HI,欢迎来到学术之家,期刊咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 土壤重金属污染的现状

土壤重金属污染的现状

时间:2023-12-29 14:33:49

土壤重金属污染的现状

第1篇

关键词:重金属;土壤重金属污染;生物修复技术

土壤重金属污染问题越来越引起人们的关注,它具有长期性、累积性、潜伏性和不可逆性等特点。土壤一旦遭受重金属污染,不仅危害大、治理成本高,而且较难以消除。 “十二五”期间,我国将元素铅(Pb)、汞(Hg)、镉(Cd)、铬(Cr)和砷(As)列为重金属污染防控的重点元素。2014年4月,环保部和国土部联合的《全国土壤污染状况调查公报》显示,全国土壤环境状况总体不容乐观,部分地区土壤污染严重。全国第二次土地调查结果显示,我国中重度污染耕地大约为5000万亩。

被重金属污染的土壤不仅对作物的生长发育、产量及品质有影响,而且会通过食物链放大富集进入人体,极低浓度就能破坏人体正常的生理活动,损害人体健康[1]。土壤污染影响到整个人类生存环境的质量。重金属污染已成为一个亟待解决的环境问题。

1、土壤中重金属的来源及危害

土壤中重金属的来源可分为天然来源和人为来源。天然来源是由于土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。人为来源主要是来自人类的工农业生产活动以及生活垃圾,工矿业废弃地土壤环境问题突出,黑色金属、有色金属、皮革制品、造纸、石油煤炭、化工医药、矿物制品、金属制品和电力等行业,重污染企业用地及周边土壤存在超标现象。

近年来,突发性的环境污染事件骤增,特别是重金属污染事件。突发的环境事件会导致重金属在短时间内高浓度地进入环境,产生严重的污染。2008年,我国相继发生了贵州独山县、湖南辰溪县、广西河池、云南阳宗海等多起砷污染事件。2009年8月以来,又发生了陕西凤翔儿童血铅超标、湖南浏阳镉污染及山东临沂砷污染事件。2014年,湖南衡东县儿童血铅超标事件,300多名儿童被查出血铅含量超标。据美国学者统计表明,城市儿童血铅与城市土壤铅含量呈显著的指数关系[2]。据统计,我国约有3万多公倾土地受汞的污染,有1万多公倾土地受镉的污染,每年仅生产“镉米”就达5万t以上,而每年因污染而损失的粮食约1200万t,严重影响了我国的粮食生产和食品安全[3]。这些重金属污染事件有些是由于管理不当、交通事故等人为原因导致的,有些则是环境长期受到污染、污染物含量超过环境容量而突然爆发的结果。“砷毒”“血铅”“镉米”等重金属污染事件频发,让重金属污染成为最受关注的公共事件之一。重金属污染问题已日益严重,土壤重金属的治理和修复已迫在眉睫。

2.重金属土壤污染治理生物修复技术

目前,国内外较成熟的土壤重金属污染修复技术有物理修复法、化学修复法和生物修复法等,本文主要就土壤重金属修复领域的研究热点生物修复技术进行重点介绍。生物修复技术主要有植物修复技术、微生物修复技术、农业生产修复技术和组合修复技术。

2.1植物修复技术

根据Cunningham等人的定义,植物修复是利用绿色植物来转移、容纳或转化污染物,使其对环境无害[4]。根据机理的不同,土壤重金属污染的植物修复技术有3中类型:植物固定、植物挥发和植物提取。目前研究最多且最有发展前景的植物修复技术为植物提取。植物提取是指将某种特定的植物种植在重金属污染的土壤上,该种植物对土壤中的污染元素具有特殊的吸收富集能力,将植物收获并进行妥善处理(如灰化处理)后即可将该重金属从土体中去除,达到治理污染与生态修复的目的,这种特定的植物被称为超积累植物。植物修复法成本低,可有效避免二次污染,对环境扰动小。目前,全球已发现的超积累植物大约500种,大部分是关于镍的超富集植物。在我国已经发现宝山堇菜、龙葵、马蔺、三叶鬼针草对Cd有富集作用,蜈蚣草[5]和大叶井口边草[6]对As有富集作用,圆锥南芥[7]属多重金属富集植物,对Pb、Zn、Cd均有富集作用。植物修复技术可同时修复土壤及周边水体;成本低;能够美化环境,可提高土壤的肥力。植物修复技术的缺点:超富集植物个体矮小,生长缓慢,修复周期很长;超富集植物对重金属具有较强的选择性和拮抗性;植物收割后,需要进行特殊处理,否则易造成二次污染;异地引种将对当地的生物多样性构成潜在威胁。适用于大面积农田土壤修复。

2.2微生物修复技术

微生物修复技术是利用微生物(如藻类、细菌、真菌等)的生物活性对重金属的亲和吸附或转化为低毒产物,从而降低重金属的污染程度。微生物不能降解和破坏重金属,但可通过改变它们的化学或物理特性而影响金属在环境中的迁移与转化。研究证明,土壤中铬可以在微生物还原作用、生物吸附、富集等作用下降低其生物可利用性和毒性,以达到修复铬污染土壤的目的[8]。微生物修复效果好、投资小、费用低、易于管理与操作、不产生二次污染。但是微生物修复的专一性强,很难同时修复多种复合重金属污染土壤;应用难度大。

2.3农业生态修复技术

农业生态修复包括农艺修复和生态修复,前者是改变耕作制度,调节种植作物品种,种植不进入食物链的植物,选择能降低土壤重金属污染的化肥,或增施能够固定重金属的有机肥等来降低土壤重金属污染;后者调节土壤水分、养分、pH值和土壤氧化还原状况及气温、湿度等生态因素,调控污染物所处环境介质,但该技术修复周期长、效果不明显。农业生态修复技术环境友好,代价小。但需要大量的调研,基础研究,改变种植习惯。适用于大面积低污染农田土壤。

2.4组合修复技术

植物组合修复技术是将植物修复技术与其他土壤重金属污染治理方法(比如物理、化学等修复技术)综合利用形成的组合技术,与单一重金属治理技术相比,植物组合修复技术具有独特的优点。有代表的有螯合剂-植物组合修复技术,螯合剂与土壤中的重金属发生螯合作用,形成水溶性的金属―螯合剂络合物,改变重金属在土壤中的赋存形态,提高重金属的生物有效性,强化植物对重金属的吸收。另外还有基因工程-植物组合修复技术及微生物-植物组合修复技术等。

3、展望

随着社会的发展进步,人们对土壤重金属污染的认识越来越深刻,越来越重视,如何防控和治理土壤重金属已成为人们关注的焦点。在今后的土壤重金属污染治理中,首先应以源头控制,即有效地降低重金属污染物的排放,这主要有赖于国家环境政策与法规的不断完善和工矿企业技术革新的落实。其次就是土壤的修复技术,针对土壤污染的复杂性、多样性及复合性,在修复时要综合考虑污染物的性质、土壤条件、投资成本等各方面的因素,从单一的修复技术向多数联合的修复技术、综合集成的工程修复技术发展,选择最适合的修复技术或组合, 达到高效、节约的双重效果。

参考文献

[1] 张许文琦.植物修复技术治理土壤重金属污染的研究进展[J].人民长江,2013,44(增刊):144-146.

[2] 蒋海燕,等.城市土壤污染研究现状与趋势[J].安全与环境学报,2004,4(5):73-77.

[3] 陈怀满.土壤-植物系统中的重金属污染[M].北京: 科技出版社,1996.

[4] Cunningham SD.Remediation of contaminated soil with green plants: an overview[J].In Vitro. Cell Dev. Biol,1993,( 29) :207-212.

[5] 陈同斌,韦朝阳,黄泽春,等. 砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47( 3) : 207 - 210.

[6] 韦朝阳, 陈同斌, 黄泽春,等. 大叶井口边草―种新发现的富集砷的植物[J].生态学报,2002,22( 5) :777-778.

第2篇

关键词:重金属;内梅罗综合污染指数;环境质量;国道;稻田土壤;信阳市

中图分类号:X53 文献标识码:A 文章编号:0439-8114(2013)24-6003-04

随着中国社会经济的发展和人们生活水平的提高,各种车辆急剧增加,带来土壤和环境的污染,主要污染源有汽车尾气、轮胎磨擦碎屑、发动机泄漏的机油、公路沥青等,部分污染物随路面径流进入公路两侧土壤[1],污染物中的重金属主要包括Pb、 Ni、Cd、As、Hg、Cu、Zn等[2-5]。这些污染物进入土壤中自然净化过程十分漫长,具有隐蔽性和不可逆性,难以被微生物降解,迁移性小而发生污染累积,并经水、植物等介质进入人体,最终影响到人类的健康,因而土壤重金属污染及其修复日益受到关注[6]。

中国学者们对京沪高速[7]、沪宁高速[8]、成渝高速[9]、沈大高速[10]、312国道[11]、107国道[12]等路段两侧土壤中重金属污染做了详细的研究,发现高速公路两侧土壤中重金属元素含量超出背景值,受重金属污染明显。本研究对312国道和107国道河南省信阳市境内路段两侧稻田土壤重金属污染现状展开调查和评价,了解信阳市境内国道两边稻田土壤环境质量状况,对于减少和预防农田受重金属污染的危害、保障粮食安全生产具有重要意义。

1 材料与方法

1.1 样品采集与处理

土样主要采集自河南省信阳市107国道和312国道边的主要水稻栽培区。信阳市主要为丘陵地带,农田面积不大,但每块农田比较平坦,所以采用棋盘式布点法,每块农田分别取10个耕层0~20 cm土样,四分法组成一个混合土样(1.0 kg),共26份土壤样品。土壤样品在风干室风干磨碎,用四分法分为两份,一份研磨过孔径20目尼龙筛,用于测定土壤pH,另一份研磨过孔径100目筛,用于测定土壤重金属(Cu、Zn、Pb、Cr、Cd、As、Hg、Ni)含量[13]。

1.2 土壤样品分析测定

pH采用酸度计法[14]测定,土壤重金属全量采用HCl-HNO3-HClO4-HF消解法[14]。Cd、Ni采用电感耦合等离子体发射光谱仪(ICP-AES Thermo iCAP6000系列)测定,Pb、Cr采用德国耶拿石墨炉型原子吸收分光光度计(ZEEnit600型)测定,Cu、Zn采用上海天美火焰型原子吸收分光光度计(AA6000型)测定,As、Hg采用北京吉天原子荧光光度计(AFS-930型)测定。样品测定采用20%样品平行样,并加入国家标准土壤样品(GSS-4和GSS-8)作为质量控制样品,质控样品相对误差小于10%。

