、原子守恒、得失电子守恒的能力,可以帮助学生解决这一类反应方程式的书写。如何应用这两个能力书写电极反应方程式?下面举例说明:参加电极反应的物质都是离子,不论书写哪一类电极反应方程式都必须遵守离子反应方程式的书写要求。例1:甲烷在碱性介质中的燃料电池的负极电极反应方程式第一步:分析负极及其在介质中的产物,简单写出电极反应方程式的反应物与产物。甲烷燃烧生成CO2,CO2在碱性介质中转变成CO32-,因此可将电极反应方程式简写为:CH4—CO32-第二步:利用得失电子守恒、离子守恒和原子守恒完成电极反应方程式。首先利用得失电子守恒,根据化合价升降算出得失电子数CH4的C为-4价,CO32-的C为+4价,CH4的C从-4价升高到+4价,化合价升高8,因此失去8个电子可将电极反应方程式进一步简写为CH4-8e-—CO32-,然后再根据电荷守恒,在方程式一边补上H+或OH-(如果溶液为酸性,就在方程式一边补H+,如果溶液为碱性,就在方程式一边补OH-),并计算出个数。从CH4-8e-—CO32-可看出,方程式左边失8个电子,可视为带8个单位正电荷,方程式右边CO32-带两个单位负电荷。因为溶液为碱性,所以应该在方程式左边补上OH-。

要让方程式两边电荷守恒,必须补上10个OH-。这是左右两边都带两个单位负电荷。电极反应方程式进一步简写为CH4-8e-+10OH-—CO32-最后根据原子守恒,在方程式一边补上H2O。从上式可看出,方程式左边多了14个H,7个O。因此要在方程式右边补7个H2O,才能让方程是两边原子守恒。电极反应方程式最后写为CH4-8e-+10OH-=CO32-+7H2O例2:(2015年•课标•全国Ⅱ卷,26)锌锰干电池是一种一次性电池,外壳为金属锌,中间是碳棒,周围是由碳粉、MnO2、ZnCl2、和NH4Cl等组成的糊状物质。该电池放电过程中产生MnOOH。(1)该电池正极电极反应式为______,电池反应的离子反应方程式为______。分析电池可知,MnO2为正极,放电过程生成MnOOH,电极反应方程式可简写为MnO2—MnOOH;MnO2转变为MnOOH得e-,电极反应方程式可写为MnO2+e-—MnOOH;介质为酸性,方程式左边带1个单位负电荷,右边带不带电荷,应在方程式左边补上1个H+,电极反应方程式可进一步写为MnO2+e-+H+—MnOOH;观察方程式两边会发现原子已经守恒,因此电极反应方程式最后写为MnO2+e-+H+=MnOOH。Zn为负极,放电过程生成Zn2+,电极反应方程式为Zn-2e-=Zn2+,正极方程式乘以2两式相加最后可得电池反应的离子反应方程式为Zn+2MnO2-+2H+=Zn2++MnOOH例3:写出用惰性材料作电极,电解NaCl溶液的的阴极电极反应方程式:阴极,H2O水中H+得电子,反应生成H2,电极反应方程式可简写为H2O—H2;H2O转变为H2得2e-,电极反应方程式可写为H2O+2e-—H2;,方程式左边带2个单位负电荷,右边不带电荷,应在方程式右边补上2个OH-,电极反应方程式可进一步写为H2O+2e-—H2+2OH-;最后,方程式右边多2个H、1个O,应在方程式左边补上1个H2O,电极反应方程式最后写为2H2O+2e-=H2+2OH-。

例4:(2014年•课标•全国Ⅱ卷,27)(3)PbO2也可以通过石墨为电极,Pb(NO3)2和Cu(NO3)2的混合溶液为电解液电解制取。阳极发生反应的电极反应式为__________,阳极,Pb2+放电生成PbO2,电极反应方程式可简写为Pb2+—PbO2;Pb2+转变为PbO2失2e-,电极反应方程式可写为Pb2+-2e-—PbO2;,方程式左边带4个单位正电荷电荷,左边不带电荷,应在方程式右边补上4个H+,电极反应方程式可进一步写为Pb2+-2e-—PbO2+4H+;最后,方程式右边多4个H、2个O,应在方程式左边补上2个H2O,电极反应方程式最后写为Pb2+-2e-+2H2O=PbO2+4H+。自新课改以来,对学生能力要求越来越高,如果仅仅局限在书写反应方程式层面上,是无法达到新课标要求的。在高三复习的时候一定要注意培养学生分析产物的能力和应用电子守恒、原子守恒、得失电子守恒去书写化学反应方程式的能力,这样既可以减轻学生的负担,而且还可以提升学生书写方程式的能力,学生就不会仅仅局限在一些简单的反应方程式上。这也正符合新课标关于培养学生能力的要求。

作者:陈银山 单位:甘肃省嘉峪关市第二中学

化学反应的过程范文12

复杂的“表面”

