HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 加工工艺

加工工艺

时间:2023-06-05 09:58:22

加工工艺

加工工艺范文1

引言

数控加工所用的数控机床及其以整体硬质合金、可转位刀具为代表的技术一起构成了金属切削发展史上的一次重要变革,数控技术给传统的机械加工带来了革命性的变化,引领机械加工向着高质量、高效率方向前进,产生了与传统零件加工工艺方法明显不同的数控加工新工艺。数控机床是高精度和高生产率的自动化机床,加工过程中的动作顺序、运动部件的坐标位置等功能,都是通过数字信息自动控制的,操作者在加工过程中无法人为干预补偿。数控技术的种种特点都一一映射在数控加工工艺中,数控技术对机械加工工艺改变最大的三个因素分别是数控机床、数控刀具、气液电柔性控制夹具。

1数控机床对加工工艺的改变

数控机床的主轴驱动系统和进给驱动系统,分别采用交流、直流主轴电动机和伺服电动机直接驱动,这两类电动机调速范围大,并可无级变速,因此使主轴箱、进给变速箱及传动系统大为简化,传动链大大缩短,齿轮、轴承、轴的结构数量大为减少,甚至不用齿轮,由电机直接驱动主轴或进给滚珠丝杆。数控机床常有配有自动换刀装置、回转工作台(实现分度转位、圆周进给)、工件交换系统、对刀装置、排屑装置等,柔性制造系统还配有自动上下料系统等。

1.1数控机床的结构及性能对工艺的改变

数控机床的结构及性能特点使一些传统加工方法中应慎用的加工方式变得可行,传统的悬臂镗和利用尾座导向支撑镗,已被现代数控机床中调头镗和各种固定循环方式所取代;传统的孔位加工中的充填法、空刀法、修整法已被多种形式的圆弧插补、背镗法和数控修整法所代替;最新出现的硬切削是一种新的加工工艺,在提高加工效率、降低加工成本、减少设备资金投入方面独树一帜,对传统的磨削工艺提出挑战,“以切代磨”将成为发展趋势之一。普通铣削一般采用逆铣,因普通铣床的丝杠传动之间的间隙较大而且不方便调整,导致加工时窜动,这种结构逆铣加工质量好;而数控机床采用高精度的滚珠丝杠,配置有调整间隙的装置,这种结构顺铣加工质量好。

1.2程序指令对工艺的改变

数控加工是在数控系统中预先输入的程序指令来控制加工的,编程指令就能对机械加工工艺产生改变,数控加工有的循环加工指令,就直接改变了机械加工工艺。例如数控车削中的外圆粗加工固定循环G71、端面粗加工固定循环G72、复合固定循环G73,这三种粗加工循环直接把粗加工、半精加工合并;粗加工后跟上外圆精加工固定循环G70,把粗加工、精加工连贯;基于数控机床的自动换刀,搭配径向切槽固定循环G75、螺纹切削复合循环G76,把轴类零件、盘套类零件的半精加工、切槽、车螺纹、精加工、倒角、倒圆角合为一道工序,循环程序指令直接把工序集中。一次装夹连续完成车端面、车内外圆柱(锥、弧)面、切槽、车螺纹或者铣面、铣外形、铣槽、钻孔、镗孔等结构要素加工,这种在数控机床上连续完成的多种加工,符合工序的定义,就定义为一道工序,这就是典型的工序集中,但如果是在传统机械加工中,多种工艺方法是需要多道工序完成的。传统工艺中所说的“工序”,在数控加工中,应按照“工步”来理解,数控加工零件,工序虽只有一道,但加工过程仍是一步一步进行,按相关定义,这一步一步的加工称为“工步”。传统加工中,工序较分散,每道工序中的工步内容少,而数控加工中一道工序中的工步内容很多,传统加工工艺编制时将“工序”的编制作为重点,而数控加工中,着眼点就必然在“工步”上。

2数控刀具对加工工艺的改变

数控刀具也叫现代高效刀具,典型代表就是作为主流产品的机夹可转位硬质合金刀具和正在发展中的超硬刀具(金刚石、立方氮化硼刀具),数控刀具实际上是标准化的产物,要满足数控机床自动换刀的要求,数控刀具一般不刃磨,即使要进行刀具修磨涂层也是采用外包方式。现代高效刀具就是要实现高效率、高精度、高可靠性、专用性,刀具厂商从单纯的“卖刀”,转变为能够根据加工特点及工件提供整套的高效加工解决方案,这是刀具业的一次重大战略转变,也就是刀具行业的供给侧改革。客户不但能从刀具样本中选到合适的刀具,还能从刀具厂商中得到切削加工整体解决方案,刀具厂商对它提供了每一种刀片的都做过金属切削实验,对客户提供切削用量参考数值,一本刀具样本,还能当成切削手册使用。

2.1刀具卡、刀具库管理

传统工艺规程重工艺流程、工序过程,刀具仅仅是写出来就行,比如“75。外圆车刀”,但数控刀具是标准化的产物,到刀具厂商或市场上购买的,必须选用适合机床刀具系统规格的相应标准刀柄,且刀片与刀杆要相配或刀具与刀柄要相配,所有刀具全都预先装在刀库里,通过数控程序的选刀和换刀指令进行相应的换刀动作,自动换刀装置能够迅速、准确地把刀具安装到机床主轴上或返回刀库。所以数控工艺规程除了工艺流程、工序过程,还必须配有刀具卡,提供刀号、刀补、刀片刀杆、刀具刀柄的型号规格等信息,说明刀具加工的部位,最好能附上刀具图,就更直观,这就引入一个新的工艺任务———选刀,从刀具厂商样本中选择符合工艺要求的刀具,做刀具卡、刀具库管理。

2.2新刀具产生新工艺

数控刀具技术的发展,新型高效刀具不断涌现,使得金属切削工艺规程发生了很多改变,比如现代企业为了提高生产效率,减少或合并加工工序的趋势也很明显,例如取消半精加工,粗加工后直接进行精加工,粗镗后直接精镗,钻孔后精铰一次到位,面粗铣后一次精铣达到要求,在粗加工中尽可能多地切除加工余量,随后的一次精加工直接保证加工尺寸和形状、位置精度以及表面加工质量,这就对机床和刀具都提出了很高的要求,实际上就是工艺的改变,机床、刀具改变了工艺规程。再比如现代企业还在推广使用新刀具,比如玉米铣刀(粗加工,比立铣刀耐用)、螺纹铣刀(在加工中心上铣螺纹,高效高精度)、螺纹旋风铣(用车床来加工螺纹)、球刀(铣曲面)、枪钻(钻深孔)、刮齿刀(加工内齿轮),新刀具直接产生新工艺。

3气液电自动控制夹具

传统机械加工工艺方法是在普通机床上依靠夹具,采用“一人、一机、一刀、一道工序”的方法对零件进行加工,对于结构复杂的零件一般需要多套工装夹具、经过几十道工序、多次定位装夹才能完成加工,导致加工零件的一致性差、加工效率低、工装数量多、生产准备工作量大、生产周期长等诸多弊端。数控机床通常采用高速切削或强力切削,加工过程自动化,对数控夹具提出了新的功能要求,首先是夹紧力要大,保证夹紧可靠,其次是柔性要好,适应自动控制。所以数控夹具通常采用气液电自动控制夹具,气液电自动控制夹具最重要的是保证定位精确、夹紧可靠,夹具的导向由数控机床及数控装置保证,夹具的对刀通过预对刀操作或用机外对刀仪检测并输入数控系统,夹具的分度转位由回转工作台自动控制。比如数控车床采用液压、气动卡盘、液压心轴或夹套,保证夹紧可靠。数控铣床、加工中心夹具不设置对刀装置,由工件坐标系原点与机床坐标系原点建立联系,通过预对刀操作或用机外对刀仪来保证工件与刀具的正确位置,位置精度由机床运动精度保证,所以数控铣床、加工中心通常采用通用夹具,例如机床用平口虎钳、回转工作台等,但采用液压或气动作为夹紧动力源。数控钻床夹具不用钻模钻套,利用数控机床坐标系统精确控制孔的位置和加工精度,可先用中心钻点窝定孔中心,起到加工导向作用,然后用钻削刀具加工孔深,如果是细长孔,可利用程序控制采用往复排屑钻削方式加工。所以数控机床加工具有加工工序少,专用工装数量少的特点,表1为原采用传统加工工艺方法和现采用数控加工工艺方法的工艺生产情况对比,加工对象是一精度要求高、结构复杂的壳体零件。综上,基于数控机床、数控刀具、气液电自动控制夹具技术的进步,数控加工工艺的总趋势是工序集中,自动控制,是对传统机械加工工艺的优化排序。传统机械加工过程中,机床、刀具、工装夹具、检测、工件调头等因素,只要变化了其中一项,都会导致加工中断而分出多道工序。数控加工工艺中,真正导致加工不连续只有更换机床,当然工件调头二次装夹也会导致加工中断,但随着数控技术的发展,双主轴数控机床的普及,未来可以保证即使是工件调头二次装夹,加工同样连续,至于刀具、工装夹具、检测等都可以采用柔性自动控制技术保证加工连续。由于数控加工的切削用量朝着高切削速度、高进给率和小背吃刀量的方向发展,所以在编写具体工艺规程时,一般规定以一次定位装夹为一道工序,每用一把刀具定为一个工步,并要求把每个工步的加工内容、切削用量详细标出,工艺文件直接用于指导数控程序的编制。

参考文献:

[1]郑红.基于企业产品的数控加工工艺课程设计教改实践[J].才智,2015(12).