1.3 土壤重金属含量评价方法

2.1 研究区土壤重金属含量的分布特征

信阳市312国道和107国道沿线主要水稻产区的稻田土壤重金属含量分布见图1。由图1可知,不同地点稻田土壤中重金属Pb、Cd、Cr、As、Hg、Ni、Cu、Zn含量均呈不同程度的波状曲线,说明312国道与107国道沿线各路段稻田重金属污染存在一定的差异,这与钱鹏等[11]、王学锋等[12]的研究结果一致。Pb的最高含量为20.706 mg/kg,含量最高值出现在游河;Cd的最高含量为0.608 mg/kg,含量最高值出现在十三里桥;Cr的最高含量为61.091 mg/kg,含量最高值出现在胡族铺;As的最高含量为10.095 mg/kg,含量最高值出现在吴家店;Hg的最高含量为0.618 mg/kg,含量最高值出现在龙山;Ni的最高含量为9.783 mg/kg,含量最高值出现在附店;Cu的最高含量为48.583 mg/kg,含量最高值出现在寨河;Zn的最高含量为99.978 mg/kg,含量最高值出现在游河。

2.2 研究区土壤重金属污染评价

内梅罗综合污染指数法是人们在评价土壤重金属污染时运用最为广泛的综合指数法,可以全面反映各重金属对土壤的不同作用,突出高浓度重金属对环境质量的影响,避免由于平均作用削弱污染重金属权值现象的发生[15]。本研究采用内梅罗综合污染指数法进行重金属污染评价。以国家土壤质量二级标准[16]和土壤环境检测技术规范[13]为标准,不同地区不同重金属元素含量、重金属元素的单项污染指数、内梅罗综合污染指数以及土壤污染物分担率分别见表2、表3、表4。结果显示,不同地区稻田土壤的重金属Pb、Cd、Cr、As、Hg、Ni、Cu、Zn的单项污染指数大部分小于1,从单项污染指数的角度评价,信阳市稻田重金属含量尚处于比较安全的水平,土壤质量对环境和植物基本上不会造成危害和污染。以内梅罗综合污染指数为评价等级时,东双河、十三里桥、双井、龙山内梅罗综合污染指数均高于0.7,低于1.0,说明这4个地区土壤重金属污染虽尚轻,但已达到警戒限,其他7个地区内梅罗综合污染指数均低于0.7,处于安全范围,总体上信阳市稻田土壤质量适合农业生产,并能维护人体健康。

由表2和表3可知,在信阳市13个水稻主产区土壤重金属单项污染指数除双井、龙山、附店和胡族铺Hg最高外,其他地区均为Cd最高,各地区不同重金属污染物分担率由大到小依次为Cd、Hg、Zn、Cu、As、Cr、Ni、Pb,说明Cd在不同地区的稻田土壤中污染强度最大,Hg、Zn次之。

2.3 研究区土壤重金属元素的相关性分析

重金属元素之间的相关性在一定程度上反映了这些元素污染程度的相似性或污染元素有相似的来源[17,18]。目前有不少学者用相关性来评价和研究污染元素的来源及其累积的原因,提出相应的降低或减少污染的措施与方法[17,19-21]。对不同地区国道两边稻田土壤重金属元素之间进行了相关性检验,所有变量间Pearson相关系数如表5所示。Cd与Pb、Cr呈显著正相关;Pb与Zn呈极显著正相关;Cr与Ni呈极显著正相关,As与Pb、Zn呈显著负相关。

3 讨论

钱鹏等[11]、王学锋等[12]对312国道和107国道沿线重金属元素含量进行了调查和评价,土壤中重金属Pb、Cd、Cr、As、Hg、Ni、Cu、Zn均存在一定的污染。本研究中信阳市国道两边稻田土壤的质量状况尚比较好。通过内梅罗综合污染指数评价表明,龙山的内梅罗综合污染指数最高,为0.910 2,处于重金属污染警戒限,这可能是因为龙山处于交通枢纽位置,是312国道、40国道、219省道汇集区,同时有宁西铁路通过,车流量比较大,造成一定的污染。东双河、十三里桥以及双井内梅罗综合污染指数分别为0.730 4、0.754 7、0.792 0,比龙山低,但也达到重金属污染警戒限,这可能有2个原因,一是这些地区离市区比较近,车流量比较大。双井位于京九、宁西铁路汇集区和40国道、107国道、312国道汇集区;东双河有339省道、107国道和京九铁路通过。二是信阳市位于季风气候区,十三里桥位于信阳市西南部,东北季风造成这些地区大气的沉降较多[22],同时十三里桥离市区比较近,车流量和人流量都比较大。这些区域的土壤质量应引起人们的重视,采取一定的措施保护土壤环境质量。甘岸、长台、明港、吴家店、游河、五里店、附店、寨河、胡族铺的内梅罗综合污染指数均小于0.7,属于清洁无污染的地区。

Nicholson等[23]通过收集重金属在土壤中的累积和工农业重金属的排放信息,调查分析了英格兰和威尔士农田土壤中重金属的来源,发现Cd更多地来源于无机肥料。据估计,在人类活动对土壤Cd的贡献中,磷肥施用率占54%~58%[24]。本研究中,调查的信阳市13个水稻主产区有9个地区土壤中Cd的单项污染指数和污染物分担率均为最大,可能是因为土壤中重金属Cd的来源除了公路交通外,施肥也是其中一个重要来源。

4 结论

信阳市境内国道两边水稻田土壤重金属调查结果表明,水稻田土壤中重金属元素Pb、Cd、Cr、As、Hg、Ni、Cu、Zn的平均含量均未超过国家二级标准值,单项污染指数平均值均小于1,东双河、十三里桥、双井和龙山的内梅罗综合污染指数分别为0.730 4、0.754 7、0.792 0、0.910 2,为Ⅱ级污染,污染等级为“警戒限”级。甘岸、长台、明港、吴家店、游河、五里店、附店、寨河、胡族铺内梅罗综合污染指数分别为0.540 4、0.520 2、0.529 3、0.596 9、0.628 8、0.577 0、0.673 5、0.504 5、0.623 7,污染等级均为Ⅰ级,处于清洁区。结果表明车流量较高的公路交汇点两边污染指数比较高,说明交通对土壤环境质量有一定的影响。Pearson相关性检验表明,Cd与Pb、Cr之间、Pb与Zn之间、Cr与Ni之间均存在显著或极显著正相关,说明Cd、Pb、Cr、Zn、Ni可能为同源污染物;As与Pb、Zn之间呈显著负相关,说明As、Pb、Zn可能为异源污染物[17,18]。

参考文献:

[1] 李 贺,张 雪,高海鹰,等.高速公路路面雨水径流污染特征分析[J].中国环境科学,2008,28(11):1037-1041.

[2] ROMIC M, ROMIC D. Heavy metals distribution in agricultural topsoils in urban area [J]. Environment Geology,2003,43(7):795-805.

[3] OZAKI H, WATANABE I, KUNO K, et al. Investigation of the heavy metal sources in relation to automobiles [J].Water, Air and Soil Pollution,2004,157:209-223.

[4] SWAILEH K M, HUSSEIN R M, ABU-EIHAJ S, et al. Assessment of heavy metal contamination in roadside surface soil and vegetation from the West Bank [J]. Arch Environ Contam Toxicol,2004,47(1):23-30.

[5] IDERIAH T J K, BRAIDE S A, IZONFUO W A, et al. Heavy metal contamination of soils along roadsides in Port Harcourt metropolis, Nigeria [J]. Bull Envioron Contam Toxicol,2004,73(1):67-70.

[6] 李法云,臧树良,罗 义.污染土壤生物修复技术研究[J]. 生态学杂志,2003,22(1):35-39.

[7] 郁建桥,温 丽,王 霞,等.京沪高速公路两侧土壤重金属污染状况的研究[J].生命科学仪器,2008,6(8):58-60.

[8] 许 海,邵婉晨,李光辉,等.沪宁高速公路(常州段)两侧农田土壤重金属污染状况检测评价[J].江苏农业学报,2009,25(1):123-126.

[9] 胡晓荣,查红平.成渝高速公路旁土壤铅污染分布及评价[J].四川师范大学学报(自然科学版),2007,30(2):228-231.

[10] 甄 宏.沈大高速公路两侧土壤重金属污染分布特征研究[J].气象与环境学报,2008,24(2):6-9.

[11] 钱 鹏,郑祥民,周立旻,等.312国道沿线土壤、灰尘重金属污染现状及影响因素[J].环境化学,2010,29(6):1139-1146.

[12] 王学锋,姚远鹰. 107国道两侧土壤重金属分布及潜在生态危害研究[J]. 土壤通报,2011,42(1):174-178.

[13] 国家环保总局.HJ/T166—2004,土壤环境检测技术规范[M].北京:中国环境科学出版社,2004.

[14] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学出版社,2000.

[15] 郭笑笑,刘丛强,朱兆洲,等.土壤重金属污染评价方法[J].生态学杂志,2011,30(5):889-896.

[16] GB 15618—1995,土壤环境质量标准[S].

[17] 李瑞平,郝英华,李光德,等.泰安市农田土壤重金属污染特征及来源解析[J].农业环境科学学报,2011,30(10):2012-2017.

[18] 李晓雪,卢新卫,任春辉,等.宝鸡二电厂周边农田土壤重金属污染特征及评价[J].干旱地区农业研究,2012,30(2):220-224.

[19] 韩 平,王纪华,陆安祥,等.北京顺义区土壤重金属分布与环境质量评价[J]. 农业环境科学学报,2012,31(1):106-112.

[20] 王月容,卢 琦,周金星,等. 洞庭湖退田还湖区不同土地利用方式下土壤重金属分布特征[J]. 华中农业大学学报,2011, 30(6):734-739.

[21] 刘 勇,岳玲玲,李晋昌.太原市土壤重金属污染及其潜在生态风险评价[J]. 环境科学学报, 2011,31(6):1285-1293.

[22] 包丹丹,李恋卿,潘根兴,等.苏南某冶炼厂周边农田土壤重金属分布及风险评价[J].农业环境科学学报,2011,30(8):1546-1552.

