HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 高分子化学的应用

高分子化学的应用

时间:2023-08-20 15:01:14

高分子化学的应用

高分子化学的应用范文1

高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。

高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。

生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。下面就以塑料和纤维素举例说明。

一、生活中常见的高分子材料——塑料

塑料是一种合成高分子材料,又可称为高分子或巨分子,也是一般所俗称的塑料或树脂,可以自由改变形体样式。是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、剂、色料等添加剂组成的,它的主要成分是合成树脂。

塑料主要有以下特性:①大多数塑料质轻,化学性稳定,不会锈蚀;②耐冲击性好;③具有较好的透明性和耐磨耗性;④绝缘性好,导热性低;⑤一般成型性、着色性好,加工成本低;⑥大部分塑料耐热性差,热膨胀率大,易燃烧;⑦尺寸稳定性差,容易变形;⑧多数塑料耐低温性差,低温下变脆;⑨容易老化;⑩某些塑料易溶于溶剂。塑料的优点1、大部分塑料的抗腐蚀能力强,不与酸、碱反应。2、塑料制造成本低。3、耐用、防水、质轻。4、容易被塑制成不同形状。5、是良好的绝缘体。6、塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。塑料的缺点1、回收利用废弃塑料时,分类十分困难,而且经济上不合算。2、塑料容易燃烧,燃烧时产生有毒气体。3、塑料是由石油炼制的产品制成的,石油资源是有限的。

塑料的结构基本有两种类型:第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物;第二种是体型结构,具有这种结构的高分子化合称为体型高分子化合物。线型结构(包括支链结构)高聚物由于有独立的分子存在,故有弹性、可塑性,在溶剂中能溶解,加热能熔融,硬度和脆性较小的特点。体型结构高聚物由于没有独立的大分子存在,故没有弹性和可塑性,不能溶解和熔融,只能溶胀,硬度和脆性较大。塑料则两种结构的高分子都有,由线型高分子制成的是热塑性塑料,由体型高分子制成的是热固性塑料。塑料的应用:透明塑料制成整体薄板车顶。薄板车顶的新概念基于透明灵活的聚碳酸酯或硅树脂材料,可以被永久性地塑造成单个的聚碳酸酯薄板,也可作为可折叠铰链和封条。拜耳材料科技研发的原型总共配备了四个灵活的薄板部件,形成了四扇“顶窗”,每扇窗都可单独打开和关闭。导轨用于连接薄板部件,形成一个牢固、透明的聚碳酸酯车顶外壳。一个同样透明的管子沿车顶结构中央纵向放置,在“顶窗”打开后用来调节折叠薄板。这样可以形成三维立体结构,组件比平坦的薄板更加牢固。同时也大大降低了单个组件的数量。

二、生活中常见的高分子材料——纤维素

纤维素是由葡萄糖组成的大分子多糖。不溶于水及一般有机溶剂。是植物细胞壁的主要成分。纤维素是世界上最丰富的天然有机物,占植物界碳含量的50%以上。纤维素是自然界中存在量最大的一类有机化合物。它是植物骨架和细胞的主要成分。在棉花、亚麻和一般的木材中,含量都很高。

纤维素的结构:纤维素是一种复杂的多糖,分子中含有约几千个单糖单元,即几千个(C6H10O5);相对分子质量从几十万至百万;属于天然有机高分子化合物;纤维素结构与淀粉不同,故性质有差异。

纤维素的性能:纤维素不溶于水和乙醇、乙醚等有机溶剂,能溶于铜氨Cu(NH3)4(OH)2溶液和铜乙二胺 [NH2CH2CH2NH2]Cu(OH)2溶液等。水可使纤维素发生有限溶胀,某些酸、碱和盐的水溶液可渗入纤维结晶区,产生无限溶胀,使纤维素溶解。纤维素加热到约150℃时不发生显著变化 ,超过这温度会由于脱水而逐渐焦化。纤维素与较浓的无机酸起水解作用生成葡萄糖等,与较浓的苛性碱溶液作用生成碱纤维素,与强氧化剂作用生成氧化纤维素。

高分子化学的应用范文2

1.何为高分子化学

顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。

2.高相对分子质量与高强度

相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。

3.高分子科学的主要内容

既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连

接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。

二、高分子材料化学的应用

材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。

第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。

第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。

第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。

第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。

三、高分子化学与高科技的结合

当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。

随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。

第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹材料,如热塑性弹性体等。

第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。

第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。

可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。

四、高分子化学的可持续发展

研究高分子合成材料的环境同化,增加循环使用和再生使用,减少对环境的污染乃至用高分子合成材料治理环境污染,也是21世纪中高分子材料能否得到长足发展的关键问题之一。比如利用植物或微生物进行有实用价值的高分子的合成,在环境友好的水或二氧化碳等化学介质中进行化学合成,探索用前面提到的化学或物理合成的方法合成新概念上的可生物降解高分子,以及用合成高分子来处理污水和毒物,研究合成高分子与生态的相互作用,达到高分子材料与生态环境的和谐等。显然这些都是属于21世纪应当开展的绿色化学过程和材料的研究范畴。

参考文献:

[1]冯新德.展望21世纪的高分子化学与工业[J].科学中国人,1997,(11)

[2]王守德,刘福田,程新.智能材料及其应用进展[J].济南大学学报(自然科学版,2002,(01).

高分子化学的应用范文3

(一)知识脉络

本节教材在学生学习了淀粉、纤维素、蛋白质等天然有机高分子化合物之后,很自然地过渡到学习合成有机高分子化合物,首先介绍有机高分子化合物的相对分子质量,然后初浅地以聚乙烯、聚氯乙烯为例介绍有机高分子化合物的结构与基本性质,合成高分子化合物在溶剂中的溶解和在不同温度时的性能变化等性质是与合成高分子化合物的科学研究及生产加工密切相关的;最后简单介绍了常见高分子塑料、橡胶、纤维中某些有代表性的品种。

(二)知识框架

(三)新教材的主要特点:

新教材依然保持紧密联系实际和新的化学知识从生活和生产实际切入的风格,也注意了紧密联系学生已学过的知识如烯烃的加成反应、羧酸的酯化反应等,以帮助他们理解高分子化合物的性质、正确书写重要高聚物加聚反应的化学方程式,复习巩固已学的有机化学知识,也为他们选择后续的选修模块“有机化学基础”奠定必要基础。

二.教学目标

(一)知识与技能目标

1.引导学生初步认识有机高分子化合物的结构、性质及其应用,学会书写重要加聚反应的化学方程式,了解合成高分子化合物的主要类别及其在生产、生活、现代科技发展中的广泛应用。

2.引导学生学习和认识由塑料废弃物所造成的白色污染和防治、消除白色污染的途径和方法,培养他们的绿色化学思想和环境意识,提高他们的科学素养。

3.通过多样化的学习活动(自主检索、收集、分类比较、展示等)使学生了解塑料、合成橡胶、合成纤维的主要品种以及它们的原料来源与石油化工、煤化工的密切联系,同时提高他们的学习能力,丰富他们的学习方式。

(二)过程与方法目标

1.让学生通过网络、书籍等途径收集各种各样的材料及图片、实物,课堂上采用互动式教学,激发学生探究有机合成材料的组成、性能的兴趣。。

2、通过“迁移•应用”、“交流•研讨”、“活动•探究”等活动,提高学生分析、联想、类比、迁移以及概括的能力。

(四)情感态度与价值观目的

1、通过“迁移•应用”、“交流•研讨”、“活动•探究”活动,激发学生探索未知知识的兴趣,让他们享受到探究未知世界的乐趣。

2.引导学生学习和认识由塑料废弃物所造成的白色污染和防治、消除白色污染的途径和方法,培养他们的绿色化学思想和环境意识,提高他们的科学素养。

三、教学重点、难点

(一)知识上重点、难点

重要高聚物的加聚反应及其化学方程式

(三)方法上重点、难点

有机高分子化合物的结构与性质的关系的理解

四、教学准备

(十二)学生准备

1.课前让学生通过网络、书籍等途径收集各种各样的材料及图片、实物。

2.收集有关废弃塑料造成的白色污染、危害及其防治方法的资料。

(十三)教师准备

教学媒体、课件;准备“活动•探究”实验用品。

五、教学方法

问题激疑、实验探究、交流讨论、

六、课时安排

3课时

七、教学过程

第一课时

【引入】人类的生产和生活离不开各种各样的材料,请同学们根据自己收集的资料结合已有的知识对材料进行分类。

【点评】课前让学生通过网络、书籍等途径收集各种各样的材料及图片、实物,课堂上采用互动式教学。

【交流、投影】

无机非金属材料(如:晶体硅、硅酸盐材料等)

无机材料

无机金属材料(包括金属和合金)

材料天然有机高分子材料(如:棉花、羊毛、蚕丝、天然橡胶等)

有机材料合成有机高分子材料(如:塑料、涂料、合成纤维、合成橡胶等)

新型有机高分子材料(如:高分子分离膜等)

【联想、质疑】在日常生活中,你一定接触过许多塑料、合成橡胶、合成纤维制品。你能举例说明吗?它们是什么原料制造的?它们具有哪些优于天然材料的性能?

【点评】通过回忆生活中的常识激发学生探究有机合成材料的组成、性能的兴趣。

【练习】计算葡萄糖和硬脂酸甘油酯的相对分子质量。

【质疑】经计算,它们的相对分子质量分别为180和890。数值已经不小,但是,我们仍称它们为低分子化合物,简称小分子;那么,什么是高分子化合物或高分子呢?

【讲述】如果有机化合物的相对分子质量达到几万到几百万,我们就称它们为有机高分子化合物,简称高分子或聚合物。像以前所学过的淀粉、纤维素、蛋白质等物质都属于有机高分子化合物。有机高分子化合物的结构有哪些特点呢?