物质的两相之间密切接触的过渡区称为界面,若其中一相为气体,这种界面通常称为表面。在相界面上所发生的一切物理化学现象统称为界面现象或表面现象,而研究在表面上所发生化学反应过程的科学称为表面化学。

表面并不简单,实际上,发生在固体表面的反应非常难以研究。对于相对简单的气相反应体系,往往只涉及到反应分子之间的碰撞和相互作用。但是,在对固体表面发生的化学反应进行描述时,人们还必须同时对反应分子与固体表面的相互作用,以及固体表面结构的影响进行深入了解。

早在19世纪末,以朗缪尔为代表的物理化学家已经充分认识到固体表面的结构对诸如吸附、催化和电化学反应过程的重要影响,并陆续提出了一些重要的理论和假设。但是,由于表面研究的特殊性和复杂性,在精确的实验和系统的理论方面一直没有出现重大突破。

20世纪60年代,由半导体工业发展出的真空技术促成了现代表面化学的诞生。埃特尔是最早洞察到真空技术巨大潜力的科学家之一。由于物质表面的化学活性很强,在普通状态中很难研究某个独特的变化。借助超高真空实验设备,就可以观察金属表面原子和分子是如何运作的。而在此之前,对于表面化学的认识仅停留在分子层次以上。

自上世纪60年代以来,埃特尔逐步建立了研究固体表面化学过程的方法学,通过利用多种研究技术的组合,在原子分子层次提供了一个表面化学反应的完整图像,为固体表面化学研究奠定了科学基础。他发展的方法学不仅应用于化学过程的研究,对相应工业过程也具有重要的指导意义,如化工催化剂的研发、半导体元件的加工、金属表面的防腐、燃料电池的研究等等。

科学界公认,合成氨反应过程的催化机理的认识和表面非线性反应动力学理论的建立是埃特尔教授对固体表面化学过程研究的两个最典型的重要贡献。

合成氨机理的研究

哈伯-博施(Haber-Bosch)合成氨过程是最重要的多相催化反应之一,在这个过程中,空气中的氮气被分离并转化为生产化肥所需要的氨。上世纪初,合成氨催化剂的发现不仅启动了现代化学工业,也宣告了现代农业的到来。德国科学家弗里茨・哈伯由于发明了合成氨的铁基催化剂而获得了1918年诺贝尔化学奖。卡尔・博施由于开发合成氨高压催化工艺而分享1931年诺贝尔化学奖。

由于哈伯-博施合成氨反应的重要性,其反应机理被广泛研究。这个过程是以精细的铁粉作为催化剂,让氮气与氢气同时被吸附到铁粉表面,然后进行反应生成氨。那么,在这一反应过程中,哪个步骤是速控步,也就是对提高整个过程的速度起到至关重要作用的那一步?还有,氮分子是以分子还是原子的形式与氢反应?50年来科学研究给出的最肯定的结论是合成氨反应的速控步是氮气的化学吸附,而表面吸附氮物种是氮分子还是氮原子则没有定论。

埃特尔设计了一个理想系统:在真空中铺上一层清洁和光滑的铁粉,再控制性地输入不同的气体。他发现,当氮气分子到达铁粉表面时,它首先是以分子的形式吸附,完全吸附后,氮分子中两个氮原子之间的键断裂,以氮原子的形式与铁离子吸附。埃特尔使用不同的方法测量分子在铁表面停留的时间,发现氮分子分裂成氮原子这一过程是催化反应的速控步,氮原子一旦分裂出来就立刻与周围的氢原子结合生成氨。如果要提高整个反应的速度,就必须加快氮气分裂成氮原子的速度。

为了搞清氮是以分子还是原子的形式与氢反应,埃特尔在增加氢气的同时测量了铁粉表面氮原子的浓度,发现氮增加得越多,铁表面氮原子的浓度就越低,这表明氮是以原子而不是分子的形式与氢反应。

测量铁表面氮原子的浓度并不是一件容易的事。埃特尔用光谱分析方法来区分氮原子和氮分子,同时,他又用另一种方法来测量氮的浓度,即研究铁粉表面的形状,因为当氮吸附在铁粉表面时,表面的形状会有微小变化,他用电子轰击铁粉表面,电子不同的散射模式揭示了表面的不同。

之所以要同时使用不同的方法,是因为研究这种类型的表面,极有可能眼见非实,因为系统中任何微小的杂质都会立即吸附到表面。所以,这种表面必须用尽可能多的不同方法来研究,以确保所获得的图像没有因污染而扭曲。