第3篇

[关键词]土壤修复 重金属污染 生态效应

中图分类号:R124 文献标识码:A 文章编号:1009-914X(2014)44-0103-02

前言

土壤环境中的重金属主要来源于矿业活动的排放,其他来源还包括污灌和污泥滥用、农药和化肥的不合理施用、农用薄膜和化石类燃料的不完全燃烧等。国务院于2011年2月18日正式批复《重金属污染综合防治“十二五”规划》因此,重金属污染土壤的修复技术研究是当前环境保护的重要课题之一。本文重点介绍国内外有关重金属污染土壤的修复技木研究进展。

1.重金属污染土壤的特点

1.1 具有隐蔽性和滞后性。土壤重金属污染不像大气污染、水污染及废弃物污染那样直观。

1.2 具有累积性。重金属污染物质在土壤中不易迁移,容易在土壤中不断积累而超标。

1.3 具有不可逆转性。在土壤中,许多有机化学物质的污染也需要较长的时间才能降解,某些重金属污染的土壤可能要100―200年时间才能够恢复。由于土壤地球物理化学的自然形成过程极其缓慢,一般每百年以0.5-2.0cm厚度的速率进行,这就意味着土壤资源一旦遭到污染或人为干扰后将很难在短时期内得以恢复。

1.4 具有难治理性。土壤重金属污染一旦发生,仅仅依靠切断污染源的方法往往很难恢复,有时要靠换土、淋洗土壤等方法才能解决问题,通常成本较高,治理周期较长。

2.重金属污染土壤的修复技术

2.1 生物修复

生物修复是指利用特定的生物吸收、转化、清除或降解环境污染物,实现环境净化、生态效应恢复的生物措施。生物修复包括植物修复、微生物修复、动物修复等。

(1)植物修复

植物萃取技术是目前研究及应用最多的植物修复技术。近年来,陈同斌等通过田间试验发现蜈蚣草具有富集As、Pb的能力。同时还具有较强的耐As,pb,Zn,Cu毒性能力,是一种修复多种重金属污染土壤(As,Pb污染为主)的优良品种。扶杂草植物中筛选出3种Cd超富集植物:龙葵、球果薄菜、三叶鬼针草。3种植物在土壤中Cd质量分数为25―50mg/kg时。地上部中Cd质量分数均能达到l00mg/kg,并且在污染区试验中也取得了较好效果。

(2)微生物修复

微生物对重金属的生物吸附与富集作用是指土壤微生物可通过带电荷的细胞表面吸附重金属离子。2007年,王瑞兴等选取到一种土壤菌,利用其在底物诱导下产生的酶化作用,分解产生CO32-矿化固结土壤中的有效态重金属(以Cd2+的处理为代表),使其沉积为稳定态的碳酸盐;对被复合重金属(Cd,Cu,Pb,Zn等)污染的土壤样进行微生物修复的实验中,有效态重金属去除率达50%~70%。杜立栋等从Pb矿区土壤中分离筛选出一株青霉菌,对人工培养基中有效Pb的最大去除率达96.54%。而且富集效果比较稳定,可应用于Pb矿区土壤生物修复。

(3)动物修复技术

动物修复在国外有较长的研究史,国内研究则处于摸索阶段。它包括将生长在污染土壤上的植物体、果实等饲喂动物,通过研究动物的生化变异来研究土壤污染状况,或者直接将土壤动物,如虹蝴、线虫饲养在污染土壤中进行有关研究。同时,在重金属污染的土壤中放养蚯蚓,待其富集重金属后,采用电激、清水等方法驱出蚯蚓,集中处理,对重金属污染土壤也是一种经济有效的土壤生态恢复措施。

2.2 物理修复

(1)置换法

置换法主要分为客土法、换土法,可以降低土壤中重金属的含量,减少重金属对土壤一植物系统产生的毒害,从而使农产品达到食品卫生标准。客土法和换土法则是用于重污染区的常见方法,在这方面日本取得了成功的经验。

(2)玻璃化技术

玻璃化技术是指把重金属污染区土壤置于高温高压下,使之形成玻璃态物质,将重金属固定其中,从而达到从根本上消除土壤重金属污染的目的。该技术方法工程量大,费用偏高,其最大的特点是见效快,适用于对受到重金属污染严重的土壤进行抢救性修复工作。

2.3 化学修复

化学钝化多用于原位土壤修复,是修复重金属污染土壤的重要途径之一,通过施人一些钝化剂以降低土壤中重金属有效态含量,从而减少迁移及对农作物的毒害。

(1)化学钝化技术

A.无机改良剂的应用

近年来,石灰石、天然沸石、赤泥、骨粉、钙镁磷肥等作为改电剂修复重金属污染土壤的研究逐步成熟。其中石灰作为重金属污染土壤化学固定的常用物质,其对重金属的固定主要通过提高土壤pH值,使重金属生成氧化物或以碳酸盐的形态沉淀起作用,明显降低土壤重金属的有效态含量;天然沸石作为一种优良的铅污染土壤修复材料,通过调节土壤pH值和阳离子交换量抑制重金属铅的生物活性;赤泥可通过提高土壤pH影响重金属的赋存形态,降低重金属的有效性;骨粉可有效降低酸性重金属污染土壤的酸度,提高pH,增强土壤的吸刚性能,促使+壤重金属有效态含量和生物可给性降低;钙镁磷肥是酸性土壤中常用的修复材料,可降低土壤交换态镉含量,使其向缓效态转化。

B.有机改良剂的应用

对于矿区酸性重金属污染土壤具有养分流失严重和有机质缺失的特点,合理施用有机肥可提高土壤养分,增加土壤团粒结构,改善土壤理化性质。有机物料有助予恢复土壤微生态环堍系统,降低土壤中有毒重金属的生物可给性,从而减少对作物的毒害。常见的有机固化物包括禽畜粪便、无害化后的作物秸秆、豆科绿肥和污泥等。

C.螯合技术

螯合剂对土壤中重金属的活化作用主要是通过螯合剂与土壤溶液中的重金属离子结合,降低土壤液相中的金属离子浓度,促进重金属在植物地上部的积累:并且对重金属Pb、cu、zn、cd、Ni等有很强的活化能力。

3.技术路线概述

3.1 土壤污染特征调查

通过开展土壤重金属污染调查与评价,掌握修复区详细的污染状况,为下阶段土壤修复提供依据,土壤特征调查可分现有资料收集和修复区污染状况前期调查两个步骤进行。

3.2 修复区污染状况调查主要内容

(1)样点布设。根据前期收集的资料,由于前期采样调查取样点较少,针对这种状况,根据综合污染型土壤监测单元布点要求,采取网格布点的方法,对土壤污染进行全面的评价。

(2)现场勘查校正。通过现有资料确定的调查区域内理论监测点位,还要通过必要的现场勘查,最终对理论布点数目和位置进行检验和优化。现场环境条件不具备采样条件需要调整点位的,现场点位调整后要对地图网格所布点进行调整,最终形成调查区域内实际需要实施监测的点位集。

(3)采样检测。采样采表层样及深层样,网格布点样品采样深度为20 cm,深层取样分五层取样:0~20 cm;20~40 cm;40~60 cm,土壤样品采集1 kg左右,装入样品袋,如潮湿样品可内衬塑料袋(供无机化合物测定)。采样的同时,由专人填写样品标签、采样记录;标签一式两份,一份放入袋中,一份系在袋口,标签上标注采样时间、地点、样品编号、监测项目、采样深度和经纬度。采样结束,需将底土和表土按原层回填到采样坑中,方可离开现场,并在采样示意图上标出采样地点,避免下次在相同处采集剖面样。

(4)污染评价。土壤重金属评价采用内梅罗指数法。根据国家环保总局颁布的《土壤环境监测技术规范》(HJ/T 166-2004)规定,土壤环境质量评价标准常采用国家土壤环境质量标准、区域土壤背景值或部门(专业)土壤质量标准。

(5)绘制修复场地污染物分布图。根据样品测试结果,结合我国的《土壤环境质量标准(GB15618-1995)》和《危险废物鉴别标准―毒性物质含量鉴别(GB5085.6-2007)》,对典型污染场地的污染现状、污染程度及范围以及污染迁移转化的趋势及规律等进行剖析,根据潜在重点污染区域的检测结果,得到重金属浓度在不同位置变异,进一步确定修复区污染特征,明确污染浓度及范围。

(6)修复方案设计。根据修复区修复的土地利用功能,确定了药剂比例及土壤调理剂的配比及过程的控制条件。得到后期大规模修复所需要的运行参数,进而做出具体的详细的修复方案。具体修复方案如下:

A、修复区不同污染程度划分方案:确定修复区域位置,可根据污染情况将修复区根据污染程度,划定高、中、低浓度区,根据污染程度的不同,做不同的设计。

B、土壤污染治理实施方案:确定药剂配方、加药比、选择最合适的原位稳定剂施加方式和控制条件。

C、修复后农作物恢复种植方案:为了探究稳定化修复对农产品安全的保护情况,预计选择2种当地常见作物在修复区种植。

D、修复验收方案:目前稳定化修复还没有成熟的验收体系,本项目选用土壤浸出为验收方法,但最终标准需根据场地调查情况及小试情况做调整。

4.结论

通过对国内外重金属污染土壤的修复技术研究的综述,可以看出重金属污染土壤的修复技术将越来越受到人们的关注,进一步探索和研究其在重金属去除方面的应用,具有十分重要的意义。结合当前的研究发现重金属污染土壤的修复还可以从以下几个方面努力:

4.1做好修复试点,逐步解决土壤重金属污染问题。开展重金属污染土壤修复技术示范,在重金属污染防治的重点区域进行污染评估,因地制宣地采用生物、物理、化学等措施开展重金属污染土壤治理。

4.2以生态文明为指导,探求实现重金属污染土壤修复治理与景观美化、生态建设与经济效益有机结合的治理模式。

4.3注重重金属污染防治管理、制度、措施及方法创新,逐步建立企业环境信息披露制度和重金属污染物产生、排放详细档案。

参考文献

[1] 梁彦秋,潘伟,刘婷婷,邢志强,臧树良,沈阳污灌区土壤重金属元素形态分析[J].环境科学与管理;2006年02期.

[2] 王瑞兴,钱春香,吴淼,成亮.微生物矿化固结土壤中重金属研究[J];功能材料;2007年09期.

[3] 郝晓伟,黄益宗,崔岩山,胡莹,刘云霞.赤泥和骨炭对污染土壤As化学形态及其生物可给性的影响[J].环境化学;2010年03期.