【引题、板书】一、有机高分子化合物

1.有机高分子化合物的结构特点

【讲述】有机高分子化合物虽然相对分子质量很大,但是它们的结构并不复杂,通常是由简单的结构单元连接而成的,例如,聚乙烯是由结构单元重复连接而成的,聚氯乙烯是由结构单元重复连接

而成的,其中的n表示结构单元重复的次数。

【投影讲述】高分子中的结构单元连接成长链,这就是通常所说的高分子的线型结构。具有线型结构的高分子,可以不带支链,也可以带支链。高分子链上如果有能起反应的原子或原子团,当这些原子或原子团发生反应时,高分子链之间将形成化学键,产生一定的交联形成网状结构,这就是高分子的体型结构。

【过渡】由于有机高分子化合物的相对分子质量大及其结构的特点,因而使它们具有与小分子不同的一些性质。

【活动、探究】将教材的“观察•思考”涉及的实验改成学生分组实验(2~4人一组)。

1.从废旧轮胎上刮下的一些橡胶粉末约0.5g放入试管中,加入5mL汽油,观察粉末能否溶解。

2.取内径比实验室用导气胶管外径稍大的试管,胶管与试管等长。向试管中加入少量汽油后,将胶管插入试管,再用滴管向胶管内孔中滴满汽油,稍侯,可见胶管伸长。

3.取一小块聚乙烯塑料碎片,用酒精灯加热直至熔化时停止加热,等冷却后再加热,反复几次后点燃,观察变化的全过程。

【交流、讨论、板书】2.有机高分子化合物的主要性质

⑴溶解性:难溶于水,在有机溶剂中也只能溶胀并极缓慢。

⑵热塑性和热固性

⑶电绝缘性

⑷不耐高温易燃烧

【讲述】聚乙烯塑料受热到一定温度范围时,开始变软,直到熔化成流动的液体。冷却后又变为固体。加热后又熔化,这种现象就是线型高分子的热塑性。有些体型高分子一经加工成型就不会受热熔化,因而具有热固性,如酚醛树脂。高分子化合物中的原子是以共价键结合的,因此它们一般不导电。

【小结】结构决定性质,性质决定用途,正因为有机高分子化合物有以上的主要性质,决定了高分子材料在国民经济发展和现代科学技术中的重要作用。

作业:探究活动:学生分为若干小组通过去图书馆、上网查阅资料探究以下问题:

1.我们身边有哪些高分子化合物;

2.高分子化合物对工农业生产和生活有哪些重要作用;

3.了解高分子化合物的新发展,例如可导电的高分子材料、可降解塑料等。

并动员学生运用所学知识回答下列问题:

1.为什么聚乙烯塑料凉鞋破裂可以热补,而电木插座不能热修补。

2.装苯的试剂瓶不能用普通的胶塞的原因。

3.家贸市场上出售的香油的胶塞为什么要用玻璃纸包起来,如果不包起来会出现什么后果。

第二课时

【联想、质疑】现在,人们在日常生活中经常与塑料打交道,工农业生产和国防建设也大量使用塑料。那么,究竟什么是塑料?它们是怎样制成的?

【讲述】塑料的主要成分是被称为合成树脂的有机高分子化合物。例如,聚乙烯就是生产聚乙烯塑料的合成树脂。聚乙烯是以石油化工产品乙烯为原料,在适宜的温度、压强和引发剂存在的条件下发生反应而制得的。反应时,乙烯分子中碳碳双键中的一个键断裂,然后相互两两加成而聚成含n个结构单元的相对分子质量达几万以上的聚乙烯树脂。

【板书】二、塑料

【讲述】讲述聚合反应和加聚反应的概念。

【讲述、投影】塑料与合成树脂

⑴塑料是由合成树脂及填料、增塑剂、稳定剂、色料、防老剂等添加剂组成的。

⑵树脂是指还没有跟各种添加剂混合的高聚物。

⑶有些塑料基本上是由合成树脂所组成的,不含或少含其它添加剂,如有机玻璃等。

【迁移、应用】氯乙烯、苯乙烯、四氟乙烯在引发剂作用下经过聚合反应所得聚合物都是重要的合成树脂。⑴它们为什么和乙烯一样,也能发生加聚反应?⑵写出化学反应式。

【交流、讨论】组织学生交流讨论聚合反应的书写技巧,尤其苯乙烯的聚合反应,可以适当点拨:将苯基(—C6H5)当作支链,使双键碳原子作为端点碳原子,以便于两两加成聚合。

【阅读】塑料王与工程塑料ABS的用途。

【过渡】聚乙烯是当今世界上产量最大的塑料产品,它有着广泛的应用。

【阅读、讨论】聚乙烯的性质和用途。

【讲述】塑料工业的发展,极大地提高了人们的生活质量,但是这些结构稳定、难以分解的塑料废弃物的急剧增加也带来了严重的环境问题。全世界每年产生数千万吨的废旧塑料,比如聚乙烯、聚苯乙烯等它们聚集在海洋里、地面上、土壤中,造成白色污染。白色污染已成为困扰人类社会的一大公害。减少与消除白色污染既要全社会共同努力,从我做起,少用并及时回收、再生,也要依靠科技,生产可降解的塑料。

【指导阅读】塑料的回收利用与可降解塑料。

作业:探究活动:

1.收集有关废弃塑料造成的白色污染、危害及其防治方法,在各社区进行宣传或提出倡议。

2.课外实验,参照教材第97页动手实践的方法进行废旧塑料裂解得燃气与燃油的实验。

3.收集橡胶制品的图片

第三课时

【引题】今天我们讨论第二大合成材料合成橡胶。

三、合成橡胶

【展示】展示课前同学们收集的橡胶制品的图片。

【交流、研讨】结合你已有的知识和生活常识思考:

1.橡胶的特性是什么?由此决定着它有哪些用途?

2.根据来源和组成不同,常用的橡胶有哪几种?

【讲述】构成橡胶的高分子链在无外力作用时呈卷曲状,而且有柔性,受外力时可伸直,但取消外力后又可恢复原状,因此橡胶是具有高弹性的高分子化合物。根据来源和组成不同,橡胶可分为天然橡胶和合成橡胶。合成橡胶往往具有高弹性、绝缘性以及耐油、耐酸碱、耐高温或低温等特性,因此具有广泛的应用。

【讲述】顺丁橡胶是化学家们最早模拟天然橡胶制得的合成橡胶,它具有较高的耐磨性,广泛用于制造轮胎、耐寒制品及胶鞋、胶布、海绵胶等。利用工具栏讲解顺丁橡胶的合成,并以顺丁橡胶的高分子链的卷曲认识橡胶的高弹性。

【质疑】为什么实验室的橡胶管在空气中易老化?为什么盛酸的试剂瓶要用玻璃塞?

【过渡】常用的橡胶除天然橡胶、顺丁橡胶外还有其它的通用橡胶。

【阅读、讲述】阅读表3-4-1几种常用橡胶的性能和用途,以说明当今合成橡胶的广泛应用,以及“挑战者”航天飞机失事的悲惨事件就是由于橡胶密封圈失灵造成的。

【过渡】接下来讨论第三大合成材料合成纤维。

【交流、研讨】生活中你们知道哪些是纤维制品呢?棉花、羊毛、蚕丝与锦纶、涤纶有何区别?纤维素是如何分类的?

【投影、讲述】1.纤维素分类

纤维素:棉、麻

天然纤维蛋白质:丝、毛

纤维人造纤维:人造棉、人造丝

化学纤维合成纤维:锦纶、腈纶

高分子化学的应用范文4

一、高分子化学的内涵

1.何为高分子化学

顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。

2.高相对分子质量与高强度

相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。

3.高分子科学的主要内容

既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。

二、高分子材料化学的应用

材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。

第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。

第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。

高分子化学的应用范文5

【关键词】化学观念 ; 电化学 ; 复习教学

化学观念是化学学科的精髓,对化学观念的培养也是化学教学的宗旨。化学教学应引领学生用“物质观”和“分类观”认识化学世界、以“元素观”明确化学反应、用“微粒观”理解反应本质、用“运动观”和“守恒观”分析微观粒子的变化规律、从“科学价值观”的角度明确化学学习的意义,给学生全新的化学认知和学习体验。高三复习教学对化学观念的培养较高一高二要薄弱得多,其实总复习是对已有知识梳理、归纳、整合和再生的过程,这才是化学观念内化和终身化的关键时期。提升复习品质须与培养化学观念相辅相成,教师应以化学观念培养为核心、以实例分析为辅助、在反复思考和演绎中运用“观念引领解题”的模式,才能提升学生的思维品质和化学素养。

下面以电化学复习为例阐述培养化学观念的教学策略。

1价值观引领复习方向

1.1以电学研究的意义统建大方向。

学以致用是学习的现实目的,也是高考的考查方向,复习教学务必紧扣价值观这一中心,围绕电化学的实际应用展开原理复习教学。学生已有一定的电学知识基础,教师可尝试逐步摆脱短期效应、题海战术等浅层次的教学。复习之初设置合理的生活场景,明确电学研究对现代生活的意义,进而整合电的产生、制备、存储、再生及应用的实际问题,再把电化学涉及的具体问题综合起来,织成一张思维的网,给学生一条复习线索,并内化为他们自己的知识脉络。

教师可用图1所示的模式搭建复习框架,组建电化学概念群,培养更有针对性和前瞻性的观念意识。

1.2以电学的价值为据合理选编题目。

近几年高考试题的背景多为前沿科学或新鲜资讯,如2014年多地高考以锂电、镍电等新型二次电池为背景,旨在给学生化学源自生活的感觉,但学生对这些资讯却非常头痛。不难想象陌生背景带来的紧张感,及学生短时间内难以理清题目意图的情景。这就需要教师在平时的教学中,从装置的用途出发,以科技新闻、科教节目、前沿发明等内容为背景,选编符合高考“口味”的题目对学生进行信息解读能力的培养。

例如节选2014年北京卷第26题中的部分内容:

电解NO制备NH4NO3,其工作原理如图2所示。为使电解产物全部转化为NH4NO3,需补充A。A是,说明理由:。

【解析】阅读题目明确该装置的意图是得到NH4NO3,根据两极转移电子数相同可知1mol NO转化为1mol NH4+需5mol e-,而5mol e-可将5/3mol NO转化为NO3-,为了得到匹配的NH4NO3,必须向溶液中加入适量的氨气。以电子守恒为基础,以实际产物为准,可避免书写方程式的麻烦和失误。

1.3以实际应用为例引领原理分析。

高三复习得越深入,就越需要用价值观来引领原理分析。学生解题时常直奔图像忽视对题目背景的描述,导致原理分析一知半解。如必修Ⅱ教材中有模拟电解饱和食盐水工业装置的图片,其中四个溶液的进出口学生难以记住,可尝试用实用角度去说明问题:左侧生成氯气,则左侧液体进出口必与氯元素有关,氯化钠是反应物,投料必是浓溶液且其密度较稀溶液略大受重力作用应向下运动,为使反应更充分应投到电极附近,故左上口为饱和食盐水,而左下口为稀食盐水;同理可知为何右上为氢氧化钠稀溶液而右下为浓溶液。经过实际的分析,学生自然会沿着应用的思路去思考化工生产类题目。