[2]吴长德.数控加工对传统加工工艺产生的变革[J].现代制造工程,2006(8):136-138.

加工工艺范文2

【关键词】数控加工工艺;传统机加工工艺;夹具;刀具

数控加工工艺从多方面对传统加工工艺进行了改进,只有对这些差异了如指掌,才能确保数控加工工艺的使用,使加工过程顺利完成,并有助于加工质量的提高。

1.工艺复杂性的差异

加工零件的工艺性、定位基准及装夹方式、工艺路线的制定、工艺参数、刀具及切削方式的选择等都是数控加工工艺需要考虑的因素,不过在传统加工工艺中,这些因素都能够进行简化处理。相对传统加工工艺而言,数控加工工艺显得更为复杂,且影响因素也更多一些,基于此,对数控编程全过程实施综合分析、合理安排并进行整体完善具有重要意义。对同一个数控加工任务来说,有多套数控工艺方案可供其选择[1]。多样化既是数控加工工艺的主要特色,也是与传统加工工艺的重要区别之一。

2.装夹及夹具选择的差异

数控加工工艺要求夹具必须满足以下条件:(1)夹具的坐标方向必须与机床的坐标方向保持相对固定;(2)对零件与机床坐标系之间的尺寸关系进行协调。如在机床上安装数据加工中心夹具时,会利用工作台上的基准孔或基准进行定位,这样能够保证零件工件坐标与机床坐标系之间形成固定的尺寸关系,这明显不同于传统加工工艺。定位和夹紧是装夹的两个重要步骤,传统加工工艺中,由于机床加工能力有限,往往需要进行多次装夹才能完成整个加工任务。而数控机床仅需一次装夹就能完成,有效避免了因多次装夹所产生的误差。设计并使用专用夹具的目的是为了能够方便快捷的完成定位和夹紧工作,不过设计和生产专用夹具需要高昂费用,如果加工工件数量较少的话,会导致分摊在被加工工件身上的夹具费用十分可观,因此在使用专用夹具前应进行综合考虑。而数控加工工艺能够通过仪表调试法完成定位任务,并使用最为普通的夹紧元件完成夹紧任务,这样能够有效避免因使用专用夹具而产生的高成本。

3.刀具选择的差异

不同加工工艺和加工方法所需要的刀具也不尽相同,尤其是数控加工工艺中的高速切削同传统加工工艺中的速度切削有着明显不同,它以独特的机理使加工效率和质量都有大幅提升,在减少切削变形及缩短加工周期这两方面也成效显著,这必然会导致与其相配套的高度切削刀具需求量直线上升[2]。另外,还有一种只需加少许切削液或不加切屑液的干切削加工技术,该技术对刀具的耐热性有着极高要求。同传统加工工艺相比,数据加工工艺对刀具各方面性能的要求都显著增强。另外,刀具行业的地位和作用也随着数据加工工艺的产生发生了明显变化,由之前单一的刀具生产和供应发展到目前对切削技术和产品的创新及研发;由之前纯粹的供应商身份转变成当前能够帮助企业提高生产效率和质量,减少生产成本的重要合作伙伴。

4.加工方式的差异

传统加工工艺中应慎重采用的加工方式在数控加工工艺中变得简单可行,如现代数控机床中的调头镗取代了传统加工方式中的悬臂镗。进行孔位加工时,传统加工工艺中所采用的空刀法和修整法被数据加工工艺中的背镗法和数控修整法所取代。硬切削工艺是目前新出现的一种加工工艺,它以较高的加工效率、较低的设备资金投入及加工成本对传统磨削工艺形成了强烈的冲击。同传统的湿切削技术相比,干切削技术有着“绿色制造工艺”的美誉,不过也存在一些不足,如切削变形严重和切削力明显增大等,但通过对这些缺点进行分析,并采取有效措施加以完善后,干切削还是有明显优势的,它也必将被广泛的推广和应用。

数控加工中的高速加工具有传统加工工艺所无可比拟的优势,下面以模具加工为例进行具体说明:在传统加工工艺中,通常需要多道加工工序才能完成模具加工任务,而利用高速加工只需要1~2道工序即可完成,并且因高速加工的精度较高,不必在进行传统加工中的电加工和磨削加工这两道工序。同普通加工相比,高速加工的切削速度提升了5~10倍,其优点如下:缩短加工时间,便于采用较小直径的刀具;有利于脆性材料和薄壁零件的加工;仅需极少工序即可达到传统加工需要多道工序才能获得的表面加工质量和加工精度,生产效率和经济收益大幅提高。

5.热变形的差异

热变形是切削过程中不可避免的问题之一,工件进行精加工期间,热变形会对其加工精度产生直接影响。由于传统加工工艺的加工工序较多,各个工序的衔接有一定的缓冲时间,可以在上道加工所产生的温升下降到正常水平后再进行下一工序,直至最后的精加工,另外,对工步间的间隔时间进行有效控制也是降低热变形影响的有效方法[3]。

由于数控加工能够连续高效地对多个面进行加工,所以在连续切削过程中产生的热量无法及时恢复正常,如果通过控制工步间的间隔时间来降低热变形影响,又会降低加工效率,基于此,数控加工中的热变形是当下亟待解决的问题。发现热变形的规律并通过程序进行预补偿是降低热变形影响的理想方法,不过目前并无法发现热变形的规律,所以采用数控机床加工精度要求较高的零件时,也只能采取先冷却再精加工的方法来降低热变形的影响。

6.柔性化程度不同

传统的通用机床与专用机床相比,通用机床柔性好、可效率不高,而专用机床效率高,可是刚性大、柔性差,且对零件适应性低,在激烈的市场竞争中,传统通用机床的改型频率相对较低。而对于数控机床来说,它的市场适应性强,只要改变程序就能加工新的零件,不仅自动化高,而且柔性高、效率高。

7.结语

对于数控加工工艺来说,普通加工工艺是其基础及技术保障,它是由传统加工工艺、计算机数控技术、计算机辅助设计技术和计算机制造技术组成的,并起源于传统的机加工工艺。本文主要围绕数控加工工艺与传统机床加工工艺的特点及差异展开探讨,从而编制出更好的、适宜的工艺文件。

【参考文献】

[1]郭英杰.浅谈数控加工切槽与切断[J].张家口职业技术学院学报,2010(01):51-53.

加工工艺范文3

关键词:数控加工工艺;传统机加工工艺

数控加工是在传统机加工工艺技术上发展起来的一项先进的工艺加工技术,在品种多变复杂、要求精度的零件上有极大的优势,数控加工技术的研发,使得工艺加工更加高效,对工艺的制作要求更精确,人力物力的消耗明显下降,自动化程度极高,具有非常大的优势,未来前景十分广阔。

1数控加工工艺和传统机加工工艺的概念

传统加工工艺是指人们根据在加工方面上长期积累的经验技术,经过不断的创新和改革,使技术代代相传,而最终形成的一种加工工艺。传统加工工艺主要材料大多来源于可获取的自然资源,经过工程技术加工、机械测量和最终固定模式的套用形成的加工技术。我国的机械制造大多采用传统加工技术。由于传统加工工艺对经验的要求较高,加工人员的经验和方式有所不同,因此传统加工技术具有随意性和不确定性的特点。数控加工技术是建立于传统加工技术之上的一门工艺,是应用数控加工机床进行加工一种加工工艺,数控加工工艺比传统加工工艺要复杂的多,它既包括传统加工工艺的技术,又包括先进的计算机数控技术、计算机辅助制造技术等,并结合编程和控制系统等程序的应用,其对操作零件的质量和精度都有较为严格要求,因此其生产的产品都具有较高的生产效率和生产质量,可生产出结构复杂、精确度较高的高质量产品。对于传统加工工艺而言,数控加工工艺的要求较为复杂,只有经验已经无法满足现在产品技术的要求,在使用数控加工时需要细致的对各个工艺环节进行考虑,如零件的选择上对刀具,夹具的选择,对于切削方法的要求等因素。通过细节化的特征,从而对整体有严格的要求和调控进行精准化生产,适应时代的变化和需求。

2数控加工工艺和传统机加工工艺的比较

2.1加工工具的比较。数控加工工艺和传统加工工艺的一个直观方面的比较,就是加工工具的不同,对于细致化的数控加工,其在工具的要求上更加精细。在生产刀具方面,传统加工工艺对刀具的要求不高,应用速度切削原理,而在数控加工工艺上对传统加工的技术有了提高,对于速度的要求更高,应用高速切削原理,这样使得切削的刀具要求更加严格,以适应高速下的温度和磨损等因素,高速切削使得数控加工在质量和效率上都有极大的提高,质量上切削变形的情况明显下降,使切削的产品更加精细,在效率上,切削的周期明显缩减,节省时间成本。因此在刀具的选择上要选择质量水平较高、耐热性高的刀具,这使得传统加工工艺所应用的刀具进行了更快更新和质量的提高,同时这种工艺的要求也将主要导向变为刀具产品上的导向作用。数控加工还有另一种切削方式,这种切削方式对于切削液的依靠不高,只需少量或者不需加切削液,刀具的耐热性要求较高,因此被称为干切削。在夹具的选择方面,由于数控加工工艺的各方面精度要求高,并由计算机编程控制,因此对于夹具的要求上并不像传统加工工艺一样,需要多次进行固定的更换,只需要固定一次即可,这样可有减少误差的作用。其具体要求首先要保证机床坐标和夹具坐标的方向要固定不可变更,保证在计算机控制下其准确度,其次夹具本身要以工作台的基准孔或者基准槽进行定位,以确保零件和机床坐标系尺寸关系的协调性。这种工具应用的不同可以看出数控加工相较于传统加工的严格性和精确性。