第4篇

关键词:土壤污染;土壤修复;植物修复技术

中图分类号:Q958.116文献标识码: A

引言

我国土壤污染的总体形势严峻,部分地区土壤污染严重,在重污染企业或工业密集区、工矿开采区及周边地区、城市和城郊地区出现了土壤重污染区和高风险区。土壤污染类型多样,呈现出新老污染物并存、无机有机复合污染的局面。土壤污染途径多,原因复杂,控制难度大。土壤环境监督管理体系不健全,土壤污染防治投入不足,全社会防治意识不强。由土壤污染引发的农产品质量安全问题和逐年增多,成为影响群众身体健康和社会稳定的重要因素。由于污染,土壤的营养功能,净化功能,缓冲功能和有机体的支持功能正在丧失。土壤是生态环境系统的有机组成部分,是人类生存与发展最重要和最基本的综合性自然资源。我们不能坐以待毙,要加强研究,采取措施,切实阻止土壤污染继续扩大的趋势,清除被称为“化学定时炸弹”的土壤污染。

1.造成我国土壤污染的原因

1.1过量施用化肥

虽然施用化肥是农业增产的重要措施,但长期大量使用氮、磷等化学肥料,会破坏土壤结构,造成土壤板结、耕地土壤退化、耕层变浅、耕性变差、保水肥能力下降、生物学性质恶化,增加了农业生产成本,影响了农作物的产量和质量;未被植物吸收利用和根层土壤吸附固定的养分,都在根层以下积累或转入地下。残留在土壤中的氮、磷化合物,在发生地面径流或土壤风蚀时,会向其他地方转移,扩大了土壤污染范围。过量使用化肥还使饲料作物含有过多的硝酸盐,妨碍牲畜体内氧气的输送,使其患病,严重导致死亡。

1.2农药是土壤的主要有机污染物

全国每年使用的农药量达50万~60万t,使用农药的土地面积在2.8亿hm2以上,农田平均施用农药13.9 kg/hm2。直接进入土壤的农药,大部分可被土壤吸附,残留于土壤中的农药,由于生物和非生物的作用,形成具有不同稳定性的中间产物或最终产物无机物。喷施于作物体上的农药,除部分被植物吸收或逸入大气外,约有1/2左右散落于农田,又与直接施用于田间的农药构成农田土壤中农药的基本来源。农作物从土壤中吸收农药,在植物根、茎、叶、果实和种子中积累,通过食物、饲料危害人体和牲畜的健康。

1.3重金属元素引起的土壤污染

全国320个严重污染区约有548万hm2土壤,大田类农产品污染超标面积占污染区农田面积的20%,其中重金属污染占80%,粮食中重金属镉、砷、铬、铅、汞等的超标率占10%。被公认为城市环境质量优良的公园存在着严重的土壤重金属污染。汽油中添加的防爆剂四乙基铅随废气排出污染土壤,使行车频率高的公路两侧常形成明显的铅污染带。砷被大量用作杀虫剂、杀菌剂、杀鼠剂和除草剂,硫化矿产的开采、选矿、冶炼也会引起砷对土壤的污染。汞主要来自厂矿排放的含汞废水。土壤组成与汞化合物之间有很强的相互作用,积累在土壤中的汞有金属汞、无机汞盐、有机络合态或离子吸附态汞,所以,汞能在土壤中长期存在。镉、铅污染主要来自冶炼排放和汽车尾气沉降,磷肥中有时也含有镉。

1.4污水灌溉对土壤的污染

我国污水灌溉农田面积超过330万hm2。生活污水和工业废水中,含有氮、磷、钾等许多植物所需要的养分,所以合理地使用污水灌溉农田,有增产效果。未经处理或未达到排放标准的工业污水中含有重金属、酚、氰化物等许多有毒有害的物质,会将污水中有毒有害的物质带至农田,在灌溉渠系两侧形成污染带。

1.5大气污染对土壤的污染

大气中的二氧化硫、氮氧化物和颗粒物等有害物质,在大气中发生反应形成酸雨,通过沉降和降水而降落到地面,引起土壤酸化。冶金工业排放的金属氧化物粉尘,则在重力作用下以降尘形式进入土壤,形成以排污工厂为中心、半径为2~3 km范围的点状污染。

1.6固体废物对土壤的污染

污泥作为肥料施用,常使土壤受到重金属、无机盐、有机物和病原体的污染。工业固体废物和城市垃圾向土壤直接倾倒,由于日晒、雨淋、水洗,使重金属极易移动,以辐射状、漏斗状向周围土壤扩散。

1.7牲畜排泄物和生物残体对土壤的污染

禽畜饲养场的厩肥和屠宰场的废物,其性质近似人粪尿。利用这些废物作肥料,如果不进行物理和生化处理,则其中的寄生虫、病原菌和病毒等可引起土壤和水域污染,并通过水和农作物危害人群健康。

1.8放射性物质对土壤的污染

土壤辐射污染的来源有铀矿和钍矿开采、铀矿浓缩、核废料处理、核武器爆炸、核实验、燃煤发电厂、磷酸盐矿开采加工等。大气层核试验的散落物可造成土壤的放射性污染,放射性散落物中,90Sr、137Cs的半衰期较长,易被土壤吸附,滞留时间也较长。

2.植物修复机理及优点

植物修复是利用可超富集重金属的植物吸收、积累环境中的污染物,并降低其毒害的环保生物技术。根据修复植物在某一方面的修复功能和特点可将植物修复分为三种基本类型:植物提取修复,植物稳定修复和植物挥发修复。

2.1植物修复机理

2.1.1植物提取修复

利用重金属积累植物或超积累植物将土壤中的重金属提取出来,富集并搬运到植物根部可收割部分和植物地上的枝条部位。植物提取修复是目前研究最多且最有发展前途的一种植物修复技术。

2.1.2植物挥发修复

植物挥发是利用植物的吸收、积累和挥发而减少土壤中一些挥发性污染物,即植物将污染物吸收到体内后将其转化为气态物质释放到大气中。目前,在这方面研究最多的是金属元素汞和非金属元素硒。植物挥发修复技术只限于挥发性重金属的修复,应用范围较小,而且将汞、硒等挥发性重金属转移到大气中有没有环境风险仍有待于进一步研究。

2.1.3植物稳定修复

利用重金属耐性植物降低重金属的活性,从而减少重金属被淋滤到地下水或通过空气载体扩散进一步污染环境的可能性。目前,该技术在矿区大量使用,如废弃矿山的复垦工程,各种尾矿库的植被重建等。值得注意的是植物稳定也并没有将重金属从土壤中彻底清除,当土壤环境发生变化时仍可能重新活化并恢复毒性。植物稳定修复的作用主要有两方面:一是通过根部累积、沉淀、转化重金属,或通过根表面吸附作用固定重金属。二是保护污染土壤不受风蚀、水蚀,减少重金属渗漏污染地下水和向四周迁移污染周围环境。植物稳定修复并没有从土壤中将重金属去除,只是暂时将其固定,在减少污染土壤中重金属向四周扩散的同时,也减少其对土壤中的生物的伤害。但如果环境条件发生变化,重金属的可利用性可能又会发生变化,因而,没有彻底解决重金属污染问题。重金属污染土壤的植物稳定修复是一项正在发展中的技术,若与原位化学钝化技术相结合可能会显示出更大的应用潜力。未来的研究方向可能是耐性植物、特异根分泌植物的筛选,以及稳定修复植物与原位钝化联合修复技术的研究。

2.2植物修复技术的优点

植物修复技术较其他物理的,化学的和生物的方法更受社会欢迎。该技术成本较低,据美国的实践,植物修复比物理化学处理的费用低了几个数量级,此技术在清洁土壤中金属的同时,还可清楚污染土壤周围的大气或水体中的污染物,有美化环境的作用,易为社会所接受。

此外,植物修复重金属污染的过程也是土壤有机质含量及土壤肥力增加的过程,被植物修复过得干净农田更适合多种农作物生长。生物固化技术能使地表长期稳定,控制风蚀,水蚀,有利于生态环境改善,而且维持成本较低。植物的蒸腾作用还可以防止污染物向下迁移,同时,植物把氧气供给根际可促进根际有机物的降解。

3.植物修复技术的局限性及影响因素

3.1植物修复技术的局限性

植物是活的生物体,需要有合适的生存条件,因此植物修复有其局限性:要针对不同污染状况的突然选择不同的生态型植物。重金属污染严重的土壤,适宜选用超积累植物,而污染较轻的土壤则需要选用耐重金属植物;植物修复过程通常较为缓慢,对土壤肥力,气候,水分。盐度,酸碱度,排水与灌溉系统等条件和认为条件有一定的要求;植物修复往往会受土壤毒物毒性的限制,一种植物常常只能吸收一种或两种重金属,对土壤中其他浓度较高的重金属会表现出某些中毒症状,从而限制了植物修复技术在多种重金属污染土壤治理方面的应用;用于清理重金属污染土壤的超累积植物通常都比较矮小,生物量低,生长缓慢,生长周期较长的类型,因而修复效率低,不利于机械作业;用于清理重金属污染的植物往往会通过器官腐烂,落叶等途径使重金属污染物重返土壤。因此必须在植物落叶前收割处理。

3.2植物修复技术的影响因素

为了植物修复修复污染土壤的效率,在设计植物修复技术方案时必须事先考虑如下因素:首先了解受重金属污染的土壤所处的地理,海拔条件,以便选择合适生长在该条件下的耐受重金属植物和超累积植物种类进行污染土壤的植物修复;将整个需要治理的污染土壤纳入土地使用和规划管理方案中进行总体设计与考虑;对土壤的酸碱度,植物的耐盐度进行调查;了解治理土壤的含水量及水分供给状况;掌握拟治理土壤的营养供给状况,以便拟定合适的施肥计划;调金属污染土壤的污染状况,了解重金属的化学形态及植物的可利用性,以便从土壤化学的角度采取相应措施增加植物对重金属的吸收量。此外,对植物遭受自然灾害的复原能力,植物病虫害,良好的灌溉与排水系统也是需要考虑的因素。

第5篇

关键词:土壤;镉污染;来源;危害;治理

中图分类号 X53 文献标识码 A 文章编号 1007-7731(2015)24-104-04

Abstract:As the development of industry,soil cadmium pollution have caused more and more concern.In this thesis,the pollution actualities,source,damage and management of soil cadmium pollution were briefly introducted,and the development direction of soil cadmium pollution management was discussed.