2元素观搭建电学分析的平台

化学的基础是元素,任何化学问题的分析都离不开元素观的支撑。高三复习教学需要高屋建瓴,同时也要回归基础,元素观的培养恰好可以将这两种需要有机地融合在一起。教学中可以考虑以下几个方面:

2.1化合价是解读电学问题的基础。

高中的电化学以氧化还原反应为基础,当然离不开化合价的分析。学生对铁、铜、锰、镍、铬等过渡金属元素及氯、氮、硫等非金属元素的多变价态不清楚,如2012年浙江理综第10题:以铬酸钾为原料,电化学法制备重铬酸钾的实验装置如图3所示。

学生认为K2CrO4 与K2CrO4 间有化合价变化,教学需引导学生阅读操作目的(以铬酸钾制备重铬酸钾),再结合反应来分析铬的化合价。复习中可通过陌生物质,引导学生分析元素的化合价,也可用有机燃料电池为切入点,进行化合价的训练。

较经典的是2014浙江卷11题:镍氢电池(NiMH)目前已经成为混合动力汽车的一种主要电池类型,NiMH中的M表示储氢金属或合金,该电池在充电过程中的总反应方程式是Ni(OH)2+MNiOOH+MH。学生对C项(充电过程中阴极的电极反应式:H2O+M+e-MH+OH-,H2O中的H被M还原)较难理解,教师可指导学生阅读《必修Ⅱ》教材中关于储氢合金的概念,强调储氢的方法有多种,可能因化学变化形成金属氢化物,也可能只是空间填充形式,金属和氢元素均为零价。根据金属无负价可推知MH中氢可以是0价或-1价,水中的+1价氢若变成零价只转移1个e-,若变成-1价需转移2个e-,继而可解此题。分析后可辅之以2014年全国卷第9题进行练习。

2.2运用元素周期律辨析电极反应。

学习化学的基本工具是元素周期表,可利用它了解陌生元素的性质,如锂电的设计之初正是从锂与钠的相似性开始的。近年来很多高考题都对锂进行了不同程度的探索,其中与水反应、LiOH的溶解性都曾是学生失误过的。因而,教学中应注重元素周期律对电化学分析的指导作用。

此类问题在2014年浙江理综11题的D项(NiMH电池中可以用KOH溶液、氨水等作为电解质溶液)中也有体现,可以元素周期律为方向选择经典的高考题目进行练习,如表1的以下题目。

3微粒观完善原理分析

微粒观是电化学联系微观变化与宏观能量的桥梁,其基本内容包括:物质是由分子、原子、离子等微观粒子构成的;微观粒子不断运动,彼此之间有间隔;微观粒子之间存在相互作用。其中粒子的不断运动可形成电流,相互作用包括了电子转移和静电作用下的离子移动,这些是电化学的根本。回看近年来的浙江理综卷,电化学选择题的落点贴近教材,同时也恰好点中容易被师生忽视的“死穴”。因而,教师在教学设计时应以微粒观为主线,串连知识点成网,逐步完成电化学的观念培养。

3.1明确阴阳离子移动原理.

分析电学问题时应明确离子移动的两个动力:阴阳离子(或电子与离子)间的静电引力,及渗透压作用。学生更注重对静电作用的运用,高三复习时务必要弥补这一漏洞。如2013年浙江理综11题:电解装置如图4所示,电解槽内装有KI及淀粉溶液,中间用阴离子交换膜隔开。在一定的电压下通电,发现左侧溶液变蓝色,一段时间后,蓝色逐渐变浅。已知:3I2+6OH―IO3―+5I―+3H2O

【解析】B项(电解结束时,右侧溶液中含有IO3―)失分率较高,说明学生对离子移动的把握还较浅,对阴离子向阳极移动形成了定势,未考虑离子的浓度平衡要求。教学中务必要注意知识点和语言的准确性,要把问题的本质说清楚,对高于学生程度的问题也给予适度拓展。

3.2强化氧化性、还原性的比较。

氧化还原反应的掌握决定电学本质分析的能力,离子放电顺序(S2->I->Br->Cl->OH->含氧酸根)中,含氧酸根问题是热点也是难点,教学中应强调此处含氧酸根一般指低浓度且中心元素最高价态的酸根。学生对MnO4-、CrO42-等强氧化性粒子印象很深,总认为应是这些粒子放电,教师需要向学生说明强氧化剂发挥强化性的环境要求(如酸碱性条件、浓度要求),最重要的是必须要审清题意,由题目信息剖析出反应本质。可选如表2形式的真题,以增强学生对相关问题的理解。

3.3辨析离子交换膜的作用。

离子交换膜完善了电学装置,其价值显而易见,为加深学生对膜的理解,应对不同类型膜的作用加以整理,如阳离子交换膜只允许阳离子通过,也可用膜把装置分成几个半池,以保证离子放电的独立性。可采用以下练习来巩固膜的作用:

工业上常用高浓度的K2CO3溶液吸收CO2,得溶液X,其装置示意图如图

5所示,在阳极区发生的反应包括和H ++ HCO3-=H2O+CO2。该交换膜应该用(填“阴或阳”)离子交换膜。

【解析】利用K2CO3溶液吸收CO2,可知X是KHCO3。解读目的――利用电解法

使K2CO3溶液再生,结合图中阴极区生成氢气和K2CO3溶液可知阴极区需要H +,而阳极区在弱碱性水环境中生成了氧气,说明是水分子放氧生酸,生成的H +通过离子交换膜进入阴极区,故该交换膜必须是阳离子交换膜。

3.4细化电解质的环境分析。

书写电极反应式是电化学解题的难点,审不清电解质环境是常见错误,如酸性条件下生成OH_,熔融碳酸盐中生成H +等。对不同类型电解质环境的细致分析及强化训练,方可培养学生的敏锐度。可采用表3所示方法进行分析。

3.5学会运用守恒思想计算。

守恒思想是化学观念的基本思想,它对电子得失、原子守恒及产物计算有着极大的指导作用,学生对电学计算问题掌握程度一般,其根源在于守恒观念还未形成。一轮复习中,教师要采用激发式的方法,即先让学生用传统方法逐个反应写出来解下去,然后分析方程式找出关联,再用守恒法解决问题,让学生感受到守恒法的奇妙和简单,激发他们学习这种方法的斗志。

可用下题为例:用图6装置模拟人工肾脏的工作原理,电解生成的Cl2将尿素[CO(NH2)2]氧化成N2排出,则电解结束后,若两极共收集到气体13.44L(标准状况)时,则被氧化的尿素为7.2g(忽略气体的溶解),是否正确?

【解析】利用电子得失守恒可有如下关系:

[CO(NH2)2]-6e-―(CO2、N2)―3H2,

即可推知有6mol e―转移两极共生成5mol气体,需消耗1mol[CO(NH2)2],最终得出以上分析正确的结论。

总之,化学观念的培养非一朝一夕可以完成,而高三一轮复习恰恰是整合化学思想的重要契机,只有以观念培养为引领,复习教学才能提高品质。经过近两周的电化学复习教学,学生对电学知识有了比较清醒的认识,不再害怕电学的各种装置图,电极反应式书写较复习前有了长足进步,在电学测试中,失分率明显下降。希望他们能把这种化学观念带到日常生活中去,真正提高自己的化学素养。

参考文献

[1]毕华林,卢巍.化学基本观念的内涵及其教学价值 [J].中学化学教学参考,2011,(6):3~6.

高分子化学的应用范文6

关键词: 高分子化学 教学内容 教学方法

《高分子化学》课程是研究高分子化合物的合成、化学反应、物理化学、物理、加工成型、应用等知识的一门综合性学科[1],并且此课程是大部分材料类专业或高分子材料专业、复合材料专业及相关专业的必修课程,因此对这门课程的掌握程度,对后续很多课程的学习有很大影响,从而教师和学生一般比较重视这门课程的教学方式及学习。而在这门课程教授中,首先教师们要分清主次,如潘祖仁先生编写的《高分子化学》材料中,自由基聚合、阴离子聚合及阳离子聚合等都是极其重要的内容,不但要重点讲解,而且要确保全部学生都能理解吸收。其次,教师们在教授过程中要掌握一定的技巧和方式,下面会详细介绍。

一、教学内容

据大多数学生反映《高分子化学》这门课程很难学习,因为这门课内容较多且比较分散,而且涉及的聚合反应类型之间关联程度不大,因此对课程重点和系统性不容易把握住。教师授课时要运用一定的技巧,如对于比较难的问题要讲透彻,不能让学生处于懵懂状态;而对于阳离子聚合、配位聚合、聚合物的化学反应等可为学生做较简单介绍,将节省下来的时间为学生讲解难点和重点;而为了使学生更好地掌握本门课程的精髓,教师授课时要避免将教材内容“填鸭式”灌输给学生,应有针对性、侧重地讲解,少讲精讲,主要讲解以下内容:

1.高分子的概述。

对于一门课程的学习首先要了解此课程的基本概念,在《高分子化学》这门课程开始进入正式内容教授前,向学生介绍高分子的概述是很必要的事。为了让学生更好地了解自己即将学习的课程,需要介绍高分子的基本概念、高分子的发展历史、高分子的现状及分类和代表产品,通过介绍使学生对高分子有详细认知,并调动他们学习高分子的热情,积极认真地探索和学习相关知识,为以后投身于高分子行业打下牢固的基础。

2.聚合反应。

《高分子化学》这门课程涉及的聚合反应众多,如自由基聚合、阴离子聚合、阳离子聚合等,而对于这些聚合反应的教授可按照以下三步来。

首先,需要对各种聚合方法的基本概念和聚合机理进行详细介绍,使学生对各种聚合反应有个大致了解,聚合机理要重点讲解及掌握,如自由基聚合为用自由基引发,使链增长(链生长)自由基不断增长的聚合反应。

其次,对各个聚合反应中涉及的基元反应进行讲解及特点概括,如自由基聚合的基元反应的特点是:慢引发、快增长、速终止、可转移。这些特点的概括使学生对各个聚合反应更好地记忆。

最后,介绍各个聚合反应具有的微观动力学方程,以自由基聚合为例[2]。

每个聚合反应均按照这三步讲授,使学生学起来条理明晰,不至于晕头转向。

二、教学方法

学生对课程的掌握程度与自己的学习态度有关,与老师的教学方法也有关。下面介绍一些教学方法及教学方面的建议:

1.多媒体和板书结合教学。

近年来多媒体教学已成为教学的一种重要方式,为教学带来了很大方便,如生动展示各种反应模型,特别是一些三维立体模型[3]。然而据统计,大部分学生不喜欢多媒体教学,以为老师使用制作好的PPT进行讲解时,节奏很快,对那些没有提前预习的学生来说,很难跟上老师的节奏。另一方面多媒体教学使老师与学生间缺乏交流,从而教学质量下降。最后PPT设计不合理,照搬课本上的文字,缺乏趣味。因此老师在授课过程中应该进行适量的板书教学,如讲授聚合机理时,利用板书教学,能清楚地描绘出反应过程、电子转移过程、化学键的破坏及产生过程,学生比较容易接受。

2.突出重点。

如上所述,教师授课时要有针对性、侧重点讲解,少讲精讲,这样不但学生的学习压力降低,而且老师可以利用节省下来的时间为学生介绍一些相关课外知识,开阔其眼界。

3.理论联系实际,知识与实践统一。

为了使学生更好地掌握这门课程,老师授课的同时应该开设相应实验课,将理论在实践中运用,并且在实践中更好地掌握理论。我校在确立高分子化学作为高分子材料专业主干课程的同时配套了高分子化学实验、高分子生产实习及高分子科学实践等教学环节。

三、结论

随着科技发展及对高分子的研究越来越深入,使得其科技含量越来越高,并且越来越广泛地运用于各个领域,为高分子专业学生提供了良好的机会。学生应该积极学习高分子及相关知识,为以后就业及工作打下基础。教师应积极改进教学方法,寻找比较合适学生的方法,通过教学研究,不仅学生受益,而且教师本人的学术水平、教学水平得到提高,何乐而不为呢?

参考文献:

[1]陈雪萍,李伯耿.高分子通报,2008(6):60-63.

高分子化学的应用范文7

[关键词]整体学习法 氧化还原反应 元素周期律 化学用语

经过高中必修课程的学习后,很多学生对化学知识处于处于一知半解,考试成绩总是不尽人意,不知道如何把化学学透彻;那么,如何才能学好高中化学呢?要解决这个问题,首先必须思考两个问题:第一,我们初中化学都学习了哪些内容?第二、高中必修课程又学习了哪些内容?下面我就结合初中化学和高中必修课程的内容来探讨如何用整体学习法来学好高中化学。

一、初中化学学习了哪些内容

我们学习了根据化合价书写化学式,学习了四个基本反应类型,学习了酸碱盐及相互反应,金属活动性顺序表等等。

二、做好初中和高中化学的过渡

要做好初中和高中化学的过渡,应该从以下三个方面做起:

1.对氧化还原反应的扩充。

初中化学仅仅从得失氧的角度认识氧化反应和还原反应,高中应做到从化合价的角度和得失电子的角度来认识氧化还原反应,并能根据氧化还原反应的规律来书写常见的氧化还原方程式。

2.对置换反应的扩充。

初中化学学生在学习置换反应时,是依据金属活动顺序表来判定一个反应是否发生的。通过高中必修模块的学习后,我认为学生对置换反应必须做到以下四个层面的扩充:

第一,置换反应是“强制备弱”思想的体现;

第二,金属活动顺序表中没有的金属元素,我们可以依据元素周期律相关内容来判定金属性的强弱,从而判定能否发生置换反应;

第三,不仅金属能置换,非金属也能在溶液中发生置换反应,元素周期律是判断该类反应能否发生的工具。

第四,置换反应都属于氧化还原反应,该类氧化还原反应同样满足“氧化剂的氧化性>氧化产物的氧化性”和“还原剂的还原性>还原产物的还原性”。

如果能做到这四个层次上的扩充,学生对置换反应就非常透彻了,也就不会觉得化学难学了,所以我们教师要引导和帮助学生把化学知识进行扩充和系统化。

3.对复分解反应的扩充。

通过必修1的学习,应该引导学生从实质上理解复分解反应,即:复分解反应的条件是使离子的存在形式发生改变,向着溶液中离子数目减少的方向进行。从而引导学生正确书写离子方程式和判断离子能否大量共存。

三、高中化学必修模块学习了哪些内容

要想学好高中化学,必须做好对知识的提炼与重构。高中化学必修模块学习了哪些内容呢?

1.学会“一个工具”――物质的量

要熟练掌握m、N、V(气)、c与n之间的相互转化。(物质的量n是立交桥,)

一定要帮助学生树立“其余量先转化为物质的量再计算”的思路。

2.掌握“两大理论”――氧化还原反应、元素周期律

(1)氧化还原反应

对于氧化还原反应的知识,应该引导学生从以下三个层次对知识进行重构:

第一,有关知识点的记忆,可提炼关键字“升、失、氧、还”和“降、得、还、氧”来帮助学生理解和记忆。

第二,升降是放第一位的,所以一定要引导学生树立“先看化合价变化”的思路来处理氧化还原反应的一系列问题,因为这是氧化还原反应的特征。

第三,掌握原电池的基本知识。

(2)元素周期律

对于元素周期律的知识,应该引导学生从以下三个层次对知识进行重构:

第一,“位―构―性”的思路。位置是放在第一位的,一切问题先看位置,所以要记忆常见元素的元素周期表。要在理解的基础上来记忆,这样运用起来会更得心应手。

第二,熟悉金属性、非金属性强弱的判断依据。

第三,熟悉微粒半径的判断依据。

3.会用“三种化学用语”――化学方程式、离子方程式和电子式

(1)化学方程式

要会写有化合价变化的化学方程式,而不是单靠死记硬背。例如铜和稀硝酸反应的化学方程式:3Cu+8HNO3(稀)=3Cu(NO3)2+2NO+4H2O,引导学生总结书写步骤――首先写反应物和生成物,配平时先配平化合价变化的元素,然后再按照“金、非、氢、氧”的顺序来配平。

(2)离子方程式

书写离子方程式时,学生往往在“拆”和“查”两个步骤上出问题。

第一,引导学生总结要拆成离子的物质有:强酸、强碱、可溶性盐;

第二,检查离子方程式查三项:要符合客观事实、原子守恒和电荷守恒。

(3)电子式

离子化合物的电子式很好写,活泼金属将电子给活泼非金属。最难处理的是非金属之间共用电子。引导学生总结出“缺几个电子、拿出几个电子、共用几对电子”来指导共价键电子式的书写。

在学习完电子式的基础上,再来学习化学键的分类及其类型判断就容易多了。

四、如何才能学好高中化学

通过以上分析我们可以知道,要学好化学必须有一些化学思想做支撑和一些具体措施来实践,最关键就是首先把初中和必修的知识整体划分成以上几大部分。然后确定每一部分整体学习方法。其次要引导学生学习化学的一些基本理念(化学思想),要引导学生对每一个知识点和每一道题都要有自己的重构,这样化学也就非常容易学好了。

1.必须具备一些化学思想来指导日常的学习

第一,守恒的思想。包括质量守恒、能量守恒、原子守恒、得失电子守恒和电荷守恒。

电荷守恒对于检查离子方程式是否正确常常能起到事半功倍的作用。

第二,强制备弱的思想。该思想在化学中有很多内涵,如:活泼金属置换不活泼金属(注意Na不能置换出CuSO4中的Cu元素)、活泼非金属置换不活泼非金属。强酸制备弱酸(CaCO3和HCL反应)、强碱制备弱碱、强氧化剂制备弱氧化剂、强还原剂制备弱还原剂、溶解性强的制备溶解性弱的(即生成沉淀的复分解反应)等。

第三,结构决定性质,性质决定用途的思想。

此思想在有机化学中体现的淋漓尽致,有了这个思想作支撑来学习有机化学,有机化学内容将非常有系统性。如:CH3OH和C2H5OH都含有羟基,因此有相似的性质――酯化反应等

原子结构决定性质――如碱金属元素的相似性、卤族元素的相似性等。

分子结构决定性质――如在氮气分子中,NN键能大,所以分子能量低,比较稳定,因此可用作保护气。

2.不断对知识进行提炼和重构

对知识的提炼和重构,是巩固、理解和提升的过程,这是非常必要的。

第一,在学完一节课后,要问自己“本节课我学到了什么”;在学完一章课后,要问自己“本单元我学到了什么”;在学完一册内容后,要问自己“本册书我学到了什么”。这就是对知识的提炼和重构。

第二,对于陌生或者做错的题目,一定要至少总结出一条结论或者记住一些特例。

在学习过程中,可以引导学生总结很多小结论,如:在学习离子共存时可总结HCO3-既能与酸反应又能与碱反应等。

高分子化学的应用范文8

论文摘要:将量子化学原理及方法引入材料科学、能源以及生物大分子体系研究领域中无疑将从更高的理论起点来认识微观尺度上的各种参数、性能和规律,这将对材料科学、能源以及生物大分子体系的发展有着重要的意义。

量子化学是将量子力学的原理应用到化学中而产生的一门学科,经过化学家们的努力,量子化学理论和计算方法在近几十年来取得了很大的发展,在定性和定量地阐明许多分子、原子和电子尺度级问题上已经受到足够的重视。目前,量子化学已被广泛应用于化学的各个分支以及生物、医药、材料、环境、能源、军事等领域,取得了丰富的理论成果,并对实际工作起到了很好的指导作用。本文仅对量子化学原理及方法在材料、能源和生物大分子体系研究领域做一简要介绍。

一、在材料科学中的应用

(一)在建筑材料方面的应用

水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。

钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含Ca钙矾石、含Ba钙矾石和含Sr钙矾石的Al-O键级基本一致,而含Sr钙矾石、含Ba钙矾石中的Sr,Ba原子键级与Sr-O,Ba-O共价键级都分别大于含Ca钙矾石中的Ca原子键级和Ca-O共价键级,由此认为,含Sr、Ba硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。

将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。

(二)在金属及合金材料方面的应用

过渡金属(Fe、Co、Ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在LnF3中Ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,NbO2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的NbO2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温NbO2及其等电子化合物VO2在性质方面存在的差异[6]。

量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。

二、在能源研究中的应用

(一)在煤裂解的反应机理和动力学性质方面的应用

煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。

量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子,如低级芳香烃作为碳/碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由Guassian98程序中的半经验方法UAM1、在UHF/3-21G*水平的从头计算方法和考虑了电子相关效应的密度泛函UB3LYP/3-21G*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。