2.2加工方式的比较。传统加工工艺和数控加工工艺在加工方式上已有很大的不同,传统加工工艺上曾经应用的很多方法都被现代的高新方式数控加工所取代,例如修整法、空刀法和填充法如今已经变为数控修整法、背镗法、圆弧修整法等技术方法。这些新的加工技术具有节约能量、减少消耗的特点,可以有效的节约和利用资源,相对与传统技术更有发展前景。如今已经时代提倡绿色能源,节约和低耗能成为人们选择的标准。干切削相比于传统的切削更加绿色环保,但其干切削的技术还不成熟,具有很多不完善的地方,如对温度的要求等,目前干切削正在进行技术上的突破,未来也将广泛应用于生产中。由于数控加工方式的精准合高效的特点,从长远的积累来看具有极大的优点,传统的加工方式包含粗磨、半粗磨、精磨等工序,由于如今数控加工的高速特点,更快的切削使得其对于磨削的工序可以省略,减少了步骤,是制作工序更加自动化,减少人力物力的消耗,节约能量,效率极高。

2.3其他因素的比较。在数控加工过程中,在细节上也有诸多的因素要进行考虑,做到在各个环节上的把控,确保整体生产的万无一失。在数控加工上切削用量问题、热变形问题和柔性度问题都需要进行多方面的考虑和研究。在切削用量上尽量要做到精准,由于切削刀具具有机械性重复的特点,其运动轨迹、切削力度、切削方式上都较为固定并可根据计算机编程进行灵活控制的特点,因此其切削用量要做到精准并适合刀具的特性,做到高效和减少不必要的损耗。在热变形方面,传统加工工艺的特点是,由于速度切削会产生较热的温度,具体措施是停留一段时间后再进行加工,但是对于数控加工工艺来说,由于高切削的方式在热量上会比传统的加工方式产热要高,因此若用传统的措施方法,其停留时间会比传统加工工艺的耗时更长,这样会大大消减其效率,在生产时间上大打折扣,因此数控加工在热变形上要加入对热量变化规律进行计算,找到一个热量变化的最适点,进行热量的规律探索以减少时间的损耗,由于技术还在开发中,这也成为目的数控加工的一个最大的问题。在柔性度方面,传统加工技术具有或柔性高、效率低或效率高、柔性低的问题,在数控加工技术出现后,效率和技术都有了全面的提高,只需要通过程序对数字进行改动就可在大型加工上做到程序化的控制。因此数控加工的工艺对柔性度问题进行了解决,可见科技的创新对于技术生产直观重要的作用。

3数控加工和传统加工工艺在未来前景上的分析

3.1数控加工相比传统加工的优点和不足。数控加工较传统加工具有加工效率高、工艺产品复杂且精准的特点,数控加工的技术是传统加工工艺在技术、时间消耗、和发杂度上都无法相比的,数控加工可对复杂的几何结构和曲面要求都有极高的制造精度,其对于劳动力的要求也较传统加工工艺较低。可结合多个工序,减少生产成本和时间。但由于其在各方面的零件和工具的要求都较高,数控加工的成本较高,因此目前不适用于批量生产,其技术还有上升的空间。

3.2数控加工在航天应用上的发展前景。由于数控加工的精准性强、自动化高、工序集中等特点,对于精度要求较高的航空航天工业具有重要的应用,数控加工的起源最初就是航空工的需要,如今航空工业也是数控加工最大的用户,根据未来的发展形势,航空事业在精度要求等方面会有更高的要求,因此数控加工的未来前景较为广阔。

结束语

数控加工技术是高信息化时代下的必然产物,如今在生产中精准度和效率都成为发展的重点,数控加工作为一种高效的绿色能源技术,经过不断的技术革新,必然会在未来的生产、生活上更高更快的发展和进步。

参考文献

[1]于淑芹.探析数控加工与传统机加工工艺[J].工程技术与产业经济,2013(2):70-71.

加工工艺范文4

1工艺系统的热变形

在机械加工的过程中,势必会受到各种热因素的影响,进而导致工艺系统的改变,最后导致对加工工艺精度的影响。这在加工精密仪器的过程中,显得尤为凸显,由于热变形所导致的误差可以占所有误差的百分之四十,甚至更多。热变形对加工精度的影响主要从以下三个方面体现:首先,工件热变形对加工精度的影响;通常情况下,这种影响是极为严重的,尤其是针对长度等相对严格的工件而言,对精度要求较高的零件则更是如此。其次,刀具热变形对加工精度产生影响;造成这一影响的主要原因是切削热。在连续进行切削时,刀具的热变形会出现迅速的变化,进而导致对加工精度的影响,降低其精度。第三,机床热变形对加工精度的影响;机械加工过程中,由于机床的长时间运转也会产生很大的热量。这样在内外热源的影响下,机床的各部门温度也会发生不同程度的变化,但是由于不同的热源、机床复杂的结构、分布不均等原因,不同部件之间的升温情况也必然会存在差异,即便是相同的部位也会具有相对差异,进而导致不均温度场,由于机床各部分之间的位置发生了相对的变化,导致原有的形状发生变化,进而导致加工精度的降低。

2加工工艺系统的受力变形

机械加工的工艺系统主要包括机床、工件和工具、夹具。在机械进行切削的过程中,通常会因为夹紧力等作用的影响,使这些工艺系统受到不同程度的影响,进而发生一定程度的变形,进而使已经调整好的处于静态位置的工具发生变化,导致其加工精度降低。为了能够最大限度的保证加工精度,最为有效的方式就是将工艺系统受力变形降至最低。在实践生产中,则主要是利用提高工艺系统的刚度或是降低负荷的变化来解决这一问题。而且,为了能够保证加工质量和生产效率,还需要尽可能的提高加工工艺中的刚度。

3工艺系统几何精度对加工精度的影响

工艺系统几何精度对加工精度的影响主要是从以下几个方面体现出来的:一是加工原理;二是加工过程中的调整;三是机床;四是夹具和刀具等制造方面存在的误差。其中,加工原理导致精度的降低主要是由于在加工工艺中使用了近似的成形运动,然而就是这种近似的成形运动则可以将刀具形状或者机床结构予以简化、使生产效率提高、增加加工精度,而且由于加工方法导致的误差能够符合规定的精度要求,所以在生产实践中,该种方法的应用范围仍然十分广泛。在工艺加工过程中,难免会出现对工艺系统进行调整,以满足生产的需要,但是由于不能完全确定调整是否完全精准,因此,也就很难避免调整误差的出现。由于机床导致的加工精度的降低主要是因为机床在制造和安装,以及运行的过程中不会避免由于磨损带来的误差;夹具等制造产生误差的主要原因是定位元件、分度机构、刀具导向元件以及夹具体的制造误差等、在装配夹具后各个元件之间存在的工作面尺寸误差、使用夹具中工作面磨损导致的误差。

4增强机械加工精度的几点措施

首先,在生产的过程中尽量避免误差的出现;也就是要预防误差,通过减少误差源。较为常用的方式包括:a.误差转移法;b.误差平均法;c.直接减少原始误差;d.尽可能使用先进的加工工艺和设备等。然而,通过不断的实践证实,在精度要求被不断提高后,在使用原有的方式或是新的方式来提高加工精度的陈本也是会随着提高的。其次,加强对科技力度的投入;在针对各个环节经常出现的,以及难以避免的影响加工精度的因素而言,可以考虑在资金允许的前提下,适当增加科技研发资金的投入,主要是针对这些容易出现误差的环节进行新工艺、新方式的研发,来努力提高加工精度。再次,减少原始误差;在条件允许的前提下,尽可能提高机床的几何精度,提高量具、刀具等的制作精度,在多方面来提高加工精度。然而,针对原始误差,还需要具体问题具体分析。需要进行有效分析来通过适当的手段解决产生的原始误差,进而提高加工精度。而针对那些精密的零件,在加工的过程中也应该使用高精密仪器和设备进行加工。

5结束语

虽然我国的现代化机械加工工艺水平已经有了很大程度的提高,但是要想生产出精度更高,质量更好的机械产品,我国的加工工艺还有很长的一段路要走。在努力提高机械加工精度的过程中,还仍然难以避免加工误差,而且,我国在机械加工生产领域中还存在很多问题。因此,在平时的工作和实践中,我们还必须要不断的努力,善于发现问题,及时解决问题,尽可能的提高加工精度。

作者:张宏亮 单位:哈尔滨新光光电科技有限公司

加工工艺范文5

关键词:机械加工工艺技术思考

机械加工是十分复杂的过程,需要相应人员具备良好的理论知识和动手能力才能完成相应产品的组装和生产。因此,机械加工对工艺技术有着很高的要求标准,加强对工艺技术的研究非常重要。