Key words:Soil;Cadmium pollution;Source;Damage;Managment

据2014年《全国土壤污染状况调查公报》显示,我国土壤环境状况总体不容乐观,部分地区土壤污染较重,耕地土壤环境质量堪忧。其中,镉污染物点位超标率达到7.0%,呈现从西北到东南、从东北到西南方向逐渐升高的态势,是耕地、林地、草地和未利用地的主要污染物之一[1]。镉是众所周知的重金属“五毒”元素之一,具有分解周期长(半衰期超过20a)、移动性大、毒性高、难降解等特点,在生产活动中容易被作物吸收富集,不仅严重影响作物的产量和品质,而且可以通过食物链在人体的积累危害人体健康[2],例如,20世纪60年代在日本富山县神通川流域出现的“骨痛病”事件。针对我国镉污染现状,本文将从镉污染的来源、危害、修复治理等方面进行了论述,详细介绍镉污染这一环境污染问题,以期为我国农业的健康发展和镉污染土壤的治理提供科学依据,为后续研究提供参考。

1 我国土壤镉污染现状

我国于20世纪70年代中后期才开展有关农田土壤镉污染调查的工作,1980年中国农业环境报告显示,我国农田土壤中镉污染面积为9 333hm2,到2003年我国镉污染耕地面积为1.33×104 hm2,并有11处污灌区土壤镉含量达到了生产“镉米”的程度[3-4]。近年来,随着我国工业的发展,由于化肥、农药的大量施用,工业废水和污泥的农业利用,以及重金属大气沉降的日益增加,土壤中镉的含量明显增加,土壤镉污染状况越发严重,目前,我国镉污染土壤的面积已达2×105km2,占总耕地面积的1/6[5]。

从近年的有关研究来看,我国各地均存在着不同程度的镉污染问题。目前,我国土壤镉污染涉及11个省市的25个地区。比如,上海蚂蚁浜地区污染土壤镉的平均含量达21.48mg/kg,广州郊区老污灌区土壤镉的含量高达228.0mg/kg[6-7]。我国农田土壤的镉污染多数是由于进行工业废水污灌造成的。据统计,我国工业每年大约排放300亿~400亿t未经处理的污水,引用工业废水污灌农田的面积占污灌总面积的45%[8],至20世纪90年代初,我国污灌农田中有1.3×104hm2的农田遭受不同程度的镉污染,污染土壤的镉含量为2.5~23.0mg/kg,重污染区表层土壤的镉含量高出底层土壤几十甚至1 000多倍[9]。在大田作物中,镉是我国农产品主要的重金属污染物[10]。据报道,我国污灌区生产的大米镉含量严重超标,例如,成都东郊污灌区生产的大米中镉含量高达1.65mg/kg,超过WHO/FAO标准约7倍[11]。2000年农业部环境监测系统检测了我国14个省会城市共2 110个样品,检测数据显示,蔬菜中镉等重金属含量超标率高达23.5%;南京郊区18个检测点的青菜叶检测表明,镉含量全部超过食品卫生标准,最多超过17倍[6]。潘根兴研究团队于对2007年对全国6个地区(华东、东北、华中、西南、华南和华北)县级以上市场随机采购的91个大米样品检测后,发现约有10%左右的市售大米存在重金属镉含量超标问题[12]。据报道,广西某矿区生产的稻米中镉浓度严重超标,当地居民因长期食用“镉米”已经出现了“骨痛病”的症状,严重威胁当地居民的身体健康[3]。以上研究结果表明,我国土壤受镉污染的程度已相当严重,土壤镉污染造成水稻、蔬菜等农产品的质量下降、产量降低,并且严重威胁到当地居民的身心健康,影响我国农业的可持续发展。

2 土壤镉污染的来源

土壤中镉的主要有2种来源,分别为自然界的成土母质和人为活动,前者为自然界中岩石和土壤镉含量的本底值,一般来讲世界范围内土壤镉平均值为0.35mg/kg,我国土壤镉背景值为0.097mg/kg,远低于世界均值[13-14]。而后者主要指通过工农业生产活动直接或间接地将镉排放到环境的人为活动,并且是造成土壤镉污染的主要途径,归纳起来污染途径主要有如下4个方面:

2.1 大气镉沉降 电镀、油漆着色剂、塑料稳定剂、电池生产以及光敏元件的制备等工业废气中存在一定量的镉,它们会和粉尘一起随风扩散到工厂周围,一般在工业区周围的大气中镉的浓度较高[15],较高浓度的镉可以通过降雨或沉降进入土壤。进入土壤中的镉,一部分被植物吸收,剩余的部分则在土壤大量积累,而当土壤中镉累积超过一定范围时,就造成了土壤的镉污染[16]。

2.2 施肥不当 在农业生产过程中为了获得高产,一般都加大农药化肥的投入,长期施用含有镉的农药化肥必然导致土壤的镉污染。据统计分析,磷肥中含有较多的镉,氮肥和钾肥含量较少,因此含镉磷肥的施用影响最为严重。我国磷肥生产所需磷矿石的镉含量虽然较低,在世界上属于较低水平,但我国磷矿石含磷量同样不高,因此需要从国外进口大量的磷肥[4]。据西方国家估算,全球磷肥平均含镉量7.0mg/kg,可给全球土壤带来约6.6×104kg镉[17]。韩晓日等[18]研究也发现,长期施用磷肥和高量有机肥能够增加土壤镉含量。由此可见,长期施用含镉的化肥会增加土壤的镉含量,给土壤带来严重的重金属污染问题。

2.3 污水灌溉 镀锌厂以及与塑料稳定剂、染料及油漆等生产有关工厂产生的工业污水中含有多种重金属,其中就有大量的镉,这些废水如不经处理或者处理不达标,废水中的镉就会随着污灌进入土壤,因此,在工矿和城郊区的污灌农田均存在着土壤镉污染问题。据统计,目前我国工业、企业每年要排放约300亿~400亿t未经处理的污水,利用这些工业污水进行灌溉造成了严重的重金属污染,污水灌溉已经是我国农田土壤镉污染的主要原因[8]。何电源等[19]在1987-1990年间对湖南省的农田污染状况调查也表明,农田土壤镉污染的主要来源是工矿企业排放的废气和废水。此外,大量堆积的工业固体废弃物和农田施用的污泥,也会造成土壤的镉污染[16]。

2.4 金属矿山酸性废水污染 金属矿山的开采、冶炼以及重金属尾矿、冶炼废渣和矿渣堆等,存在着大量的酸性废水,这些酸性废水溶出的多种重金属离子能够随着矿山排水和降雨进入水环境或土壤,可以间接或直接地造成土壤重金属污染。据报道,1989年我国有色冶金工业向环境中排放重金属镉多达88t[20]。

3 土壤镉污染的危害

镉是一种具有毒性的重金属微量元素,是人体、动物和植物的非必需元素,但它在冶金、塑料、电子等行业非常重要,通常通过“工业三废”等途径进入土壤。土壤中镉的形态有水溶态、可交换态、碳酸盐态、有机结合态、铁锰氧化态和硅酸态等,水溶性和交换态镉可以被植物吸收,并通过食物链进入人体富集,达到一定程度时会引发各种疾病,严重危害植物和人体的健康,且具有长期性、隐蔽性和不可逆性等特点。

3.1 镉对植物健康的危害 镉是植物生长的非必需元素,当镉在植物组织中含量达到1.0mg/kg时,会通过阻碍植物根系生长、抑制水分和养分的吸收等引起一系列生理代谢紊乱,如蛋白质、糖和叶绿素的合成受阻,光合强度下降和酶活性改变等,使植物表现出叶色减褪、植物矮化、物候期延迟等症状,最终导致作物品质下降和减产,甚至死亡[6,21-22]。张义贤等[23]研究表明,大麦种子在镉胁迫下,种子的萌芽率、根生长率均呈下降趋势,当镉浓度达到0.01mol/L时,种子萌芽率小于45%,且根不再生长。刘国胜等[24]研究表明,当土壤含有0.43mg/kg可溶态镉时,水稻减产10%,当含量为8.1mg/kg时,水稻减产达25%,并且,稻米的氨基酸、支链淀粉和直链淀粉比例发生改变,使水稻品质变差[4]。

3.2 镉对人体健康的危害 镉是人体非必需的微量元素,具有较强的致癌、致畸及致突变作用,对人体会产生较大的危害,镉一般通过呼吸系统和消化系统进入人体,在人体内半衰期长达20~30a。镉对人体的毒害分为急性毒害和慢性毒害2种,镉的急性毒害主要表现为肺损害、胃肠刺激反应、全身疲乏、肌肉酸痛和虚脱等;慢性毒害主要表现为对骨骼、肝脏、肾脏、免疫系统、遗传等的系列损伤,并诱发多种癌症[25-27]。例如,20世纪60年生在日本神通川流域的“骨痛病”,原因就是当地居民食用镉米造成的。因此,联合国环境规划署(UNEP)将其列为具有全球性意义的危险化学物质[28]。

4 土壤镉污染的治理方法

为了有效利用现有的土地资源,减少镉等重金属人体造成的危害,需要采取有效措施治理和恢复受污染的土壤。目前,有关镉污染土壤的治理方法有很多,主要有物理方法、化学方法和生物方法等。

4.1 物理方法 镉污染土壤的物理修复方法主要有排土、客土、深耕翻土等传统物理方法以及电修复技术、洗土法等。客土法就是将污染土壤铲除,换入未污染的土壤,去表土法就是将污染的表土移去等。传统的物理修复方法治理镉污染效果非常明显,如吴燕玉等[29]在张士灌区调查时发现去除表层土可使稻米中镉含量降低50%。然而,这种方法需要耗费大量资金、人力物力,且移除的污染土壤又容易引起二次污染,因此难以在大面积治理上推广。电修复技术,是指在土壤外加一个直流电场,土壤重金属在电解、扩散、电渗、电泳等作用下流向土壤中的某个电极处,并通过工程收集系统收集起来进行处理的治理方法。胡宏韬等[30]研究发现,当试验电压为0.5W/cm时,阳极附近土壤中镉的去除效率达到75.1%;淋滤法和洗土法是运用特定试剂与土壤重金属离子作用,然后从提取液中回收重金属,并循环利用提取液。据报道,美国曾应用淋滤法和洗土法成功地治理了包括镉在内的8种重金属,治理了2.0×104t污染的土壤,且重金属得到了回收和利用,而且整个治理过程中没有产生二次污染[20]。