(二)在锂离子电池研究中的应用

锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域发展。

锂离子电池又称摇椅型电池,电池的工作过程实际上是Li+离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。Ago等[8]用半经验分子轨道法以C32H14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。Ago等[9]用abinitio分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种Li-C和具有共价性的Li-Li的混合物。Satoru等[10]用分子轨道计算法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。

随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。

三、在生物大分子体系研究中的应用

生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。

综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。

参考文献:

[1]程新.[学位论文].武汉:武汉工业大学材料科学与工程学院,1994

[2]程新,冯修吉.武汉工业大学学报,1995,17(4):12

[3]李北星,程新.建筑材料学报,1999,2(2):147

[4]闵新民,沈尔忠,江元生等.化学学报,1990,48(10):973

[5]程新,陈亚明.山东建材学院学报,1994,8(2):1

[6]闵新民.化学学报,1992,50(5):449

[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1

[8]AgoH,NagataK,YoshizawAK,etal.Bull.Chem.Soc.Jpn.,1997,70:1717

[9]AgoH,KatoM,YaharaAK.etal.JournaloftheElectrochemicalSociety,1999,146(4):1262

高分子化学的应用范文9

关键词:高中化学教材;前沿科技;合成有机高分子化合物;六国比较

文章编号:1008-0546(2015)07-0057-03 中图分类号:G633.8 文献标识码:B

doi:10.3969/j.issn.1008-0546.2015.07.020

21世纪,科学技术已广泛融入到现代生活各个方面。高中化学教材中前沿科技知识的渗透和编入不仅能体现课程综合化与融合性的要求,更能使学生深入认识本学科甚至是交叉学科领先的科学技术[1],让学生意识到化学学习的意义和价值,认识到利用化学知识解决生活中问题的重要性,感受化学科学的实用性和创造性。世界各国高中化学教材均将科技前沿知识渗透到教学内容中作为在教材内容创新的重要方面,在保证内容选择的基础性与时代性的和谐统一方面各有特色。合成有机高分子材料是现代科技硬件的重要载体,被广泛应用于医药卫生、现代工农业生产以及国防科技、航空航天、信息通讯和生物工程等各个领域,是化学前沿科技最具代表性成果之一,也是学生认识化学科技在社会生活中应用最好的学习资源。本文以合成有机高分子材料为切入点,通过研究世界发达国家高中化学教材在内容选择、编排与呈现方面渗透前沿科技成果的理念与做法,以期为我国高中化学教材内容创新提供启示。

一、研究对象

研究选取了中国、日本、澳大利亚、新加坡、美国、英国六国的主流高中化学教材作为研究对象,其名称、出版社、出版信息见表1。

二、内容选取

要认识合成有机高分子材料,“合成有机高分子化合物”是其重要的基础。我们从“合成有机高分子化合物”内容入手研究。

1. 选取比例

“合成有机高分子化合物”包含“合成有机高分子化合物基础”(以下简称“合成基础”,主要包含单体、聚合反应、高分子化合物的结构与合成高分子化合物的合成技术等内容)、“合成高分子材料”(主要包含各类合成高分子材料的性质、结构、合成、用途、分类及处理等内容)、“功能高分子材料”和“复合材料”四部分内容。用该四部分内容的知识点数目除以“合成有机高分子化合物”总知识点数目,所得百分比来表示各部分内容选取的比例。六国高中化学教材中四部分内容占“合成有机高分子化合物”的比例见图1(左侧饼形图)。

由图1可以看出,“合成高分子材料”在六国教材中均为最主要的内容(比例均在60%以上);其次是“合成基础”(比例平均在20%~30%);“功能高分子材料”各国差异较大:比例最大(11%)为中国教材,其次是日本教材(8%)、新加坡教材(5%),其他国家没有该部分内容;“复合材料”只有中国和澳大利亚教材涉及,比例均为2%。

“合成高分子材料”包含“塑料”“化学纤维”和“合成橡胶”三部分内容。用同样的方法求得图1右侧饼形图的数据,可以看出,“塑料”在六国教材中所占比例均为最大(比例均在45%以上),其次分别为“化学纤维”和“合成橡胶”(美国和英国教材除外)。

2. 内容深度

从学习认知水平角度分析,发现,日本教材在“合成高分子材料”、“合成基础”部分内容最深,难度最大。

日本教材在“塑料”部分介绍的塑料种类最多,包含聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、尿素树脂、酚醛树脂、聚硅氧烷树脂、聚醋酸乙烯酯、密胺树脂和离子交换树脂共10种;澳大利亚教材提到9种,新加坡教材5种,中国和英国教材仅为3种,美国教材最少,为2种。日本教材不仅包含的塑料种类最多,而且都深入详细地介绍了每一种聚合物的性质或结构以及聚合反应方程式和用途。澳大利亚教材虽然给出的塑料种类多,但是除了详细介绍聚乙烯、聚氯乙烯这两种聚合物,其他都是简单介绍其性质和用途。中国教材包含的塑料种类虽少,但对聚乙烯和酚醛树脂两种聚合物的介绍最为详细。

在“化学纤维”部分,日本教材编入的化学纤维种类最多,包括合成纤维中的6-6尼龙、芳纶纤维、6-尼龙、涤纶、聚丙烯腈纤维、维纶,和人造纤维中的粘胶纤维、铜氨人造丝、醋酸盐纤维共9种,并且从性质、聚合反应方程式、用途这几个方面详细地一一介绍。中国教材仅简单提及“六大纶”。新加坡教材给出2种,澳大利亚和美国教材仅给出1种。

在“合成橡胶”部分,日本教材提到的合成橡胶种类最多,包含丁苯橡胶、腈基丁二烯橡胶、聚氯丁二烯共3种,并详细介绍其性质或符号以及聚合反应方程式或用途。中国教材仅讲到顺丁橡胶一种,但从特点、聚合方程式以及橡胶的硫化和用途等方面很详细地进行了介绍。美国教材仅提到丁苯橡胶的符号。

在“合成基础”部分,日本教材提到的聚合反应方式最多,包含加聚、缩聚、开环聚合、共聚合4种,中、澳、新、美、英五国教材仅呈现了加聚、缩聚2种。

3. 课程功能实现

从教材中“合成有机高分子化合物”内容的课程功能实现角度分析,我们发现六国教材中澳、新、美、英教材更加注重对科学方法的教育:

(1)实施技术方法教育。澳大利亚教材把“合成有机高分子化合物”作为技术教育的重要内容,占用一节的篇幅详细介绍了7种修饰多功能高分子聚合物的手段和3种高分子材料成型技术,以及各种手段和技术的应用[2]。澳大利亚教材中该部分内容将高分子合成的基础原理和化工生产结合起来,是合成理论过渡到实践的桥梁,实现了合成技术的“工艺化”,是培养学生技术素养的有效内容。

(2)渗透环保教育。新加坡和英国教材除了介绍塑料的广泛应用之外还选取较大量的内容来讲述其危害性,澳大利亚和美国教材详细介绍了“分类回收法”的废旧塑料处理方法,澳大利亚和中国教材提到了可降解高分子材料的研发,这将有利于学生了解材料的使用与环保的关系。

(3)提升实践能力。澳大利亚和美国教材详细列出了塑料制品的回收标识、代表的类型名称及性质、应用。回收标识也是健康证,学生可以在生活中根据编号来判断塑料的种类和质量,从而有利于帮助学生学会鉴别化学信息的真伪和品质,养成独立思考及反思的能力,培养学生的批判性思维,同时启发学生学会利用分类的方法解决生活中的化学问题,引导学生将化学知识应用到实践中去,提升学生的实践能力。

三、组织编排分析

表2列出了各国教材中涉及“合成有机高分子化合物”内容的章节编排情况。

依据教材中章节的设置,我们发现其组织编排方式有2种类型:(1)独立成章。中国和日本教材分设两章介绍有机高分子化合物,澳大利亚和新加坡教材设置一章。日本教材按合成有机高分子化合物的分类设章,而中国教材是按学习难度于必修2和选修5分设两章,采用螺旋式的组织编排方式。(2)独立成节。美国和英国教材如此。

依据教材编写所体现的课程观分类,其组织编排方式有2种类型:(1)学科中心设计取向。中、美、新教材以有组织的学科知识作为教材设计的基点,按照学科结构为中心来组织学习内容[3];(2)社会生活问题中心设计取向。日、澳、英教材以生活、社会问题作为教材编写设计的基点,巧妙地将合成有机高分子化合物与生活实际联系起来,使学生在潜移默化中学会利用所学知识原理更科学、深入地认识、利用生活中的有机高分子材料,更大限度地实现其教学价值。

另外,各国教材组织编排各具特色:(1)日本和澳大利亚教材设置了章的上级标题――“研究领域”,使知识体系更加系统、清晰;(2)澳大利亚和新加坡教材的节标题设置详细、具体,核心概念界定清晰。中国教材章下的节标题少,每个节标题包含内容范围过大,且节标题下的小标题很少,导致框架不清晰,文字阅读量大,不利于学生进行信息提取,加之该部分知识内容多,分类复杂,这无形之中加大了学生学习难度。

四、结论与启示

通过对六国教材“合成有机高分子化合物”内容分析和组织编排的比较,我们可以获得如下结论:

“合成有机高分子材料”均已成为高中化学教材中合成有机高分子化合物的核心内容。教材中增加合成高分子材料种类与反应类型,可为学生广泛认识生活中的高分子材料奠定坚实的理论基础,使学生深入理解有机化学基础,拓展有机合成的创新性思维,以化学学科思维更科学深入地认识身边的高分子材料制品;同时,高分子材料制备技术方法的介绍对于提升即将面临职业定向的高中生的应用创造能力和技术素养有着重要作用;再有基于合成有机高分子化合物的介绍,渗透环保意识,有利于使教材向多维化和融合性发展。

我国高中化学教材在核心内容的选取上同各国一致,并采取由浅入深螺旋式的组织编排方式,这些是值得肯定的,但合成高分子化合物类型单一,缺乏与生活相联系和对科学方法的渗透这些问题值得我们深思。由此我们提出如下建议:在内容选取方面,应适当丰富合成高分子化合物的种类;充分发挥前沿科技类内容所特有的教育功能,注重对技术方法、环保意识、实践能力和批判性思维的教育,全面提升学生的应用和创新能力。在组织编排上,前沿科技类内容更适合采取社会生活问题中心设计编排,注重化学与社会生活实际的紧密联系;对于内容繁杂的部分建议采用细致详细的标题设置,同时可选择性增设“研究领域”等标题。