1机械加工工艺技术概述

在机械制造行业中,加工工艺技术是必须要使用的一项具有一定专业性的技术种类。要提升加工工艺水平,就要对相关技术人员进行培训,使其能够真正运用其进行操作,同时还要保证相应的工艺操作流程与产品质量之间是完全符合的,满足相应的规定标准要求。通常,在机械加工企业中,都要设置相对完善的工艺部门以及技术部门,来为机械加工的正常运行提供保证。而这两个部门的实际工作职能就是对机械设备的种类、型号、使用性能等进行了解和分析,然后再结合现阶段企业实际的技术水平以及一线作业人员的水平,制定相应的加工工艺以及技术文件,进而为操作人员的作业提供参考依据和标准,同时也为企业部门之间提供完善且适合的技术验证标准。此外,受机械加工企业自身的生产计划等诸多因素影响,机械加工工艺以及艺术都要随之进行调整和修正,也只有这样才能确保加工工艺和加工以及加工技术具有良好的针对性以及实用性[1]。如果从工艺技术角度上来看,加工工艺技术必须建立在相对规范且有效的工艺流程上,然会合理运用科学措施以及相应的方法来对加工产品的外观形态、实际位置以及产品性质等方面进行调整,进而保证产品各项参数的精确性,更好地提升机械产品的质量。

2机械加工过程中加工工艺技术的有效作用

2.1能够保证机械设备良好运行

众所周知,一台机械设备是由很多部分构成,如传动系统、动力系统等。因此,只有保证机械设备各部分性能良好,才能保证其在实际施工过程中将各部分功能充分发挥出来,进而满足实际需求。在机械加工期间,如果不能有效保证实际加工流程的良好以及对其科学的管理,那么就会给机械设备的运行造成一定的安全隐患。随着科技水平的提升,很多加工工艺以及技术都需要依靠计算机系统进行辅助操作。而现代化信息技术的应用可以将机械使用期间的情况进行有效反馈,即使出现故障系统也会将信息反馈给中央集成系统,进而可以第一时间调派相关维修人员对故障以及隐患进行排除。因此,良好的加工工艺技术能够保证机械设备运行的安全性以及可靠性,进而提升企业安全生产的水平。

2.2能够有效满足生产效率

现阶段,社会发展加大了对机械设备的实际需求量,并且在机械水平以及机械精度等方面都有了一定提升。在此种背景下,对于加工工艺以及加工技术的要求也随之提升。也就是说,加工技术和加工工艺一定要与机械加工之间相符合。机械质量是通过工艺和技术的良好运用而达到的。因此,加工企业一定要对其进行重视。同时,现代化的机械加工技术和工艺是在原有工艺技术的基础上,通过不断研发、探讨、总结和实践来完成,并且在一定程度上也对机械制造产业实际需求进行了有效尊重,进而形成有效满足制造行业对机械制造精度的要求。

2.3良好的工艺技术达到了低消耗、高产能的目的

近些年,国内开始提倡节能减排,因此以往高能效低产能的机械加工工艺和技术已经不能满足社会发展的实际需求。而对着机械加工工艺和水平不断的上升和完善,使得机械加工不仅满足了农业、工业发展的实际需求,还逐渐达到了节能减排的目的,同时还有效对设备性能进行了良好的优化和配置,提升了生产产能。

3提升机加工精度的有效途径

3.1降低误差法

在进行机械加工期间,使用降低误差的方法来提升机械产品的精确度,是一种较为普通的工艺和技术方式。这种方式一般都在进行机械加工前应用,即在没有进行产品加工前,相应的技术人员要对产品的设计方案、加工工艺流程等进行查看以及校对,然后运功科学的措施,来对可能会对产品加工精度产生影响的潜在问题进行总结,并组织内部各相关部门负责人进行讨论,如技术部、工艺部、设计部、生产部等,之后采取最为合适的方法和措施对其进行解决,尽可能消除或者是降低误差,进而保证机械加工质量和精准度[2]。例如,在加工较长的轴类零件时,由于加工精度要求较高,并且轴在加工过程中还会受到自身、外力以及机床稳定性的影响,因此其加工过程中可能会出现一定的误差。所以,在进行加工之前,操作人员一定要对设计图纸进行认真核查,然后选择合理的切削方式,并使用顶尖对其进行规定,保证其在加工过程中不会对机床转动而出现晃动影响切削加工的现象发生。同时,加工期间还要使用冷却液,避免轴出现先过热变形的想象,同时降低对机械设备的磨损量。

3.2误差补偿

所有的机械加工或多或少都会受到人为因素的影响,导致不少加工工艺技术参数同图纸以及工艺设计存在一定的误差。而这部分误差往往不容易察觉,因此进行加工前要对其进行解决,以避免可能出现的不合格或者是浪费材料的现象,甚至对产品加工、后续装配等造成严重的影响。现阶段,我国国内主要使用误差补偿的方式来降低误差对机械产品的影响。这种方式不仅能对以往工艺中存在的误差进行补偿,还能够减少加工过程中产生的误差,进而有效提升机械加工精度。

4机械加工工艺技术未来的发展方向

随着机械制造行业发展水平的提升,制造行业也开始面临着全新的挑战和问题。因此,想要使企业加工产品在行业市场中占有一席之地,就要有针对性地对机械加工的工艺和技术进行完善,有效提升机械产品的实际质量,提升产品的性能、可靠性以及耐久性,进而增加机械产品的使用水平和年限。同时,还要尽可能找准市场定位,完善产品设计水平,拓展市场范围。只有这样才能够更好地推动机械加工朝着集成化方向发展,进而有效促进机械加工行业水平不断提升,更好地为社会发展服务。

5结论

总而言之,制造行业水平的完善和进步,使得机械加工的工艺和技术得到了相应提升,使机械加工的效率以及质量达到了预期目标。然而,我国制造行业虽然得到了一定提升,但是同西方国家相比还有很大的差距。因此,要不断完善加工工艺和技术,推动国内机械加工行业良好发展,为推动我国经济水平的提升做出贡献。

参考文献

[1]刘战强,贺蒙,赵建,等.机械加工强化机理与工艺技术研究进展[J].中国机械工程,2015,(3):403-413.

加工工艺范文6

关键词:机械加工;工艺流程;加工技术;加工精度;加工精度误差

随着科技的发展、时代的进步,机械加工工艺逐渐地被人们所重视。因为机械加工工艺直接影响到产品的质量、生产周期、成本等重要环节。机械加工工艺现已成为人们衡量一个企业好坏的重要依据之一,机械加工工艺就是在工艺流程的基础上,改变生产对象的形状、尺寸、相对位置和性质等,使其成为成品或半成品。机械加工工艺代表着工业生产和制造的实际水平。机械加工工艺是机械领域中的重要环节,也可以看作是由原材料变成设计要求的零部件全过程。机械加工工艺贯穿于整个机械加工过程,并对全部加工过程有着明确详细的规定。合理的加工工艺不但能满足产品的质量要求、降低加工成本,还能提高工作效率。下面就从多方面对加工工艺进行分析、探讨。

1 工艺流程

对零件以及工件进行加工制造的整个过程就是机械加工工艺流程。简单的说就是对原材料进行各种处理,制造出达到设计要求零件的过程。机械加工工艺流程主要体现为零件的加工路线、加工工序、加工设备的选择等方面。工艺流程是指导生产的主要技术文件,作为机械加工步骤的详细参数。机械加工工艺流程的制定要在保证产品质量前提下,尽可能提高劳动生产率和降低生产成本,遵循优质、高产、低成本的原则。

2 加工设备的选择

工艺流程中对设备的选择极其重要,其关系到零件的质量是否符合要求。在机械加工中,加工设备的本身、夹具、零件的自身重力等众多因素都会影响到加工质量。这就需要根据待加工零件的具体加工要求进行选择适当的设备,同时要求加工工艺人员必须熟知各设备的加工性能、精度、生产效率等,进而实现设备功效的充分利用。随着机械行业的不断变革,人们对机械加工产品质量需求的提高,机械设备也随之更新换代。数控机床的出现,大大地提高了生产效率和经济效益。数控机床控制技术是利用计算机技术对机械加工精度进行控制,实现了机械加工数字化、信息化、智能化,减少了手工操作带来的加工误差。并且在很大程度上提高了生产效益,降低了劳动强度和生产成本。先进设备的应用与推广不断促进着机械加工工艺的引进、优化和研发。

3 加工技术

加工技术是加工工艺的核心。加工技术主要体现在技术人员、技术手段及物质条件等方面。技术人员要不断总结生产中的经验和学习先进技术,对现有的工艺流程进行与时俱进的改进和完善,使其更加合理、高效。先进的机械加工技术力量对机械行业的发展起着至关重要的作用。在现有的生产实践中,先进的自动化设备已经逐步取代了大量的人力、物力,并提高了生产效率。要从人力和物力等全方位进行加工工艺的优化,只有加工工艺的提高,才能带动整体的机械行业的变革。

4 加工精度

机械发展逐渐大型化、精密化,机械加工工艺的流程也变得越来越复杂,对机械加工精度的控制至关重要。若机械加工精度失控,不仅影响机械加工工艺的运用,也不能够达到机械设计的精度与机械设计的生产能力。应对影响机械加工精度的各主要因素展开深入分析,扎实提高机械加工工艺的运用水平,在做好补偿和控制的前提下,以自动化机械加工工艺为突破口,全面提升机械加工精度和效率,实现机械加工工艺更为严格、准确、全面的应用。