4.2 化学方法 化学法是指通过在土壤中施用化学制剂、改良剂,增加土壤粘粒和有机质,改变土壤氧化还原电位和pH值等理化性质,使土壤镉发生氧化还原等作用,降低镉的生物有效性,以减轻对其它生物的危害[31-32]。目前,磷酸盐、石灰、硅酸盐等是化学法处理镉污染土壤中常用物质。Gworek[33]等在研究中发现利用沸石等硅铝酸盐钝化土壤重金属能显著降低污染土壤中镉的浓度。总体而言,化学方法具有操作简单、治理效果、费用适中等优点,缺点是容易再度活化重金属。因此,该方法适用于重金属污染不太严重的地区,对污染太严重的土壤不适用[4,20]。

4.3 生物方法 生物方法是指通过某些特定微生物、动物或植物的代谢活动,吸附降解土壤污染物质、降低土壤重金属生物活性的治理方法,具有土壤扰动小、原位性、不产生二次污染等优点,一般分为微生物修复、动物修复、植物修复3种。

4.3.1 微生物修复 微生物修复是指利用土壤微生物固定、迁移或转化土壤中的重金属,从而降低重金属毒性,主要包括生物富集和生物转化2种作用方式。生物富集作用指微生物的积累和吸附作用;生物转化作用指微生物对重金属的氧化和还原作用、重金属的溶解和有机络合配位等[34]。例如,吴海江[35]利用分离获得的菌株对镉的去除率高达60%,吸附量达54mg/kg;张欣等[36]在模拟镉轻度污染试验中通过施入微生物菌剂使菠菜植株镉含量平均下降14.5%。

4.3.2 动物修复 动物修复是指利用土壤中某些低等动物的代谢活动来降低污染土壤中重金属比例的方法。例如,Ramseier等[37]研究发现蚯蚓具有强烈的镉富集能力,当土壤镉浓度为3mg/kg时,蚯蚓的镉富集量可以达到120mg/kg。但由于低等动物生长受环境等因素的严重制约,该项技术在实际应用中受到了一定限制[20,28]。

4.3.3 植物修复 植物修复是指利用超富集植物吸附清除土壤镉污染的原位治理方法,具有实施较简便、投资较少、破坏小、无二次污染等优点,是一种环境友好型修复技术[20,34]。目前,全世界已发现500多种富集重金属的植物,其中部分植物对土壤镉具有强烈的富集作用,表现出对镉的选择性吸收,如芜菁、菠菜、烟草、向日葵等[12]。近几年来,我国在利用植物修复镉污染土壤方面取得了不少成果,例如,蒋先军等[38]研究发现印度芥菜、刘威等[39]发现宝山堇菜等属于镉超积累植物,这些发现都可以应用于镉污染土壤的治理与恢复工作。

5 展望

2014年《全国土壤污染状况调查公报》显示,我国土壤镉污染物点位超标率达到7.0%,镉是我国耕地、林地、草地和未利用地的主要污染物之一,土壤镉污染日趋严重。因此,要积极开展切实有效的管理控制、污染防治综合治理等,首先,从源头上控制镉对土壤的污染,采取清洁生产与资源循环利用措施,减少甚至避免各类镉污染物进入土壤环境;其次,加强镉污染土壤修复技术的研究,特别是植物修复技术和微生物技术;再次,发展联合修复技术,将生物修复与物理化学法、工程措施和农艺措施有效结合起来,开展多学科联合的生态修复。只有这样,才有可能修复已经被镉等重金属污染的土地,保护未被污染的土地资源,实现自然与社会的健康、可持续发展。

参考文献

[1]环境保护部,国土资源部.全国土壤污染状况调查公报[R].2014-04-17.

[2]张兴梅,杨清伟,李扬.土壤镉污染现状及修复研究进展河北农业科学,2010,14(3):79-81.

[3]崔力拓,耿世刚,李志伟.我国农田土壤镉污染现状及防治对策[J].现代农业科技,2006,11S(11):184-185.

[4]柳絮,范仲学,张斌,等.我国土壤镉污染及其修复研究[J].山东农业科学,2007,6(6):94-97.

[5]李玉浸.集约化农业的环境问题与对策[M].北京:中国农业出版社,2001:57-82.

[6]冉烈,李会合.土壤镉污染现状及危害研究进展[J].重庆文理学院学报:自然科学版,2011,30(4):69-73.

[7]王凯荣.我国农业重金属污染现状及其治理利用对策[J].农业环境保护,1997,16(6):174-178.

[8]彭星辉,谢晓阳.稻田镉(Cd)污染的土壤修复技术研究进展[J].湖南农业科学,2007(2):67-69.

[9]王凯荣,张格丽.农田土壤镉污染及其治理研究进展[J].作物研究,2006(4):359-374.

[10]宋波,陈同斌,郑袁明,等.北京市菜地土壤和蔬菜镉含量及其健康风险分析[J].环境科学学报,2006,26(8):1343-1353.

[11]利锋.镉污染土壤的植物修复[J].广东微量元素科学,2004,11(8):22-26.

[12]李薇.农田镉污染的危害及其修复治理方法[J].粮油加工:电子版,2015(9):62-64.

[13]许嘉林,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995.

[14]孟凡乔,史雅娟,吴文良.我国无污染农产品重金属元素土壤环境质量标准的制定与研究进展[J].农业环境保护,2000,19(6):356-359.

[15]张金彪,黄维南.镉对植物的生理生态的研究进展[J].生态学报,2000,20(3):514-523.

[16]曾咏梅,毛昆明,李永梅.土壤中镉污染的危害及其防治对策[J].云南农业大学学报,2005,20(3):360-365.

[17]高志岭,刘建玲,廖文华.磷肥使用与镉污染的研究现状及防治对策[J].河北农业大学学报,2001,24(3):90-99.

[18]韩晓日,王颖,杨劲峰,等.长期定位施肥对土壤中镉含量的影响及其时空变异研究[J].水土保持学报,2009,23(1):107-110.

[19]何电源,王凯荣,廖先苓,等.农田土壤污染对作物生长和品质量的影响[J].农业现代化研究,1991,12增刊:128.

[20]马彩云,蔡定建,严宏.土壤镉污染及其治理技术研究进展[J].河南化工,2013,30(17):17-22.

[21]毕淑芹,谢建治,刘树庆,等.土壤重金属污染对植物产量及品质的影响研究[J].河北农业科学,2006,10(2):107-110.

[22]Seregin I V,Ivanov V B.Physiological aspects of cadmium and lead toxic effects on higher plants [J].Russian Journal of Plant Physiology,2001,48(4):523-544.

[23]张义贤.重金属对大麦(Hordeumvulgare)毒性的研究[J].环境科学学报,1997,17(2):199-205.

[24]刘国胜,童潜明,何长顺,等.土壤镉污染调查研究[J].四川环境,2004,23(5):8-13.

[25]Johannes G,Franziska S,Christian G S,et al.The toxicity of cadmium and resulting hazards for human health [J].Journal of Occupational Medicine and Toxicology,2006,1(22):1186.

[26]崔玉静,赵中秋,刘文菊,等.镉在土壤-植物-人体系统中迁移积累及其影响因子[J].生态学报,2003,23(10):2133-2143.

[27]MariselaM'endez-Armenta,CamiloR'ios.Cadmium neurotoxicity [J].Environmental Toxicology and Pharmacology,2007,23:350-358.

[28]彭少邦,蔡乐,李泗清.土壤镉污染修复方法及生物修复研究进展[J].环境与发展,2014,3(3):86-90.

[29]吴燕玉,周启星,田均良.制定我国环境标准(汞镉铅和砷)的探讨[J].应用生态学报,1991,2(4):334-349.

[30]胡宏韬,程金平.土壤铜镉污染的电动力学修复实验[J].生态环境学报,2009,18(2):511-514.

[31]余贵芬.重金属污染土壤治理研究现状[J].农业环境与发展,1998,15(4):22-24.

[32]吴双桃.镉污染土壤治理的研究进展[J].广东化工,2005(4):40-41.

[33]Gworek B,肖辉林.利用合成沸石钝化污染土壤的镉[J].热带亚热带土壤科学,1992,1(1):58-60

[34]卢红玲,肖光辉,刘青山,等.土壤镉污染现状及其治理措施研究进展[J].南方农业学报,2014,45(11):1986-1993.

[35]吴海江.耐Cd细菌的筛选及抗性机理研究[D].成都:西南交通大学,2009.

[36]张欣,范仲学,郭笃发,等.3种微生物制剂对轻度镉污染土壤中菠菜生长的影响[J].天津农业科学,2011,17(1):81-83.

[37]Ramseier S,Martin M,Haerdi W,et a1.Bioaccumultion of cadmium by Lumbficusterrestris [J].Toxicological &Environmental Chemistry,1989,22 (1-4):189-196.

[38]蒋先军,骆永明,赵其国.重金属污染土壤的植物修复研究Ⅲ.印度芥菜对锌镉的吸收和积累[J].土壤学报,2002,39(5):664-670.

第6篇

【关键词】土壤污染;现状;种类;影响;治理措施

一、引言

土壤是指陆地表面具有肥力、能够生长植物的疏松表层,其厚度一般在2m左右[1]。土壤一旦受到污染,将严重影响农业生产,粮食产量将出现下滑趋势。因废气物的任意排放、放射性物质、有机化肥和农药的污染等使得土壤营养急剧下降,土壤的净化功能、储水功能等面临丧失的危险。近几年,人口数量猛增,生产业和工业迅猛发展,其产生的气体、液体和固体的废气物也随之增加,这些有害物质不断进入到土壤中,使土壤成分发生变化,影响土壤内部结构的正常运行。土壤是万物的根,我们不能再让它进一步的被恶化,因为最终受害的是人类,保护土壤就是保护我们自己。因此,对土壤的保护行动已是当务之急。

二、土壤污染现状

土壤污染日益严重,致使大量农作物质量降低,甚至含有对人体有害的物质,对人类健康造成了极大威胁。造成土壤污染的原因有很多,主要表现为以下几方面:

1、化肥和农药不合理的使用

据统计,我国每年化肥的使用量已经超过4100万吨,成为世界第一大化肥消费大国[2]。为了提高农产品的增收量,含磷、氮等化学肥料被大量运用,长期使用这些化学肥料,会破坏土壤结构,扰乱土壤内部营养成分的平衡,造成土壤结块,土质变差,储水功能降低等一系列问题。农产品的数量是大大提高了,但其质量却令人担忧。因为过量使用化肥会使一些农作物在生长过程中吸收过多硝酸盐,动物或人体食进这些含硝酸盐的农作物后,将影响体内氧气的运输,使其患病,严重时甚至死亡。