参考文献

[1] 王瑞政,周青,阙丽丽. 化学前沿学科知识在美国化学教材中的体现[J]. 化学教学,2009,01:58-61

高分子化学的应用范文10

关键词:高分子材料与工程;应用型转变;人才培养

中图分类号:G642

文献标识码:A 文章编号:16749944(2017)09024202

1 引言

2015年10月21日,教育部、国家发展改革委、财政部联合了《关于引导部分地方普通本科高校向应用型转变的指导意见》(教发[2015] 7号),至此地方高校转型发展成为国家深化高等教育领域综合改革的一项重要部署[1]。鉴于高校转型发展的新形势,辽宁省于2015年确定首批10所高校116个专业开展应用型转型试点工作,辽宁石油化工大学高分子材料与工程专业为其中试点之一,作为以“工科为主、石油化工为特色”的辽宁省属综合性重点大学以及卓越工程师教育培养计划试点高校,辽宁石油化工大学率先迈出了应用型本科转型改革的步伐,积极响应我国高等教育改革方针,明确了该校应用型人才的培养目标。高分子材料与工程专业针对应用型转变下,如何加快应用技术人才培养,以提升高校服务经济社会发展能力,开展了一系列的改革与探索。

2 辽宁石油化工大学应用型人才培养定位

应用型本科教育本着立足地方、面向全国、依托行业、服务区域经济发展的原则,以行业需求为人才培养目标[2]。与研究型大学以及高职高专的定位不同,该校立足于打造高水平应用型大学,高分子材料与工程专业的人才定位为 “创新应用”型人才,即培养的学生不仅能胜任操作生产设备等一线生产工作,而且还具备较高的创新知识能力。为达到此目标,在大学四年的培养教育过程中,学习理论知识、培养实践动手能力以及实践科技创新方面要三管齐下,使学生具备完整的理论知识体系,运用学科专业知识应用于实际的能力以及创新的逻辑思维。其就业领域主要面向国内外大中型科技生产企业的一线生产、检测及产品研发岗位,经过一定时间的锤炼并最终走上各企业的中高层核心岗位,并成为企业骨干力量。

3 “创新应用”型人才培养模式改革

针对以上定位,在课程体系,实践环节以及本科生科技创新方面开展了一系列的探索与改革。

3.1 课程体系和教学方法改革

由于高分子材料种类繁多、来源丰富,而且各高校开设此专业的背景以及所依托的优势学科也不尽相同,所以其培养模式和教学内容侧重点均有所不同[3~6]。专业核心课程是人才培养的核心要素,我校依据自身优势,设置的专业核心课程有《有机化学》、《物理化学》、《材料科学与工程基础》、《高分子化学》、《高分子物理》、《聚合物流变学》、《高分子材料研究方法》、《高分子材料成型加工原理》、《聚合物共混改性》、《高聚物合成工艺学》。通过对这些课程的学习,学生具有拓展自己知识和创业的能力,具有较扎实的自然科学基础、材料科学与工程的基础理论和高分子材料与工程的专业知识。同时,在教学过程中高校教师要避免填鸭式教学,大力推广启发式、案例式和研讨式教学,让学生更多地参与到课堂教学中去,在分析、讨论和解决问题的过程中理解、应用所学到的专业知识,并且能够识别、表达高分子材料成型加工与改性相关的工程问题,最终利用科学基本原理进行合理分析。对于一些专业核心课程,我们还进行了慕课的建设以及推广校际课程学习,全面利用课上和课下时间,结合网络,调动学生全过程学习的积极性。

3.2 实践环节改革

实践教学环节是培养学生动手能力的关键环节,我们主要开展的实践性教学环节包括工程训练、生产实习、计算机在材料科学中的应用、课程设计、高分子材料创新实验、毕业设计(论文)等,共计36学分。①计算机在材料科学中的应用和课程设计模块,运用理论知识进行综合性训练;②通过工程训练与生产实习进入高分子材料相关企业检测、生产岗位,熟练生产设备与职业技能、感受企业文化生活;③在高分子材料创新实验,毕业论文环节进入学术课题组,以中高级职称教师作为指导教师,参与部级,省级以及企业工艺改进、产品研发等项目,培养学生的应用能力;④积极开展校企联合,邀请相关高分子材料优秀企业的工程师来校分享企业生活,开展技术专题报告。经过多层次、多维度的能力培养及实践教学环节,学生能逐步将专业理论知识与实际应用相结合,最终转变成牢固的职业技能,并可以进一步提升。

3.3 科技创新教育开展

“创新应用”型人才培养的最终目标是使学生具备创新能力,具有开拓精神,因此,我们开放实验平台,以大学生挑战杯、大学生创新创业大赛、大学生工业设计大赛、以及各个教师的国家省级科研项目等为依托,鼓励学生参与,在导师的指引下,完成项目应用专业知识,并获得各种荣誉或专利等,经过此过程的培训,学生的创新能力会得到大幅度的提高。

4 结语

高分子材料与工程专业“创新应用”型人才具有应用和创新能力的双重保障,在职业发展上有更大的空间,既符合用人市场对人才的需求,又符合学生成长的长远规划。以学生为本,是高校的发展之基,也是满足社会经济发展对专业人才培养的需求,应用型转变应以促进学生能力的培养和行业对人才需求之间形成良性循环为主旨,而我国地方普通本科高校向应用型转变仍需在探索中不断前行。

参考文献:

[1]张 威.地方高校转型发展政策的制定与实施路径[J].教育与职业,2016(8):26~27.

[2]李宏胜,陈 桂.应用型本科人才培养方案制定过程的思考[J].中国现代教育装备,2011(21):108~110.

[3]张宝莲,魏冬青,杨学稳,等.材料化学专业定位及课程体系的思考[J].高等建筑教育,2007,16(4):93~95.

[4]文 胜,龚春丽,郑根稳,等.材料化学专业课程体系的改革与建设[J].孝感学院学报,2010,30(3):109~112.

[5]董秋静,罗春华,韩 燕,等.教学型高校材料化学专业定位及课程体系思考[J].广东化工,2009,37(9):228~230.

高分子化学的应用范文11

关键词:施陶丁格;高分子理论;化学史料

文章编号:1005-6629(2011)12-0063-05 中图分类号:G633.8 文献标识码:B

在现代化学史上,20世纪的二十到三十年代是个关键时期,因为它正是现代化学建立的初期。以共价键的提出为契机,现代化学家和部分物理学家开始着手奠定现代化学的理论基础。例如,量子化学和高分子化学两个领域。在量子化学领域,以美国化学家鲍林为代表,展开了对分子结构的准确描述和对化学键本质的探索,这方面的内容在前文中已作介绍。在本文中,将重点陈述和探讨德国化学家施陶丁格,为建立高分子理论而走过的艰难历程,以及他为高分子合成材料的发展所作出的历史性贡献。

1 化学实践召唤创新的高分子理论

施陶丁格(Hermann Staudinger,1881~1965),德国有机化学家和高分子化学家,出身于沃尔姆斯一个知识分子家庭,父亲是位哲学教授。施陶丁格自幼爱好化学和化学实验,曾就读于达姆施塔特大学、慕尼黑大学,1903年获哈雷大学博士学位。后赴斯特拉斯堡大学深造,1907年任该校讲师,1908年任卡尔斯鲁厄工业学院副教授,1912年任苏黎世工业大学有机化学教授。1926年任弗赖堡大学化学教授,1940年任该大学高分子化学研究所所长,一直工作到1951年退休并任名誉教授终生。

施陶丁格从事高分子化合物研究,为此付出了常人难以想象的心血和代价。其重要原因在于,他所面临的研究对象既是古老的又是新生的,无论是高分子化合物的性质,还是高分子化合物的分子结构以及高分子化合物的改性和合成,都存在着新的实践和旧的理论或新的理论与传统观点之间的冲突。众所周知,高分子化合物自古以来就有之,一般称之谓“天然高分子物质”,它与人类的生活密切相关。例如,作为食物的蛋白质和淀粉,作为织物纤维的棉、毛和丝,作为涂料的天然树脂和油漆等都属于这类物质。不过在古代都是采集来这些物资后直接加以利用,没有什么化学加工,因此还谈不上对高分子物质的化学研究。早先,人们虽然天天在与天然高分子物质打交道,但对它们的本性却一无所知。随着社会生产力和化学技术的发展,从19世纪中叶开始,人们逐步涉及对天然高分子物质的化学改性的实践活动,已使它们更适应于工业、生活中某种需要的性能要求。而正是在这种化学改性的实践过程中,有些化学家开始了对天然高分子物质本性的探求。

1.1天然高分子物质的核心改性

首先应该提到的是橡胶的加工工艺。据记载,哥伦布第二次航海(1493-1496)到达拉丁美洲的海地时,曾发现当地土著人已经开始利用天然橡胶。1735年,法国科学院考察队在南美洲亚马逊河河谷发现野生橡胶树林;1876年,橡胶树中最重要的品种海维亚巴西橡胶被移植到英国,其后又移植到锡兰(现斯里兰卡),而在今日马来西亚、印度尼西亚、泰国及越南等地得到了大发展。19~20世纪之交,亚洲地区橡胶的出口量已经达到7000多吨。而要将大量天然橡胶变为适合人们所需的橡胶制品,需要一系列的橡胶加工工艺将其改性。

第一步是解决固体生胶的溶解问题。最初是采用添加松节油和乙醚,后改进采用橡胶与硫磺及少量铅粉共煮变成弹性既好,又不发粘,而且坚韧的制品。这便是最早将线型天然橡胶分子用硫磺作交联剂,使其形成网状结构的成功尝试。这种硫化工艺从1885年开始被广泛采用并运用于橡胶轮胎的制造。20世纪初期,这种硫化橡胶工艺获得了进一步发展,其主要表现是硫化促进剂(苯胺)和补强剂(碳黑)的应用,以促进硫化过程的加速和硫化温度的降低。这不仅降低了成本,而且改善了橡胶轮胎的强度和耐磨性,从而提高了生产效率和产品质量。

其次,天然纤维素的化学改性也是一项意义重大的天然高分子加工工艺。主要涉及硝化纤维即“火药棉”的制造和“人造丝”的制作。1846年,瑞士化学家申拜恩(C.F.Schonbein)用硝酸一硫酸混合酸处理纤维素得到了火药棉(含氮量在12.0~13.5%,相当于纤维素三硝酸)。起初火药棉不稳定易爆炸,后经对产品长时间的水煮打浆处理、经干燥得到化学稳定的硝化棉。1868年,有化学家建议把压缩的硝化棉用作高级炸药;1875年,瑞典化学家诺贝尔(A.B.Nobel,1833~1896)发现硝化甘油和火药棉(或硝化棉)混合可以生成一种比较稳定而又具有强大爆炸性的胶状物(含有92%的硝化甘油和8%的火药棉);它是最强烈的炸药之一,常用于爆破岩石、开山筑路。如果把其中的硝化甘油的比例减少,可以得到慢性炸药,用于作炮弹的发射药,具有重要的军事意义。