5 加工精度误差

影响机械加工工艺精度的因素主要有:设备本身的精度误差、刀具的精度误差、操作人员的操作误差、设计因素、调整误差等。要想提高加工精度,必须从影响加工精度的因素进行着手分析。

5.1 设备本身的精度误差

零件的加工是靠设备中刀具与零件的相对运动而完成的,零件的加工精度在很大程度上取决于设备本身的精度。设备本身的精度误差主要:传动误差、旋转轴误差、零件的装夹及运行轨迹误差。设备本身的刚度,由于加工设备本身就是由许多零件组成,经过数次加工卸载之后,设备回复不到原来的几何精度,也会产生一定的加工精度误差。这种加工误差还会伴随着生产次数的增多日益增大。

5.2 刀具的精度误差

因刀具的种类不同,对零件加工精度误差的影响也不尽相同。对于同一种刀具而言,在生产制作过程中就存在一定的误差。为了提高加工精度,要求加工刀具在制作时就要严格控制其精度。刀具本身的刚度对加工精度影响也是非常大的,如加工时需要刀杆比较长,若刀杆本身的刚度不够就会产生微小的弯矩变形,影响其加工精度。

5.3 操作人员的操作误差

操作人员的操作误差主要体现在刀具与零件的定位上、零件的装卡上。若是同一批零件,同一个加工操作人员生产出来的产品的精度也会存在一定的误差。因为在每次装卡的过程中不可能一致,刀盘刻度的校对也存在一定的误差。要想解决人为的操作误差就得提高生产的自动化程度,用自动化设备取代人工操作。

5.4 设计因素

一是基准多元化误差。在设计当中最好选择一个基准,这样加工时不会产生积累误差,就会加大加工精度。二是设计零件的几何形状。在设计时一定要考虑零件在加工过程会产生影响精度的因素,尽量将其避免。比如待加工的零件过长,自身的刚度就会影响加工精度。零件的为不规则形状,这也给加工装卡带来了一定的难度,从而产生一定的加工精度误差。

5.5 调整误差

一个加工零件可能要经过多道工序的加工才能完成,在各工序变换的过程中就会出现因调整不准确而带来的误差。

6 提高加工精度的方法

6.1 减少基础误差

提高加工设备和各种辅助工具本身的精度、刚度。减少因受力变形、磨损、内应力、测量等误差而带来的加工精度误差。这样可以使机械加工在根本的基础位置上就达到更精确的精度保障。

6.2 误差补偿法

主要是针对基础误差而言的。利用人为的方法去创造一定的误差来补偿基础误差,从而达到设计要求的加工精度。中精度误差补偿的方法很大程度上提高了产品机加的精度。

6.3 培养专门的操作技术人员

在生产实践中,人为操作误差非常多。为了减少这类误差,我们就要经过专门的培训、培养操作技术人员。不仅可以减少生产带来的人为误差,还可以不断地总结经验,提高加工工艺效率。

6.4 转移基础误差

这种方法就是将直接影响加工精度的基础误差转移到其他地方,从而降低基础误差引起的加工工艺精度。

总之,在机械加工过程中,产生误差是不可避免的。我们要尽量地提高机械加工工艺来降低误差,从而有效提高机加工的精度。

7 结束语

从上所述中,我们可以看出,机械加工工艺对机械加工的影响意义深远,机械加工工艺可称之为机械加工的核心。机械加工工艺犹如机械加工的血液,贯穿于机械加工领域中每一个加工步骤。机械加工工艺除了是机械加工的核心之外,更是一个企业的核心力量。

随着全球机械加工行业的飞速发展,机械加工工艺已不断趋于合理化、自动化、现代化,有利于提高加工精度。我们要着力于发展机械加工工艺、提高加工精度。让机械加工工艺推动机械加工的发展,生产出更具有竞争力的产品,让我们在全球经济的时代下更具有竞争力。

参考文献

[1]周增文.机械加工工艺基础[M].长沙:中南工业大学出社,2003:121.

[2]覃岭.数控加工工艺基础[M].重庆:重庆大学出版社,2011:108.

[3]王先逵.机械加工工艺手册[M].北京:机械工业出版社,2007:1

加工工艺范文7

[论文摘要]数控机床的加工工艺与普通机床的加工艺虽有诸多相同之处,但也有许多不同之处。为此,分析了数控车削的加工工艺。

一、数控车削加工工艺的内容

数控车削加工工艺是采用数控车床加工零件时所运用的方法和技术手段的总和。其主要内容包括以下几个方面:

(一)选择并确定零件的数控车削加工内容;(二)对零件图纸进行数控车削加工工艺分析;(三)工具、夹具的选择和调整设计;(四)工序、工步的设计;(五)加工轨迹的计算和优化;(六)数控车削加工程序的编写、校验与修改;(七)首件试加工与现场问题的处理;(八)编制数控加工工艺技术文件;总之,数控加工工艺内容较多,有些与普通机床加工相似。

二、数控车削加工工艺分析

工艺分析是数控车削加工的前期工艺准备工作。工艺制定得合理与否,对程序的编制、机床的加工效率和零件的加工精度都有重要影响。为了编制出一个合理的、实用的加工程序,要求编程者不仅要了解数控车床的工作原理、性能特点及结构。掌握编程语言及编程格式,还应熟练掌握工件加工工艺,确定合理的切削用量、正确地选用刀具和工件装夹方法。因此,应遵循一般的工艺原则并结合数控车床的特点,认真而详细地进行数控车削加工工艺分析。其主要内容有:根据图纸分析零件的加工要求及其合理性;确定工件在数控车床上的装夹方式;各表面的加工顺序、刀具的进给路线以及刀具、夹具和切削用量的选择等。

(一)零件图分析

零件图分析是制定数控车削工艺的首要任务。主要进行尺寸标注方法分析、轮廓几何要素分析以及精度和技术要求分析。此外还应分析零件结构和加工要求的合理性,选择工艺基准。

1.尺寸标注方法分析

零件图上的尺寸标注方法应适应数控车床的加工特点,以同一基准标注尺寸或直接给出坐标尺寸。这种标注方法既便于编程,又有利于设计基准、工艺基准、测量基准和编程原点的统一。如果零件图上各方向的尺寸没有统一的设计基准,可考虑在不影响零件精度的前提下选择统一的工艺基准。计算转化各尺寸,以简化编程计算。

2.轮廓几何要素分析

在手工编程时,要计算每个节点坐标。在自动编程时要对零件轮廓的所有几何元素进行定义。因此在零件图分析时,要分析几何元素的给定条件是否充分。

3.精度和技术要求分析

对被加工零件的精度和技术进行分析,是零件工艺性分析的重要内容,只有在分析零件尺寸精度和表面粗糙度的基础上,才能正确合理地选择加工方法、装夹方式、刀具及切削用量等。其主要内容包括:分析精度及各项技术要求是否齐全、是否合理;分析本工序的数控车削加工精度能否达到图纸要求,若达不到,允许采取其他加工方式弥补时,应给后续工序留有余量;对图纸上有位置精度要求的表面,应保证在一次装夹下完成;对表面粗糙度要求较高的表面,应采用恒线速度切削(注意:在车削端面时,应限制主轴最高转速)。

(二)夹具和刀具的选择

1.工件的装夹与定位

数控车削加工中尽可能做到一次装夹后能加工出全部或大部分代加工表面,尽量减少装夹次数,以提高加工效率、保证加工精度。对于轴类零件,通常以零件自身的外圆柱面作定位基准;对于套类零件,则以内孔为定位基准。数控车床夹具除了使用通用的三爪自动定心卡盘、四爪卡盘、液压、电动及气动夹具外,还有多种通用性较好的专用夹具。实际操作时应合理选择。

2.刀具选择

刀具的使用寿命除与刀具材料相关外,还与刀具的直径有很大的关系。刀具直径越大,能承受的切削用量也越大。所以在零件形状允许的情况下,采用尽可能大的刀具直径是延长刀具寿命,提高生产率的有效措施。数控车削常用的刀具一般分为3类。即尖形车刀、圆弧形车刀和成型车刀。

(1)尖形车刀。以直线形切削刃为特征的车刀一般称为尖形车刀。其刀尖由直线性的主、副切削刃构成,如外圆偏刀、端面车刀等。这类车刀加工零件时,零件的轮廓形状主要由一个独立的刀尖或一条直线形主切削刃位移后得到。

(2)圆弧形车刀。除可车削内外圆表面外,特别适宜于车削各种光滑连接的成型面。其特征为:构成主切削刃的刀刃形状为一圆度误差或线轮廓误差很小的圆弧,该圆弧刃的每一点都是圆弧形车刀的刀尖,因此刀位点不在圆弧上,而在该圆弧的圆心上。

(3)成型车刀。即所加工零件的轮廓形状完全由车刀刀刃的形状和尺寸决定。数控车削加工中,常用的成型车刀有小半径圆弧车刀、车槽刀和螺纹车刀等。为了减少换刀时间和方便对刀,便于实现机械加工的标准化。数控车削加工中,应尽量采用机夹可转位式车刀。