同样,大量农药的使用对土壤也造成了很大危害。大部分的农药是有机农药,其含有很多有害化学物质,如苯氧基链烷酸酯类农药、多环芳烃、二恶英、邻苯二甲酸酯等等。这些有害化学物质将近1/2会残留在土壤中,随着时间的推移,在生物、非生物以及阳光等共同作用下,有害化学物就成了土壤中的组成成分,种植在土壤上的农作物又从土壤中吸收有害物质,在植物根、茎、叶、果实和种子中积累,通过食物,人体和动物食用后就会引发各种疾病。

2、重金属元素导致的土壤污染

农用化学物质的过度使用,工业污染的加剧,使得重金属污染日益严重。土壤中的重金属元素来源主要有三方面:随固体废弃物进入土壤的重金属,随着污水灌溉进入土壤的重金属和随着大气沉降进入土壤的重金属。固体废弃物种类繁多,结构复杂,其中由工业和矿业产生的固体废弃物污染最为严重。而固体废弃物中含有大量的重金属,通过日晒雨淋等作用,重金属就会被土壤吸收并扩散。生活污水,石油化工污水,工矿企业污水和城市混合污水是污水的四大来源,污水中含有大量的铅、铬、汞、铜等重金属,污水的任意排放或处理不合理,都将导致污水中的重金属元素转移到土壤中,从而影响土质恶化。所有的这些重金属污染物进入到土壤中后,因其移动性差,停滞的时间长,大部分的微生物难以对其分解,且其可以经过水、植物等介质最终危害到人类。

3、牲畜排泄物和生物残体对土壤的污染

牲畜和人的粪便,以及屠宰产的废物常常没经过有效处理就直接排放到土壤中,其中的寄生虫和病毒就会引起土壤和水的污染,有时还会使土壤中毒,变化土壤原本的正常状态,有害土壤通过水和农作物最终又会危害到人类。

4、污水灌溉对土壤的污染

我国是一个农业大国,需要大量的水来对农作物进行灌溉。然而,水脉都是相连的,生活污水和工业废水一旦没经过科学的处理就排放,使得大量的污水流到农田,被污水灌溉过的农作物就会带有多种有害的物质,致使食用后的人类和动物生病。

5、大气污染对土壤的污染

大气中的硫氧化物、氮氧化物和颗粒物等有害物质,经过各种化学物理反应,形成酸雨,酸雨进入到土壤中,使土壤酸化。冶金工业排放的金属氧化物粉尘,则在重力作用下以降尘形式进入土壤,形成以排污工厂为中心、半径为2~3km范围的点状污染[3]。这将使土壤成分发生变化,影响土质性质,不利于植物的生长。

6、土壤侵蚀

土壤侵蚀主要包括荒漠化、沙尘暴与沙漠化。地球溃疡症是对土地荒漠化的形象描述,自然环境中的水蚀、盐渍化、石漠化等,使得地球的溃疡症越发严重。例如我国的黄土高坡,其土壤成分主要是粉沙,粉沙的粘着力差,又易被水溶解,一旦遇到恶劣暴雨天气,就会被水冲走,既不适合植被的生长,生物的生存,还会造成河床淤积,降低河流湖泊的蓄洪排涝能力。近几年里,我国多个城市沙尘暴出现率猛增,这与滥垦草原,过度砍伐树木而引起的土壤风蚀密切相关。被风蚀侵害的土壤水土流失严重,植被生长困难,使得大部分土地不能被利用。因此导致了大量土地沙漠化,

三、土壤污染治理措施

1、运用科学技术,使用生物或化学方式来改良受污染的土壤,增加土壤环境容量,提高土壤净化的能力和有机物含量。

2、制定相关的污染土壤环境管理与综合防治方法,加强清洁生产。

3、调节土壤氧化还原电位,使某些重金属污染物转化为难溶态沉淀物,控制其迁移和转化,降低污染物的危害程度[4]。

4、严格控制废气污染物的处理排放,合理使用农药和化学肥料,科学的进行污水灌溉,减少有害物质进入到土壤中,影响土质变化。

5、采用农业生态工程措施,改革耕作制度,实行翻土换土。控制生产和生活污染源,建立污染土壤修复与综合治理示范点。

6、加强有关土地管理部门的工作力度,完善工作体系,加大土壤科学研究的资金投入。增加保护环境活动,宣传拯救土壤教育活动。

四、总结

因土壤污染而带来的经济损失以及对人体健康造成的危害是不容小视的。土壤污染不同于大气污染、水污染那样明显,它的污染因其隐蔽性而被人们忽视。它需要通过复杂的化验检测才能确定其污染程度,而且土壤一旦被污染,要想其恢复正常就非常困难,因为土壤的更新周期相当漫长。所以要加大对土壤保护的力度,提高人们对土壤重要性的认识,保障土壤的环境安全与人体健康。

参考文献

[1]方常艳.土壤污染现状及其防治对策[J].黑龙江科技信息,2011(10)54

[2]吴云.浅谈土壤污染与防治[J].现代农业,2010(06)33

第7篇

关键词:重金属污染;污染物来源;预防措施

中图分类号:F124.5 文献标志码:A 文章编号:1673-291X(2014)31-0300-02

土壤污染是指由于具有生理毒性的物质或过量的植物营养元素进入土壤,超过土壤的自净能力,从而导致环境恶化。而土壤重金属污染主要受人类活动的影响,通过大气、水以及农资等使重金属进入到土壤中,导致土壤中重金属的含量明显高于环境背景值,并造成土壤环境恶化和污染。

一、土壤重金属污染的概念

通常地说,重金属是指密度大于5.0以上的元素,这些元素大约有45种元素。但由于不同的重金属在土壤中的毒性差别较大,所以在环境科学中人们通常关注锌、铜、钴、铬、钴、汞、镍、锡、镉、铅、钒等。硒、砷虽然不是金属,但由于它的某些性质及毒性与重金属相似,因而也将硒、砷列为重金属范畴。由于锰和铁在土壤中自然含量相对较高,一般不列为重金属。

土壤重金属污染是指人类不合理活动将重金属物质带入到土壤中,导致土壤中重金属含量明显高于可承受的合理含量、并造成土壤质量退化、生态与环境恶化与破坏的现象。有些重金属是土壤本身含有的,如植物生长所必须的锰、铜、铁、锌等。只有当进入土壤的重金属元素累积的浓度超过了作物需要和可忍受范围时,作物才会出现中毒症状,或作物生长并未受重金属的危害但是其金属的含量超过人畜承受的标准,造成人畜的重金属危害时,也可以认为土壤已经被重金属污染了。

二、重金属的来源与分布

土壤中重金属元素按其化学生物性质可以分为两类:一类是在一定浓度范围内可以促进并维持生物健康生长的必需元素,但如果金属浓度超过可承受范围,就会有机体中毒现象的发生,如锌、铜、锰等;另一类则是影响生物正常生长且有害与生物的健康的元素,如镉、汞等。

引起土壤重金属污染的途径有许多种,土壤中本身含有的重金属,不属于污染的对象,因为这些重金属的含量一般不构成对土壤的污染。从环境学上来看,土壤重金属的污染来源,主要是人类的工农业生产活动和生活活动引起的土壤重金属远高于土壤本身含有的重金属的含量,造成土壤污染[1]。

(一)有毒气体的排放

有毒气体如汽车尾气、煤的燃烧、化工厂产生的有毒气体以及轮胎转动磨损产生含重金属的大量粉尘等,进入大气后随着大气流动把有毒气体中的重金属带进土壤或水体中。以陕西省为例,2012年全省的工业废气排放总量达到14 767.4亿立方米,烟尘排放量为385 522.4吨,这些废气和烟尘含有大量的Cu、Zn、Pb、Co、Cd,主要来自含铅汽油的燃烧,汽车轮胎磨损产生的含铅的粉尘等。污染物的分布呈现一定的规律,一般成条带状和片状分布,如果汽车尾气作为重金属的污染源,它的分布主要以公路、铁路为中心向两侧辐射,中心污染较重,远离公路两侧的土壤污染程度逐渐减弱,另外随着时间的推移,不同重金属污染在土壤中具有很强的叠加效应,加剧了土壤污染[2]。而经过自然和雨水沉降进入土壤的重金属污染,多以有毒废弃的堆积物、工厂烟囱为中心,向四周扩散,导致城市的郊区土壤污染为主,距离城市越远污染也就越小,其中污染程度还与人口密度,城市土地利用程度,重工业水平等密切相关。

(二)农药、化肥和塑料薄膜的使用

在用农药喷洒作物时一般只有少部分落在农作物体上,而大部分都落到地表从而进入土壤,其中一些农药中含有某些有害的重金属如汞、铅、砷等,其残留有效期长达几十年。因此,长期使用含重金属农药也会在一定程度上造成农田土壤的重金属污染;尤其化学肥料中的磷肥含有大量的重金属,虽然在短时期内会对农作物的生长起到促进作用,然而长期使用会对土壤起到破坏作用。农用塑料薄膜在土壤中长期存在,在阳光照射下分解产生大量的Cd、Pb也会造成土壤重金属的污染。

(三)污水灌溉农田

污水灌溉也是造成土壤重金属污染的一个重要途径,城市里的生活污水、商业污水和工业污水等未经处理直接排入河流,造成河流污染。河流水体中含有大量的重金属离子,农民朋友们利用这些污水灌溉农田,长期灌溉就造成土壤中重金属含量过高,引起突然污染。据相关资料显示,2014年上半年西安日排生活污水130万吨,其中110万吨得到处理,有20万吨的污水直接排放。河全段水质Ⅳ类,污染源主要为生活污水,因该地区市政管网没有接通,导致周边楼盘小区的生活污水流入河。在位于西安市阿房一路附近的不足2公里的河段上,两岸分别有30多个大小不一的排污管,这些排污管正在不断地向河内排放黑黄色污水,河面上泛起一片白色泡沫,气味刺鼻难闻。这些污水流入渭河,然后被渭河两岸的农民抽水灌溉农田,造成土壤污染。

(四)矿山废水污染

各种有色金属矿山的开采、治炼、矿渣排放的过程中都会产生酸溶液的矿液,并通过矿山排水和降水沉降进入土壤直接或间接地导致土壤的重金属污染,对人们的健康构成严重威胁。根据近期的全国土壤污染调查结果来看,部分地区土壤重金属污染严重,全国土壤总的点位超标率为16.1%,从污染分布看,南方土壤污染重于北方;长江三角洲、珠江三角洲和东北老工业基地等部分区域土壤重金属污染突出。西南、中南地区土壤重金属超标范围大;隔、汞、砷、铅含量分布呈现从西北到东南逐渐升高的趋势。在有色金属长期开采的地区,金属冶炼以及含重金属的工业废水废渣排放造成土壤污染,导致粮食重金属超标。最近令人担忧的“镉大米”和重金属蔬菜事件还萦绕在人们的心里。