关于诺贝尔,值得推荐的是他把一生都献给了科学事业。他的主要化学发明都与炸药有关,每一次化学实验都是在死神的威胁下进行的。为了向大自然索取动力,他宁愿付出血的代价。尤其令人崇敬的是,他把因从事与炸药有关的商业活动而积蓄的财产设立一项专用基金,并立下遗嘱:“将上述财产兑换成现金,然后进行安全可靠的投资,以这份资金成立一个基金会,将基金所产生的利息每年将给在前一年中为人类作出杰出贡献的人。”一一这就是当今学术界最高荣誉诺贝尔奖的由来。

改性后的纤维素(硝酸纤维以及后来兴起的醋酸纤维)更广泛的用途则是制作人造丝。“人造丝”的想法是人们受自然界生物功能的启示而产生的。通常人们对蜘蛛、蚕等昆虫吐丝结网作茧的奇妙自然现象颇感兴趣。作为先行者是一些动物学家详细地研究了吐丝的蝶、蛾类的生理构造,发现它们的体内有许多粘稠的液体,通过它们的小口吐出,遇到空气便会凝结成丝。有些化学家从中也受到某种启迪,试图用人工方法仿制出类似的粘液,然后通过小孔进行抽丝。前面提到的申拜恩,在1846年制得的纤维素硝酸酯溶于有机溶液后,就具有这种类似粘液的性能。1855年,安地玛尔(A Andemars)以桑树枝为纤维原料,将其硝酸酯溶在乙醚一乙醇混合溶液中后,再把所得粘液通过毛细针管挤压到空气中,溶剂蒸发后就凝固成光亮、柔韧的丝,从而获得世界上第一根人造丝(Artificial Silk)。但这种物质极易爆燃,妨碍了它的工业化生产。后经法国技师夏东奈(H.de Chardonnet)革新,把棉花的硝化纤维素用NH4HS脱硝转化成安全脱硝硝化纤维素,再把它溶于酒精一乙醚后抽成人造丝,并于1889年,在巴黎国际博览会上展出,引起轰动,受到人们的赞赏。1891年,

夏东奈在法国贝尚松建厂,日产约50公斤,成为世界上第一家人造丝厂。这项天然纤维素改性的加工工艺的成功,向人们展现了人造丝的光辉前景,并有力推动了这方面的研究。

1.2高分子物质本性的探究

正是在对天然高分子物质进行化学改性的化学实验和生产实践中,化学家们开始了对高分子物质的性质与结构的理论性探究。这种探究长期以来进展缓慢,是跟高分子物质本身的复杂特性有着密切关系,例如,化学家们―直搞不清高分子的分子量究竟是多少;为什么它难于透过半透膜而类似胶体;为什么它没有固定的熔点和沸点且不太容易形成结晶等问题。以当时流行的化学观点来看,这些独特的性质是很难理解的。于是,个别化学家开始尝试一种对高分子物质性质的理论解释。

早在1861年,胶体化学的奠基人、英国化学家格雷阿姆(T.Graham,1805~1869)曾将高分子物质与胶体相比较,认为高分子是由一些小的结晶分子形成的;并从高分子溶液具有胶体的某些性质着眼,提出了所谓“高分子的胶体理论”。该理论在一定程度上解释了某些高分子的特性,得到较多称谓“胶体论者”的化学家们的支持。他们套用胶体化学的理论观念来阐述高分子物质的可能存在的结构,认为:“纤维素是葡萄糖的缔合体”,即认为它是一种小分子的物理集合。19世纪末,随着人们对胶体一系列物理化学特性的发现及展开,一些从事胶体化学研究的物理化学家进一步助推了“高分子胶体论”,并将其引伸为“高分子聚集体论”。该理论认为:胶体是一种物理的凝聚体,而有胶体性质的高分子化合物不仅是一种小分子的物理聚合或缔合;而且它还是由小分子借分子间的范德华力而结合产生的聚集体所组成。该理论强调高分子特性和分子外部作用力的对直与关联。

20世纪初期,当施陶丁格初登高分子化合物研究舞台之际,他所面临的理论境况是:胶体论者或聚合体论者主导着高分子化合物性质与结构研究的局面。对于施陶丁格来说面临着这样的抉择:要么顺应胶体论或聚集体论的潮流去推波助澜;要么努力创新去开拓研究高分子化合物性质与结构的新途径。施陶丁格选择的是后者,因为他崇尚:“研究学术,最重要的是需要具有自由的意志和独立的精神;没有自由思想、没有独立精神,就不可能发现科学真理,亦即不能研究学术理论”。基于长期从事有机合成反应的研究,施陶丁格大胆着手对这种新途径的探究。他从1908年就开始了对人工合成橡胶的研究,发明了“异戊二烯合成法”。1912年到1926年,施陶丁格就任瑞士苏黎世工业大学教授期间,还着重研究了乙烯酮、异戊二烯等不饱和烯烃。他从这些化合物的大量反应中发现和归纳出一个很值得关注的规律性特点,即这类化合物不仅容易与其他物质发生加成反应,而且它们自己还能进行自聚(即自身加成)。这样所生成的物质虽然在化学成分上与原来的单体没有什么不同,但化学性质和物理、机械性能都表现出极大差异。于是他指出:这不是一般的有机合成,而是一种新型的反应,即加成聚合反应;由苯乙烯聚合成聚苯乙烯就是典型的案例。异丁烯、醋酸乙烯酯等单体的聚合反应也产生类似的结果。很多实验表明,高分子物质可以由低分子单体物质经化学键(共价键)重复连接聚合而成。这―重要发现后来就导致高分子理论的诞生。

从20世纪20年代起,施陶丁格在论文中首先使用“Makromolekul”(高分子)这一名词来标记这类聚合物;并不断阐明他的这种观点,强调指出:“这类聚合物的微粒是真正的分子,并不是小分子的物理集合(或缔合)物。而且事实上,休想用别的任何试剂使它变成我们通常所说的那种典型的低分子溶液”。显然,施陶丁格的这种新观点是与当时流行的并占主导地位的“胶体论”或“聚集体论”的观点是相对立的。于是,一场激烈的学术论争已经不可避免。

2 学术论争中诞生的高分子理论

1922年,施陶丁格明确提出了高分子是由长键大分子构成的观点,他把当时作为小分子聚合体的一批有胶体特性的物质(橡胶、纤维素、淀粉、蛋白质等)看成是由成千上万个碳原子通过聚合反应由共价键连接起来的长链状大分子(或高分子)。这种创新的高分子观念动摇了胶体论或聚集体论的基础。同时,由于施陶丁格的高分子理念超越了当时的分子概念,跟传统的观念相抵触而互不相容,故遭到胶体论者或聚集体论者激烈反对。不少持保留态度的学者曾劝阻他:离开大分子(或高分子)这个概念吧!根本不可能有大分子那样的东西存在;有的甚至责难他缺乏足够的实验根据又无法证明所谓的高分子的分子量是多少。

面对种种对高分子理论的非议,施陶丁格没有退缩。他―方面认真地思考反对者的质疑,深入地对高分子概念进行再论证;另―方面设法在理论与实践的结合上去解决高分子物质的分子量的测定问题。此时,关键是要直面责难、大胆宣传正确的理论主张。为此,施陶丁格先后在1924年及1926年召开的德国博物学及医学会议上、1925年召开的德国化学会的会议上多次详细介绍和阐明了自己的高分子理论,跟“胶体论者”或“聚集体论者”展开了面对面的学术辩论。这场持续多年的学术论争,主要围绕三大焦点问题而展开。

2.1橡胶加氢过程实质的研判

胶体论者或聚集体论者认为,天然橡胶等是通过小分子之间的范德华力而缔合起来的;这种缔合归结于异戊二烯的不饱和状态。他们甚至预言:橡胶加氢将会破坏这种缔合,得到的产物将是一种低沸点的小分子(或低分子)烷烃。施陶丁格从理论与实践的结合上加以批驳。他首先研究了天然橡胶的加氢过程,结果得到的是加氢橡胶而不是低分子烷烃;并且加氢橡胶在性质上与天然橡胶几乎没有什么区别。实践结果增强了施陶丁格关于天然橡胶是由长链大分子构成的信念。随后他又将成果推广到多聚甲醛和聚苯乙烯,指出它们的结构同样是由共价键形成的长链状大分子。

2.2高分子溶液的粘度和分子量的关联

施陶丁格认为,测定高分子溶液的粘度可以换算出其分子量,而根据分子量的多少就可以确定它是大分子还是小分子。“胶体论者”或“聚集体论者”则认为,粘度和分子量没有直接的关联。由于当时缺乏必要的实验证明,施陶丁格起初显得比较被动,但他没有就此却步。1927年他提出:通过测定高分子稀溶液的粘度来验证高分子具有惊人巨大的分子量,这在实践中是有规律可循的。经过多年的努力,他终于在粘度和分子量之间建立起了定量关系式,这项工作在1936年导致了著名“施陶丁格粘度公式”的诞生:η=KmM,其中η代表高分子溶液的特性粘度、M为分子量、Km是由高分子的种类、溶剂性质和温度、浓度等因素所决定的常数。当Km为常数时,粘度与分子量之间存在线性关系,从而揭示出了粘度与分子结构间的内在联系。实验可以证明,任何一种高分子溶液的粘度总是与它的长链分子中的链节数(或单体的数目)成比例。

2.3高分子结构中晶胞与其分子的关系

学术论争双方都使用x射线衍射法来测定纤维素结构和拉伸橡胶的数据,均发现单体(小分子)与晶胞大小很接近,但双方对此的看法却截然不同;“胶体论者”或“聚集体论者”认为一个晶胞就是一个分子,晶胞通过晶格力相互缔合形成高分子;施陶丁格则认为,晶胞大小与高分子本身大小无关,一个高分子可以穿过许多晶胞,从一个结晶区通过一个无定形区,然后再进入另一个结晶区。双方对同一实验观测事实有着不同的解释,可见科学的解释有时与科学的实验同样重要。正当双方观点争执不下时,出现了一个转机,那就是在1923~1925年期间,瑞典化学家斯维德贝里(Theodor Svedberg,1884~1971)发明了超速离心机,获得比地球表面的重力加速度大几十万倍的力场,由此可利用沉降速度法测定出蛋白质的分子量在1.2万~200万之间(系指平均分子量)。同时,还创造出电泳和吸附方法,用以分离和提纯胶体和高分子化合物。这一事实,为施陶丁格的高分子聚合物的存在及其理论提供了直接的证明。1926年,斯维德贝里因发明超速离心机并用于研究高分散胶体物质和高分子化合物而荣获诺贝尔化学奖。