(三)切削用量选择

数控车削加工中的切削用量包括背吃刀量ap、主轴转速S(或切削速度υ)及进给速度F(或进给量f)。

切削用量的选择原则,合理选用切削用量对提高数控车床的加工质量至关重要。确定数控车床的切削用量时一定要根据机床说明书中规定的要求,以及刀具的耐用度去选择,也可结合实际经验采用类比法来确定。一般的选择原则是:粗车时,首先考虑在机床刚度允许的情况下选择尽可能大的背吃刀量ap;其次选择较大的进给量f;最后再根据刀具允许的寿命确定一个合适的切削速度υ。增大背吃刀量可减少走刀次数,提高加工效率,增大进给量有利于断屑。精车时,应着重考虑如何保证加工质量,并在此基础上尽量提高加工效率,因此宜选用较小的背吃刀量和进给量,尽可能地提高加工速度。主轴转速S(r/min)可根据切削速度υ(mm/min)由公式S=υ1000/πD(D为工件或刀/具直径mm)计算得出,也可以查表或根据实践经验确定。

(四)划分工序及拟定加工顺序

1.工序划分的原则

在数控车床上加工零件,常用的工序的划分原则有两种。

(1)保持精度原则。工序一般要求尽可能地集中,粗、精加工通常会在一次装夹中全部完成。为减少热变形和切削力变形对工件的形状、位置精度、尺寸精度和表面粗糙度的影响,则应将粗、精加工分开进行。

(2)提高生产效率原则。为减少换刀次数,节省换刀时间,提高生产效率,应将需要用同一把刀加工的加工部位都完成后,再换另一把刀来加工其他部位,同时应尽量减少空行程。

2.确定加工顺序

制定加工顺序一般遵循下列原则:

(1)先粗后精。按照粗车半精车精车的顺序进行,逐步提高加工精度。

(2)先近后远。离对刀点近的部位先加工,离对刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间。此外,先近后远车削还有利于保持坯件或半成品的刚性,改善其切削条件。

(3)内外交叉。对既有内表面又有外表面需加工的零件,应先进行内外表面的粗加工,后进行内外表面的精加工。

(4)基面先行。用作精基准的表面应优先加工出来,定位基准的表面越精确,装夹误差越小。

加工工艺范文8

1.1加工设备选择

目前,HXD1C车轮辐板面精加工主要使用数控立式车床,按车轮设计尺寸要求,设备工作台直径一般以1600mm为宜,最大切削直径一般为2000mm,垂直方向一般为900mm;工作台一般配备三幅或四幅硬爪用于工件固定,设备一般配备刀库并可自动换刀,以便于加工连贯性。其他设备参数视不同设备厂家产品型号可进行相应的调整。

1.2刀具选择

HXD1C机车车轮加工工艺辐板面精加工过程中,国内一般采用直径为32mm或25mm的圆刀片进行,刀具材质一般以硬质合金为基础,根据不同厂家特有技术决定是否添加涂层,以提高刀具性能。

1.3常用工艺方案简述

在HXD1C车轮辐板面精加工过程中,除去磨耗极限、退轮槽、内外侧面校正圆与制动盘安装面(也可以使用圆弧刀加工)后,其他位置均使用圆刀片进行加工,刀具进给速度快,表面加工质量优异;加工过程分半精车与精车两部分,加工轨迹线性连续,从加工面的一端加工至另一端结束,编程简便。但在此工艺方案中圆弧刀片的使用存在明显的缺点。由于刀片形状特性,在加工圆弧轮廓时,刀片与工件接触面积较大,产生过大的切削力,对刀片使用寿命产生不良影响;同时,机床超载严重,不利于设备精度等级的长期保持;刀片断屑效果不佳,且铁屑多为较长的带状发条屑,设备排屑困难,过长的铁屑使加工过程中易产生划伤、碰撞、积压等负面影响,降低产品合格率,甚至伤及操作人员。,按车轮设计尺寸要求,设备工作台直径一般以1600mm为宜,最大切削直径一般为2000mm,垂直方向一般为900mm;工作台一般配备三幅或四幅硬爪用于工件固定,设备一般配备刀库并可自动换刀,以便于加工连贯性。其他设备参数视不同设备厂家产品型号可进行相应的调整。

2新式工艺方案说明

结合上述问题,对原方案中车轮内外辐板面车削部分进行优化,引用菱形刀配合圆弧刀交替加工的方式。以车轮外侧辐板面为例,使用尖刀替代圆弧刀执行原工艺方案中加工内侧圆弧外轮廓———制动盘安装面———加工外侧圆弧外轮廓———校正圆的切削部分,保留其余圆弧刀加工轨迹,并相应调整加工参数。常用加工工艺中“车轮外侧面半精车、精车”的加工过程一般分为三步。利用圆刀片加工轮毂面—内侧R70/R16圆弧面—制动盘安装面—外侧R16圆弧面—轮毂面;利用菱形刀具加工校正圆及磨耗极限;利用切槽刀加工外侧面退轮槽。加工工艺优化方案充分发挥菱形刀片的使用率,以降低设备负载、提高断屑能力为原则,重新设计车轮加工轨迹。利用菱形刀片加工制动盘安装面—外侧R16圆弧—校正圆;利用圆刀片加工外侧面轮辋面;利用菱形刀片加工磨耗极限并半精加工内侧R16圆弧;利用圆刀片加工轮毂面并精加工内侧R70/R16圆弧;切槽刀加工外侧面退轮槽。

3结语

加工工艺范文9

关键词:大型重件;机械加工;制造工艺

机械加工能够在将原料或者半成品制成成品的基础上运用科学的制作工艺使其更加完美,一般情况下,大型重件机械加工制造的零件主要是指可以装配成机器、仪表以及各种设备的基本制件。本文将简单介绍大型重件机械加工制造的定义及其制造工艺,并从优化设计方案,选好毛坯,优化液压设备系统等三个方面来探讨提高大型重件机械加工制造工艺技术的措施。

一、大型重件机械加工制造的定义及其工艺

在各大型重件的制造环节中最关键的是机械加工,大型机械加工制造工艺分为三个流程,即成品设计流程,设计方案,加工成品等。1)成品设计流程就是根据原有成品的特征与设计,不断地对其进行研究与改造,从而设计全新产品。2)设计方案主要是根据成品的需要来绘制图纸,制定产品加工方案,并选取最佳制作工艺。3)加工成品就是利用各种工艺技术来制作成品,完成零件加工工作。目前,大型重件机械加工离不开机床的辅助,机床是由动力驱动的固定式机器,用于切割、塑造或者合成,从而把金属加工成零件。机床的出现可以追溯到18世纪蒸汽发动机发明的时代,最常见的机床是19世纪中期设计出来的。时至今日,已有几十种不同的机床运用于工厂的车间与作坊。通常分为七种类型,即旋削式机床(例如车床、牛头刨床和刨床),动力钻头、直立钻床、铣床、磨床、动力锯、压制式机床(像冲床)。其中,车床这种进行车削加工的机床可以使加工件旋转,用刀具去掉多余材料,操作的种类有平直车削或者圆锥型车削、开槽、割肩、车螺纹和刮旋圆柱形部件顶端平面。内圆车削叫作镗孔,最通常的是孔加工如钻孔、镗孔、扩孔、钻埋头孔等。使用牛头刨床时工件通常放在夹持于工作台上的虎銛或者类似夹具中,可在恰当的角度用手动或者机动方式将虎銛送入形如砍凿的单刃切削工具上的行程。在刀具每一行程终了时,工作台使工件作小量间歇进给。可调整的刀架能使牛头刨床削出彼此差不多可成任意角度的沟槽和平面。最大的牛头刨床有0.9米长的切削行程,能够加工0.9米长的部件。使用刨床应注意将工件固定在单刃刀具下做往复运动的水平工作台上。要将刀具夹持装置安装在横梁上,刀具通过工作台时可以做小量的侧向运动。由于刀具几乎能以任何角度移动,它能刨削各种各样的沟槽和平面。铣床是在轴线周围对称排列着许多切削刃的圆形刀具绕轴线旋转的一种机床。在铣床上,金属工件通常夹持在虎銛或者类似的夹具内,虎銛则卡紧在可以沿3个相互垂直方向移动的工作台上。多种形状和大小的刀具可用于广泛的铣削操作,可以加工平面、凹槽、台肩、斜面、楔形和T形槽。齿形排列不同的刀具可以用来磨削凹面和凸槽、磨圆角、切削齿槽。磨床是用旋转的砂轮改变坚硬物体的形状和尺寸的机床。磨光是各种基本机械处理过程中最为精确的一项。各种磨床都使用由人造磨料制成的砂轮。磨削工件外圆时,要把小砂轮安装成工件的内孔中来回运动,工件夹在旋转的夹具内。在平面磨床上,则是把工件固定在旋转砂轮下来回运动的工作台上。冲床是将压力加到装有金属板材工件的模具上,以改变板材大小和形状的机床,通常由电动机驱动。模具的形状和结构决定该产品的形状。冲床的冲头一般都安装在机器来回运动的撞锤上,模具夹在床身或者砧座上,床身或者砧座平面都与撞锤的运动方向垂直。

二、提高大型重件机械加工制造工艺技术的措施

(一)优化设计方案

大型重件机械加工制造工艺的设计方案是根据成品的需要来绘制图纸,制定最佳产品加工方案。因此必须优化设计方案,及时校对图纸,确保图纸的准确度,提高制造方案的科学性。

(二)选好毛坯

毛坯主要是指已具有所要求的形体,还需要再进行加工的成品与半成品,机械加工制造工艺与加工质量对毛坯的要求很高,因此,必须选好毛坯,根据毛坯的材料与种类进行精心挑选。

(三)优化液压设备系统

因为进行机械加工制造时离不开液压设备的辅助,传统的液压设备系统已经不能满足现代机械加工制造的要求,因此必须优化液压设备系统,提高液压机的质量。

三、结语

综上所述,机械加工是各大型重件的制造环节中最关键的环节,大型机械加工制造工艺分为三个流程,即成品设计流程,设计方案,加工成品等。提高大型重件机械加工制造工艺技术则需要优化设计方案,选好毛坯,优化液压设备系统,这样方能全面提高大型重件机械加工制造工艺技术。

参考文献:

[1]朱雪青.大型焊接薄壁件军用快装式汽轮机底盘机械加工精度保证的技术攻关[J].机电信息,2015(3).