埃特尔利用多种现代表面科学研究技术系统研究了哈伯-博施合成氨过程的模型催化体系,并利用多种谱学技术鉴定了反应过程中全部的反应中间物种,并给出了反应的势能图。埃特尔同时发现高压反应条件下的变化关系与低压反应条件下模型催化体系测得的变化关系一致,从而证实了在这个催化反应体系中,模型催化体系表面化学研究结果可以推广到工业催化体系。埃特尔教授对哈伯-博施合成氨反应机理的研究,已经成为如何合理利用多种现代表面科学研究手段的组合来研究并理解复杂催化反应相关的表面化学过程的教科书般的典范。

非线性反应动力学的研究

埃特尔还对铂等贵金属催化荆在一氧化碳氧化反应中的作用进行了深入的研究,这是发生在净化汽车尾气的催化转化器中的一个重要反应。通过对这个催化反应的模型体系的研究,开创了固体表面化学之非线性反应动力学研究领域。

早在1982年,埃特尔的研究小组便报道了铂单晶表面催化的一氧化碳氧化反应表现出非线性反应动力学行为,即二氧化碳的生成速率随反应时间发生振荡。这在当时是表现非线性反应动力学的唯一实际催化反应。在随后的一系列开创性的工作中,埃特尔研究了一氧化碳氧化反应速率与铂表面反应物种浓度、铂单晶表面结构之间的关系,提出了铂单晶表面催化一氧化碳氧化反应非线性反应动力学的微观模型:反应过程中,取决于一氧化碳表面浓度;铂单晶表面存在两种表面结构,两者对一氧化碳氧化反应的催化活性相差较大,从而表现出反应速率的振荡;在振荡反应体系中,体系变量还依赖于其在体系内的空间位置,因此振荡反应会表现出时空斑图。为观察铂单晶表面上的时空斑图,埃特尔研究组发展了光发射电子显微镜(PEEM),能够原位动态

观察表面吸附物种的浓度变化。观察到振荡反应过程中吸附一氧化碳物种和吸附氧物种在铂单晶表面形成的丰富的时空斑图,从螺旋波到混沌。这些研究结果无论是从深度,还是广度都极大加深了我们对固体表面反应动力学的理解。

埃特尔的研究是完全基础性的研究,但他对表面分子反应动力学过程的研究,对以固体催化剂为基础的多相催化过程的研究,基本上是化学领域最具有支撑作用的核心技术。目前,现代大型化工生产过程中,催化过程达80%以上,并已渗透到精细化学品的合成、药物中间体的合成及环境保护等领域。新催化剂的开发已由技艺水平向分子设计方向发展。新催化剂和新催化工艺的出现,已成为现代化学工业发展的增长点。除了在化工领域已取得的实际应用之外,埃特尔的研究还对包括煤炭、天然气以及太阳能等新能源在内的能源利用有着深远的影响,并推动表面化学向纳米科学、生物科学等诸多学科渗透。

表面科学在中国的发展

催化和表面化学研究在中国的开展,可以追溯到上世纪30年代。1933年,张大煜先生在获得了德国德累斯顿工业大学博士学位以后,便回国开创和发展胶体化学和表面化学的研究。从50年代初期开始,他致力于工业上广泛使用的催化剂担体研究,结合水煤气合成石油的钴催化剂和合成氨催化剂的催化性能研究,逐步建立了物理吸附、化学吸附等一系列研究方法,提出了表面键理论的设想,并以此为指导,研制成功了合成氨新流程3个催化剂,在当时达到了国际先进水平。

在表面化学研究方面特别值得一提还有郭燮贤和邓景发两位院士的工作。前者在基础研究方面先后提出了表面“空位”对吸附和催化反应作用的概念;氢和一氧化碳活化吸附方面的“易位吸附”和“协同机理”的新概念等;后者自行设计、组装了多种近代能谱仪,在国内较早建成了一个从分子水平研究表面吸附和催化过程的表面催化实验室,系统开展了银系列催化剂的基础理论研究。

作为表面科学和技术研究领域的杰出代表,埃特尔教授也为中国表面化学和催化研究发展做出了重要的贡献。他分别从1997年和2000年开始担任中科院大连化学物理研究所《催化学报》顾问和催化基础国家重点实验室国际顾问,先后在他的研究室长期工作的中国学者超过了10位。其中大连化物所的包信和研究员从1989至1995年一直在埃特尔教授的指导下研究高压条件下氧与银表面的相互作用以及甲醇催化选择氧化机理。

由于年事已高,埃特尔很遗憾自己不能将模型催化的研究拓展到纳米和生物领域。当包信和提出回国后希望拓展模型催化剂的基础研究,进一步将催化表面化学的研究与纳米技术相结合,从纳米尺度上深入理解催化反应过程时,埃特尔表示极大支持,并将他们自行研制的一台光发射电子显微镜(PEEM)赠送给包信和。他还积极推动大连化物所与弗里茨一哈伯研究所共同成立了中科院和马普学会“催化纳米技术”伙伴小组,并亲自担任专家组组长,利用表面科学的表征、制备手段,研究催化反应的纳米作用基础。

相关链接:

格哈德・埃特尔小传