以此为转机,学术辩论双方的力量发生了显著的变化。在1928年召开的德国化学会上,除个别人仍持保留态度外大多数有机化学家和物理化学家都放弃了原先持有的“胶体论”或“聚合体论”观点。有两位主要反对者(马克和迈耶)则公开承认错误,同时高度评价了施陶丁格的科学思想、理论与实践以及坚韧不拔的科学精神。令人感动的是,他们还以实际行动具体协助施陶丁格完善与发展高分子理论。有机化学家和物理化学家们开始统一在高分子科学思想理论的旗帜之下。1932年,施陶丁格总结了自己的高分子理论,出版了划时代的名著《高分子有机化合物》,标志了高分子学科的诞生。

3 高分子理论经受住实践的检验

在学术论争中诞生的高分子理论是否是科学真理,最终还得经受实践的检验。实践表明,直至20世纪30年代末,美国化学家卡罗瑟斯(W.H.Carothers,1896~1937)在高分子理论指引下,按照缩聚反应的原理,研制成功了人造尼龙纤维,施陶丁格的高分子理论由此才得到科学界的普遍接受、认可和赏识。那是在1927年,美国伊利诺斯大学和哈佛大学的年轻化学教授卡罗瑟斯接受杜邦公司的邀请,研究高分子物质的合成和结构问题。他先通过二元醇和二元酸进行缩合聚酯反应的研究,对反应物配比严格要求,从而发现了缩合聚合的规律。1930年,他与助手希尔发现乙二醇与癸二酸缩合而得到的聚酯,其熔融物能拉伸成长纤维状的细丝,具有可纺性。而且冷却后仍可拉伸,强度和弹性并随增加担脂肪醇与脂肪酯的缩聚物熔点偏低,而且易水解,所以不适用作纤维使用。于是,他们转而集中精力研究聚酰胺,以二元胺替代二元醇,发现聚酰胺具有聚酯的各种特性,熔点高、耐水性也好。

卡罗瑟斯及其助手以极大的韧性合成了_上百种聚酰胺,最终筛选出由己二胺和己二酸反应生成的聚合物,命名为“Nylon-66”(即尼龙66,两个“6”分别代表二胺和二酸中的碳原子数),由此奠定了熔体纺丝的生产工艺流程,包括缩聚、熔体纺丝及在室温下的冷拉伸等。尼龙66的生产规模发展很快,当时的杜邦公司曾用“我们生产如钢丝一样结实,像蜘蛛网那样纤细的具有美丽光泽的尼龙丝”的广告吸引顾客,加上可观的商业利润和市场需求的刺激,各国开始陆续建厂投产。以高分子化学工艺为基础的人工合成纤维材料开始走向世界。

正是高分子理论的建立,人造尼龙纤维的试制成功和大分子量测定方法的完善(渗透压法及光散射法相继成为有效的测定高分子物质分子量的手段)使高分子化学成为发展最迅速、应用最广泛的新兴学科之一。施陶丁格本人由于在这方面做出的开创性贡献而荣获1953年诺贝尔化学奖。

施陶丁格在高分子领域研究取得成功以后,开始按照早年的设想,将研究的重点逐步转向生物学领域。不过从实质上看,只是拓展了高分子的研究范围。事实上,他当初选择高分子这―课题时,就曾考虑到他与植物学的密切关系。早在1926年,他就曾预言大分子(或高分子)化合物在有生命的有机体中,特别是蛋白质之类的化合物中起着重要作用。于是一旦时机成熟,他顺理成章地将大分子(或高分子)概念引入生物学,积极倡导分子生物学的建立。他和妻子、植物生理学家玛格达-福特合作研究高分子和植物生理学的关系,在科学探索的道路上开始了新的征程。

要证明大分子(或高分子)同样存在于动植物等有生命的生物体内,施陶丁格夫妇俩认为最好能找到除了粘度法以外的其他方法,以证明高分子确实存在及其具体存在的方式。经过两年多的努力,他们利用电子显微镜等现代观测手段,终于用事实证明了生物体内存在着大分子(或高分子)即糖、脂、蛋白质和核酸及其衍生物等生物大分子。可是这项有重要意义的工作因希特勒法西斯的上台和第二次世界大战的爆发而被迫中断,施陶丁格所在的研究所毁于战火。第二次世界大战一结束,施陶丁格立即恢复了_一度中断的关于生物有机体中大分子的研究。1947年,他的新著《高分子化学和生物学》出版。在该著作中,施陶丁格尝试性地描绘了分子生物学的概貌,为分子生物学这一前沿学科的建立与发展打下了必要基础。此外他还关注着高分子化学的进展,为了配合高分子学科的继续发展,1947年起,他还主持编辑了《高分子化学》这一专业杂志。1961年,发行了新版《高分子有机化合物:橡胶和纤维素》。

总之,以20世纪30年代施陶丁格建立起现代高分子学说为开端,新的合成高分子化合物被不断地开发出来,尤其是20世纪50年代以后,伴随着石油化工的发展,高分子化学工业日新月异,发展迅猛。如今,塑料、合成纤维、合成橡胶、涂料及胶粘剂等高分子材料在日常生活中的应用已无所不在,同时也遍及所有工业部门和科技领域。随着高分子化学工业的高速发展,新颖的高分子材料给传统的材料结构带来了深刻变化。这就要求人们继续深化它们的结构与性能特征以及所涉及的基本理论,并探索高分子新的制法及其加工工艺。这样一门以有机化学、物理化学、生物化学、分子物理学等为基础的新科学一一“高分子科学”就应运而生。

迄今为止,高分子科学已成为一门相当完整、相对独立的基础科学分支。从施陶丁格的“高分子化学”到如今的“高分子科学”,人们对高分子化合物及其合成的研究又完成了一次认识上和实践上的飞跃。抚今追昔,人们不禁深深怀念施陶丁格的创新精神和杰出贡献。可以期望,施陶丁格和他的“高分子”理念将久远地共存于人们的心中。

参考文献:

高分子化学的应用范文12

【关键词】 化学反应速率;影响因素

现我就结合我多年的教学谈点我个人的理解。

影响化学反应速率的因素可以分两方面来理解。内因和外因两方面。内因指的是参加化学反应物质本身的性质,而外因是指温度、压强、浓度、催化剂、光辐射、超声波等都属于外因。下来我具体谈一下这两方面是如何影响化学反应速率的。

内因既物质本身的性质。不同的化学物质由于化学性质存在差别,化学反应的快慢自然也就不同了。我们在学习碱金属的时候知道,锂、钠、钾、铷、铯、钫的化学性质有较大差异的。锂到钫活泼性在增强。如果用相同状态的金属钠和金属钾与相同的水反应时,它们的速率就不同。金属钾的反应速率要比金属钠的要快。这一事实就充分说明参加化学物质的性质对化学反应的速率的影响。既参加化学反应的物质性质越活泼,反应就越快。

外因是指温度、压强、浓度、催化剂等因素的影响。

温度越高化学反应越快,温度越低化学反应越慢。这适应所有的化学反应。那为什么温度越高化学反应就越快呢?我们知道温度升高,一方面参加反应的化学物质就能获得更多的能量,分子的运动速度提高,参加反应的物质分子间的碰撞频率就会提高,反应速率也就会提高。另一方面,参加反应的物质分子获得搞得能量后变成了活化分子,从而提高了活化分子的数目,那么分子间的有效碰撞就会增多,化学反应速率也会提高的。例如,我们吃的食物,夏天要比冬天时腐败变质的速率快一些。再比如说氢气和氧气在常温下,它们是不反应的,但点燃的条件下它们能剧烈的反应。这些都说明了温度高反应越快。

浓度增大,化学反应速率加快,浓度减小化学反应速率降低。那又是为什么呢?这是因为,当浓度增大时,此时活化分子的百分数并没有变化,但反应容器里的反应物分子数会增多,活化分子数也就增多。这样,化学反应的速率就会提高了。那反之,化学反应速率就降低。这样的例子很多,如我们看到用锅炉里的燃煤,用鼓风机鼓风后燃烧的比不鼓风时烧得更旺。这是因为鼓风后氧气的浓度增大了。还有我们在在做制氢气的实验时,浓度大的盐酸和锌反应放出氢气的速度要比浓度小的盐酸和锌放出氢气的速度快。这些例子都是在增大浓度时,使参加反应的反应物分子数增加,活化分子数增加,化学反应的速率就加快了。

压强对化学反应的影响是对有气体参加或生成的化学反应而言的。如果化学反应中没有气体参加或气体生成,那压强的改变对化学反应速率无影响。例如,把氧化钙固体放入水水中,反应生成氢氧化钙。对于这个反应改变压强,化学反应的速率是不会发生改变的。如果化学反应中有气体参加或生成,改变压强,化学反应速率又是怎么改变的呢?如果改变压强后反应容器内参加反应的各物质的浓度发生改变,化学反应的速率会改变;压强改变没有影响到参加反应的各物质的浓度,那么化学反应的速率就不变。例如,在一个密闭的反应容器中,氢气与碘蒸气反应生成碘化氢气体,如果使容器的体积变为原来的一半,其它条件不变,那化学反应的速率就会增大。这是在减小容器的体积时,容器内的压强增大,而各物质的浓度也增大,反应速率就加快。反之,压强减小,各物质的浓度减小,化学反应速率就降低。

催化剂能加快化学反应速率。因为催化剂可以降低反应的活化能。活化能降低后,本来不是活化分子的反应物分子,也能成为活化分子。活化分子数增多,反应物分子间有效碰撞的几率就会增加,化学反应速率就会加快。例如,用加热氯酸钾的方法来制氧气时,不加催化剂二氧化锰产生氧气的速度很慢,但加入催化剂二氧化锰后,化学反应的速率明显加快。

影响化学反应速率的外因还有光辐射、电磁辐射、超声波等因素。高中阶段主要掌握温度、压强、浓度、催化剂对化学反应速率的影响。