[2]张景利,何耿皇,李文涛等.大型锻造件筒节切削加工性及提高切削效率措施[J].机械工程师,2015(5).

[3]孙壮,杨志成.大型复杂形状不锈钢管道件的整体加工工艺研究[J].中国机械,2015(3).

[4]邱雪松,刘佳启,侯雨.核电加氢大型回转件自动化超声波探伤系统[J].制造技术与机床,2014(4).

加工工艺范文10

【关键词】加工工艺;主轴;深孔加工

车床主轴属于大批生产而又工序分散的加工工艺过程,概括为下列三个阶段:

⑴粗加工阶段。其主要目的是:用大的切削量切除大部分余量,把毛坯加工至接近工件最终的形状和尺寸,只留下小量的加工余量,还可及时发现锻件裂缝等缺陷,作出相应措施。主要包括①毛坯备料、锻造和正火;②粗加工:锯去多余部分、铣端面打中心孔和普车外圆等。

⑵半精加工阶段。其主要目的是:为精加工作好准备、尤其是作好基面准备。对一些要求不高的表面,在这个阶段达到图纸规定的要求。主要包括①半精加工前热处理:对45钢采用调质处理以达到HBS235;②半精加工:车工艺锥面(定位锥孔)、半精车外圆端面和钻深孔等。

⑶精加工阶段。其的目的是:把各表面都加工到图纸规定的要求。主要包括①精加工前热处理:局部高频淬火;②精加工前各种加工:粗磨工艺锥面(定位锥孔)、粗磨外圆、铣键槽和花键槽,以及车螺纹等;③精加工:精磨外圆和内、外锥面一保证主轴最重要表面的精度。

1.定位基准的选择

以CA6140车床主轴为例,该主轴毛坯是实心的,但最后要加工成空心轴,从选择定位基准面的角度来考虑,希望采用顶尖孔来定位,而把深孔加工工序安排在最后;但深孔加工是粗加工工序,要切除大量金属,会引起主轴变形而影响加工质量,所以只好在粗车外圆之后就把深孔加工出来。在成批生产中深孔加工之后,为了还能用顶尖孔作定位基准面,在轴的通孔两端加工出工艺锥面,插上两个带顶尖孔的锥堵或带锥堵的心轴来安装工作。

2.加工工序的确定

通过分析空心和内锥特点的轴类零件,最后确定主轴的加工工序为:外表面粗加工—钻深孔—锥孔粗加工—外表面精加工—锥孔精加工;该方案磨削力不大,在锥孔精加工时,虽然用已精加工过的外圆表面作为精基准面,但由于锥面精加工的加工余量已很小,同时锥孔的精加工已处于轴加工的最终阶段,对外圆表面的精度影响不大,可以采用外圆表面和锥面互为基准,交替使用,能逐渐提高同轴度。

3.主轴加工中的关键工艺

普通机床进行主轴加工的工艺很复杂,工序也比较多,针对主轴加工的工艺分析,我认为主要要解决下面5关键工艺:

3.1锥堵和锥堵心轴的使用

对于空心的轴类零件,在深孔加工后,为了尽可能使各工序的定位基准面统一,一般都采用锥堵或锥堵心轴的顶尖孔作为定位基准。当锥度较大时,就用带锥度的拉杆心轴,当主轴锥孔的锥度比较小时,就用锥堵。该主轴的锥孔分别为1:20和莫氏6号,锥度较小故选用锥堵,如图2所示。该轴壁厚较薄,如果用力过大,会引起轴件变形,使轴出现圆度误差等。为防止这种变形,使用塑料或尼龙制的锥堵心轴有良好效果。

3.2顶尖孔的研磨

对于实心轴或锥堵上的顶尖孔,因为要承受工件的重量和切削力的作用,而常会磨损;并且工件在热处理时,顶尖孔也会随之变形。因此,在热处理工序之后和磨削加工之前,对顶尖孔要进行研磨,以消除误差。本文采用油石或橡胶砂轮进行研磨,研磨时先将圆柱形油石或橡胶砂轮夹在车床的卡盘上,用装在刀架上的金刚石将油石或橡胶砂轮前端修整成顶尖形状,接着将工件顶在油石或橡胶砂轮顶尖和车床后顶尖间,在加上少量油,然后开动车床使油石或橡胶砂轮转动,进行研磨。研磨过程中,用手把持工件并使它连续而缓慢地转动。

3.3组合磨削

组合磨削或称多片砂轮磨削,是利用增大磨削面积以提高磨削效率的一种有效措施。一台磨床上安装几片砂轮,可以同时加工零件的几个表面,主轴的前后轴颈锥面、短锥面和前端的精加工,均采用组合磨削的方法。磨削的方法:⑴先粗磨前后轴颈锥面,磨完后进行砂轮精细修整;⑵分两种工位进行精磨,首先精磨前后轴颈锥面,完成后,设计图纸规定的角度成型砂轮,先后磨削主轴前端支承面和短锥面。

3.4深孔加工

该主轴内孔L/d≈18,属深孔加工。深孔加工要比一般的孔加工困难和复杂些,因为孔的深度增大以后,刀杆较长,刀具钢度变差,容易引起振动和钻偏孔;其次是刀刃在工件深处进行切削。冷却液不易注入切削区,散热条件差,使刀具很快磨损;加上切削难于排出,容易堵塞而无法连续加工。该轴加工采用工件转动,刀具作轴向送进运动。这种方式钻出的孔轴线与工件的回转轴线能达到一致。如果钻头偏斜,则钻出的孔有锥度;如果钻头轴线与工件回转轴线在空间斜交,则钻出的孔的轴向截面是双曲线,但不论如何,孔的轴线与工件的回转轴线仍是一致的。深孔加工的排屑和冷却见图2冷却液从钻头外部输入,从钻头内部排出。有一定压力的冷却液沿箭头指示方向经刀杆与孔壁之间的通道进入切削区,起到冷却作用,然后经钻头和刀杆的内孔带着大量切削排出。

3.5主轴锥孔加工

主轴前端锥孔和主轴支承轴颈及主轴前端短锥的同轴度要求高,因此磨削主轴的前端锥孔,成为机床主轴加工的关键工序。该主轴前端锥孔,以支承轴颈作为定位基准,将前后支承轴颈分别装在两个中心架上,用千分表校正好中心架位置。工件通过弹性连轴节或万向接头与磨床床头主轴连接。这种方式可以保证主轴轴颈的定位精度,而又不受磨床床头误差的影响。

在本文中介绍了典型轴类零件加工工艺过程的制订及关键工艺方案等。在关键技术工艺选择上透视了先进制造工业的重要性,但是研究也有不足,如主轴锥孔加工的方案虽然可行,但是不经济也有一定的质量误差,有待进一步研究。

参考文献

加工工艺范文11

关键词: 变形、同轴度、圆度

中图分类号:C35文献标识码: A

0引言

钢板类机座在使用后释放残余应力导致机座变形,引起振动。

为保证电机的制造质量,特别是电机机座两端止口与铁心及两端面对轴线的端面圆跳动,这些形位公差对电机的整体性能有很大的影响,为了更好的满足其形位公差要求,对机座的加工工艺进行研究。

1预期目的

通过对机座的结构进行分析,确定合理的加工工艺方案和加工方法,保证其形位公差的加工质量要求。

2实施过程

2.1机座变形产生原因分析

机座在电机中通常起着支撑和固定定子铁心作用,通过机座与端盖的配合来支撑转子和保护定子绕组。机座体本身属于薄壁件,加工过程中易变形,不仅造成止口及铁心圆度超差,也造成止口与铁心同轴度偏差,其中影响机座变形的原因有以下三种:机座钢性不足.焊接应力.装夹应力。

a)机座钢性不足:对于铸铁机座由于机械性能不合格使机座强度、刚度降低,容易产生变形。对于钢板机座,设计的结构不合理,导致机座钢性差,机座的吊运翻转都会无规律的产生变形。

b)焊接应力:由于焊接件或铸铁件本身存在内应力,因而使机座变形,此应力的消除通常采用自然实效或退火实效处理。

c)装夹应力:装夹不当,装夹各点没有均匀夹紧,压紧点处变形严重,产生反弹。

d)切削加工应力:切削加工产生的应力。尤其是粗车量大,切削热比较集中,容易使机座变形。

2.2 机座加工工艺方案确定

针对以上机座变形的几点原因,对加工机座进行了一些小小的改革。为更好的消除焊接应力和粗加工带来的装夹和加工应力,将退火工序移到粗加工后进行;大型机座金加工方式可在立式车床或镗床上加工,针对不同的加工方式,采用不同的措施,在立车上加工时采用在压紧点处增加螺旋支撑,避免装夹后的反弹现象,减少机座变形;在镗床上镗削时需改变加工过程,即将加工后的定子铁心压入机座后进行镗削两端止口及端面,此工艺在加工前需找正铁心内径,再镗两端止口及止口端面,这样可以提高机座的整体刚性减少装夹变形,还可以消除机座加工、铁心制造和装配时产生的误差,从而提高了机座止口圆度及同轴度的加工精度【1】,但必须保证底脚平面度小于0.15mm,且用塞尺检测平面度值。

2.2.1为更好的减少应力采取的小改革:

以往工艺中规定机座焊成后进行退火处理,从而消除大部分焊接应力,但由于粗加工中加工量较大,会产生大量的加工应力和装夹应力无法释放,残余的应力会在机座使用后释放出来,导致机座变形。为了更好的消除应力,将退火工序改到机座粗车后进行,粗车留量直径方向5mm,端面单边3mm。

2.2.2立式车床加工机座时为防止装夹变形采取的小改革:

以往立式车床加工机座时,采用的是配车车胎工艺,即根据机座止口尺寸配车车胎,配胎间隙在0.06mm以内,车胎止口高度为5-8mm,机座落到胎上后用百分表找正,用压板将其压紧,此工艺虽在加工前找正夹紧,但由于压紧点处悬空,导致机座加工完松夹后产生反弹性变形,针对此情况,在悬空点处增加支撑,压紧时均匀受力,避免了装夹过程中机座的变形情况,且在精车前需方式夹紧力,带切削热散出即加工面达到室温时再进行精车。

2.2.3为保证定子铁心内圆与机座止口的同轴度【2】,在镗床上加工机座时采取的小改革:

a)机座两端止口粗车完成,铁心加工成。为提高加工效率,可在普通立车上加工,长度单边留2mm余量,径向留2-3mm的余量。

b)在立车或是镗铣床上将机座底脚加工完成,表面粗糙度达到设计要求(不低于12.5um),平面度在0.20mm-0.30mm之内。

c)将加工后的定子铁心压入机座,以铁心内圆为基准找正,精镗机座两端止口及端面,因其镗床的装夹点在底脚处,机座为卧式装夹,减少了变形量,且因其是以铁心内径为基准找正,消除了机座加工、铁心制造和装配时产生的误差,从而提高了机座止口圆度及同轴度的加工精度。但此加工方法,耗时大,仅适用于形位公差要求较高的特殊产品。

3. 结论

按上述工艺加工,机座两端止口圆度、止口与铁心内圆的同轴度加工精度明显提高且能满足图纸要求。

参考文献

[1] 严雪怡.电机制造工艺学.上海;上海科学技术出版社,1960年1月

[2] 龚. 电机制造工艺学. 北京;机械工业出版社,1984年11月

作者简介:

加工工艺范文12

关键词:曲柄;效率;加工工艺

引言

在新机研制期间,零件结构及各种参数都需要经过试验才能最终确定,使用最少的工艺装备,利用各种办法将零件在最短的时间内加工出来,节省研制费用是目的所在。

1 某机一级曲柄结构特点及技术要求

某研制机一级曲柄材料为1Cr11Ni2W2MoV,其结构是由基准圆柱上连接三个不在同一水平面上的外臂,基准圆柱底面及大孔中心为零件基准,零件上的孔及装配关节轴承处的槽是零件的关键部分。零件上孔的精度等级为7级精度,各孔相对大孔及基准圆柱下表面位置度为Ф0.03;槽的上下面对基准面的尺寸公差为±0.05mm,槽处臂厚3.5mm,槽宽5mm,槽底的转接圆角为R0.5和R1。

2 一级曲柄加工工艺分析

零件上与轴承配合的孔尺寸精度及位置度要求较高,零件基准面小,装夹定位困难,零件孔位置度及连接槽尺寸测量困难。

合理安排工艺方案,在零件上留工艺压紧部位,磨出基准,始终以磨出的基准定位找正,进行上、下表面及三处连接槽的加工,使零件的加工及测量更加方便。在加工上、下表面时采用铣加工,精密孔在数控镗床上加工,连接槽采用慢走丝线切割加工。

3 一级曲柄加工工艺

通过以上工艺分析制定主要工艺路线如下。

毛料铣六方磨基准面镗基准孔铣上表面铣下基准面镗孔线切割三处槽(分三个工序)线切割外型去除重熔

层。

零件毛料为锻件,为提高新机研制进度,毛料采用自由锻,锻成方料。

在普通立式铣床上将毛料六面铣平。上、下大面按尺寸要求留出磨削量,其余侧面铣去的量尽可能少,为后续工序留的压紧面尽量大。

磨基准面工序磨削零件上下表面及两相邻侧面,上下面相互平行度不大于0.01mm,磨削的相邻表面相互垂直度不大于0.02mm,磨削后表面作为后续工序的定位、找正基准。

铣上表面工序,在数控铣床上,以磨削后基准表面作为定位面,用压板压紧上表面,拉直找正磨削侧面,以下表面上镗削后的基准孔中心作为加工坐标系原点进行铣加工。粗加工则可选择不带底R的立铣刀去除大部分余量,给精加工留0.2mm~0.3mm加工余量。由于三处外臂上下表面不在同一平面内,与基准圆柱相连处有转接R,需用带R的圆柱立铣刀或球头立铣刀进行加工,用球头立铣刀加工时平面处需另一把平头立铣刀,两把刀加工易使加工面产生接刀痕,为使加工表面不产生接刀痕,使用一把带R的圆柱立铣刀既可加工出R又可加工平面。加工时尽量选择大直径的刀具,零件凸台边外臂较宽,与侧壁较近,为保证转接R处加工相对完整,又不碰到凸台外臂(如图1所示),最后选择直径8mm带底R的立铣刀进行精加工。零件加工后如图2所示。

铣下基准面工序,零件翻面,用压板压紧上表面,拉直找正磨削侧面(与上工序相同),以上表面上镗削后的基准孔中心作为加工坐标系原点进行数控铣加工。零件加工时有一处深槽,为避免打刀,采用小切深(ap=0.15mm)、大进给(f=300-500mm/min)的方式进行铣加工,加工中充分浇注冷却液,提高刀具寿命,降低加工成本。零件上转接R与上工序相同,为减少刀具种类,粗精加工使用刀具与上工序相同。加工后零件如图3所示。

以上两道铣工序均利用UGCAM软件编制数控程序,对数控程序进行优化,选择合理步距,缩短区域内、区域间抬刀距离,控制进退刀距离,减少刀具空行程时间,提高零件加工效率。将UG毛坯和零件模型转化为STL文件导入VERICUT仿真软件,并将UGCAM生成的数控程序添加进去,进行数控程序仿真,在分析菜单下选择自动――比较选项,查看零件加工过程中是否产生过切、残留,当存在过切、残留等现象时,通过分析VERICUT日志信息,对数控程序进行调整。对调整后的数控程序重新进行仿真,直至在自动――比较图框下出现没有区别时,在VERICUT界面下方信息提示栏会提示模型是一致的时,可将该程序用于现场生产。

镗孔工序,在数控镗床上进行,以零件基准面为下表面,用垫块垫起,将零件找平,拉直找正零件磨削侧面用4个压板将零件压紧。零件上孔的位置度和尺寸精度较高,工艺上采用了打点-钻孔-扩孔-镗孔-铰孔工艺方案,通过镗孔保证零件的位置度要求,铰孔保证零件的尺寸要求,降低了对操作者的技能要求。

该零件凸台处有Ф4和Ф9两种孔,在零件未进行切槽前形成台阶孔,需要注意Ф9孔的加工深度,由于铰刀前端存在倒角,铰削深度要大于孔深,将倒角长度让出,铰孔前的镗孔深度要保证足够的铰孔深度,扩孔深度要保证足够的镗孔深度且不破坏下端Ф4孔。经计算,用Ф8.5钻头扩孔深度为8mm,镗孔深度6.5mm,铰孔深度6mm。

镗孔加工后在此工序将线切割外型用穿丝孔一并加工完成。

线切割三处槽工序,分别以两磨削侧面为底面,拉直找正零件基准大面跳动不大于0.02,压紧零件上表面。分三个工序加工三处槽。

为保证零件加工质量,切槽工序在慢走丝机床上进行多次切割,多次切割时应注意在第一次切割完成后,应暂停检查料芯是否掉落,如料芯未掉落,应将料芯拨落或吸出,以免料芯与铜丝之间产生放电,影响零件加工质量。零件切割时应将Z轴降到尽可能低,避免零件产生鼓肚现象。

零件切槽后,第二天用百分表对槽进行检查,槽表面平面度较好在0.01mm以内,说明用慢走丝进行线切割槽可以有效控制零件加工变形。

线切割外型工序,将零件基准面向下放平,拉直找正磨削侧面,用压板压紧上表面。利用穿丝孔穿丝切割零件外型。切割零件外型时应注意,零件外型切割完成时零件向下落会产生倾斜,如铜丝继续放电,可能造成对零件已加工表面的破坏。需要采取相应的保护措施:如在零件外型切割完成时的程序中加M00进行暂停将零件取出;在零件进退丝处加小凸台对零件进行保护;用吸铁石将零件和余料吸在一起避免零件倾斜掉落(零件需有磁性)等。

全部线切割工序完成后,由钳工对零件线切割表面重熔层进行去除,去除该零件达到零件最终尺寸要求。至此,零件主要加工工序全部完成。