三、土壤重金属的危害

土壤重金属产生的危害主要有以下几个途径:(1)暴露的土壤受到重金属的污染,通过土壤影响植物,又经过食物链为动物和人类所吸收。(2)通过降水作用使重金属溶于雨水中,通过雨水的沉降地表和地下径流使水体发生污染。(3)外界环境条件因素的刺激下提高了土壤中重金属的活性,使重金属较容易为植物吸收利用通过食物链进而对人类和动物产生毒害作用。(4)为提高土壤肥力和病虫害的防治,往往会在植物生长期添加含有微量重金属的化肥和农药,植物会吸收部分重金属,进而进入食物链而导致动植物受害。据国家环保局统计,中国每年重金属污染的粮食达1 200万吨,直接经济损失200亿以上。

四、控制土壤重金属污染的对策和措施

(一)控制土壤重金属污染的对策

目前治理土壤重金属污染的技术主要集中在土壤修复,通常包括生物修复、化学修复、工程修复和农业修复。生物修复技术是最近十多年用于治理土壤重金属污染的一种技术,主要是指利用各种类型生物的分解和净化作用把土壤中的重金属分解成各种无机盐、水和二氧化碳的工程技术。这种技术通过两种途径来实现,一是通过生物各种形式的作用进而改变重金属的化学形态,使重金属得到固定或解毒,降低重金属在土壤中的活性不易被植物吸收;二是通过生物吸收、代谢达到对重金属的削减、净化和固定作用。生物修复技术主要包括微生物和植物的修复技术,其修复效果较好、投资较低、且易操作和便于管理,且不易产生二次污染。因而逐渐受到重视,成为重金属污染修复研究的热点。

化学修复是通过向重金属污染的土壤中施加改良剂,降低重金属生物的有效性而达到修复的目的。如果被污染的土壤呈酸性,可采用石灰、矿渣等碱性物质作为改良剂,达到酸碱中和,降低重金属的含量,从而有效降低植物体的重金属浓度[3]。如果土壤中Hg污染为主,可使Hg形成难溶性的碳酸汞、氢氧化汞或水合碳酸汞,明显降低汞的有效性和作物吸附[4]。在碱性土壤中施用磷酸盐类物质可使重金属形成难溶性磷酸盐。在一定PH值下,重金属能被铁、锰氧化物所固定。常见的用于治理土壤重金属污染的稻草、牧草、紫云英、家畜粪肥以及腐殖酸等,这些物质通过其活性与重金属元素Zn、Mn、Cu、Fe发生化学反应,降低重金属的有效性。

(二)控制土壤重金属污染的预防措施

各种土壤修复的措施都有各自的优缺点,比如工程修复虽然治理比较彻底,然而大量被污染的土壤被置换或覆盖,实施的费用非常高,不从根本上治理,被更新的无污染的土壤又很快再次被污染,并且还要对换出的污染土壤进行堆放或处理。其他的修复方法效果不是很好,局限的范围很小。所以如果不解决污染的源头,所有的治理都是治标不治本的措施,达不到根本解除土壤重金属污染的目的。因此,预防比治理更重要。

1.宏观上加大环保宣传力度和提高工艺水平

土壤重金属污染属于环境污染的重要组成部分,把环境保护概念写入学生教材,对国民进行全民生态教育。环境教育包括环保习惯和环境专业知识教育两个部分,家庭垃圾分类等习惯养成教育从幼儿园开始进行,环境专业知识教育贯穿整个教育体系。环境保护不能只依靠法律法规去强制执行,重要的是改变人们的观念,从根本上杜绝污染的源头。

2.微观上严格控制污染物的排放

土壤重金属污染主要是由工业“三废”排放,所以要严格控制污染物排放,城市和乡镇的新、扩、改建设项目要严格执行环境影响评价制度,以及污染物的总量控制系统,严格执行工业“三废”排放标准颁发的状态,尽量减少污染物的排放。化肥、农药、农用塑料薄膜含有重金属元素,建立一个科学合理的生产和使用技术规范,应该限制单位面积农田的数量,品种和施肥方法,更多的有机肥料和生物肥料,加强监测农田的化肥和农药残留。

参考文献:

[1] 庞奖励.西安污灌区土壤重金属含量及对西红柿影响的研究[J].土壤与环境,2001,(2):94-97.

[2] 郑喜.土壤中重金属污染与防治[J].地质通报,2002,(1):79-84.

第8篇

关键词:重金属污染土壤;微生物功能;植物-微生物联合修复

引言

伴随着农业、工业以及生活污水的大量排放,我国环境污染中重金属污染的负面影响也日益加剧。在污染治理过程中,作为土壤中最为活跃的有机体,土壤中的微生物将土壤中的物质和能量进行循环与转换,以维持土壤中的生态平衡,净化重金属所造成的污染。因此,微生物在当前重金属污染治理中起着重要作用。

1.重金属污染土壤的植物-微生物联合修复的不同形式

微生物与植物联合作用于重金属污染土壤的修复属于当前微生物发挥功能的一种形式。植物的生长为微生物提供滋养,同时其根区所产生的一些分泌物能够进一步促进微生物降解功能的发挥;微生物则可以通过自身的降解功能,把土壤中的有机酸、铁载体等转换成为植物根基可吸收物质,甚至改变植物当中重金属的生长形态,为植物提供可吸收的营养,促进植物的进一步生长。

从现有修复形式来看,植物-微生物联合修复主要通过以下两种形式实现:第一,与微生物菌体共同作用。俄罗斯科学家研究发现,在Zn、Ni、Cd、Co等土壤条件下,会产生某种耐受菌体,其能够通过自动复制环状DNA的形式,阻止重金属污染源伴随植物根基的吸收作用进入植物体内,进而能够起到保护植物的作用。因此,综合对该种菌类的研究结果可以发现,在重金属污染过程中,可以在土壤中接种专性的菌株,一方面能够转换植物生长环境中的微生物结构,另一方面也可以达到降解重金属,提高植物生长环境周围为生物活性、进而促进植物生长的作用。第二,将植物与菌根结合修复土壤中的重金属污染。菌根主要指的是存在于土壤中的生物植物和菌落的联合体。该种生物一般生长在重金属含量较高的矿区土壤中,其自身即具有极高的酸溶和酶解能力,能够通过转换重金属当中的污染物质,为植物生长提供营养。另外,菌根还能够通过自身活动,改善土壤当中的微生物活动状态,进而改变植物根基的微型生态环境,从而提高植物整体的逆环境生长能力,促进植物的进一步生长。事实上,虽然菌根本身能够提高植物的抗逆性,同时其较强的重金属吸附和降解功能促进了当前对重金属污染土壤的治理,但是由于该种植物不易获得,因此菌根和植物相互作用的重金属污染治理模式还具有相当广阔的研究空间和应用前景。

2.重金属污染土壤植物-微生物联合修复技术的影响因素

2.1土壤中重金属污染特性

重金属是否会造成土壤污染以及其污染的方式与土壤中重金属的总体含量不直接相关。一般来说,土壤中的重金属以各种不同形态存在,且因为总体重金属结构状态的不同,土壤中重金属的能量状态以及污染特性也不相同。当然,综合现有污染土壤来看,由于土壤中所含的有机质以及某些矿物质成分具有一定的重金属吸附效果,因此土壤中水溶态的重金属含量较少。从这一现象来看,土壤可以利用微生物和植物的重金属毒性抑制功能以及重金属的降解和转化功能等,改变土壤中重金属的平衡结构,为植物和微生物的生长提供更多滋养,进而提高土壤的修复率。

2.2植物本身生理生化特性

植物是土壤中重金属修复的主体,其自身也具有一定的重金属降解、吸收等功能,而该功能同样能够影响土壤中的重金属含量。当前全世界范围内共有约400种超累积植物。该类植物通过吸收、储存和利用土壤中的重金属,改变原有的土壤结构,进而促进植物生长环境的转变。一般来说,这类富集植物需具有以下特征:第一,对于重金属的吸收速率较高,即是当土壤当中的重金属含量低于土壤污染水平时,其重金属吸收和运输的速率依然较高。第二,具有良好的重金属累积效果。对于某些浓度较高的污染物,富集植物同样能够起到吸附和积累作用,且其累积能力是普通植物的10-500倍以上。第三,富集植物可能具备同时吸附多种重金属的功能。第四,富集植物的生命力顽强,生长速度较快,同时自身抗病能力较强。

2.3根际环境因素

根际环境是土壤中独特的生态修复环境,该环境下,PH值被改变,氧化还原作用得以发挥。同时还能够利用根系分泌物,与植物和土壤进行能量和信息交流,改变根际的物质生存环境。当然,根际分泌物也能够促进根际微生物的成长,进而改变根细胞的特性,提高土壤中有机酸、氨基酸等活性较大的重金属溶解物质的含量,或者通过与重金属相互作用有效降低其结构稳定性和毒性,也可以运输细胞内的富集重金属到体内,进而提高植物的生长能力和抗逆性。另外,根际矿物质的改变同样能够吸收和降解土壤中的重金属,进而提高植物-微生物的联合修复效果。

3.结论与展望

虽然可以通过植物-微生物联合的形式修复被重金属污染的土壤,但是由于重金属本身的污染特性,植物的生理生化结构的变化以及植物根基环境等的影响,微生物对于重金属污染的修复功能的发挥研究还有待进一步的深入。在接下来的研究过程中,笔者希望,可以从重金属污染如何改变土壤中的微生物群落结构、菌根的特性、菌根发挥作用的方式以及菌根的培养方式等入手,以期更加充分地证明微生物修复土壤中重金属污染的作用机理和主要作用方式,进而为重金属污染土壤的治理提供可行建议。

参考文献:

[1] 李小林,颜森,张小平,等.铅锌矿区重金属污染对微生物数量及放线菌群落结构的影响[J].农业环境科学学报,2011,30(3).

第9篇

[关键词]蔬菜;重金属;铬;铅;富集系数;富集模式 

 

前言 

 

随着近代工农业的迅猛发展,工农业现代化、城市化已成为人类文明发展的重要标志。但同时,人类也面临着人口膨胀、资源短缺和环境污染的严重威胁。当前全球的环境问题日益严重,其中环境污染中的重金属污染已成为当今世界备受关注的一类公害。重金属是指比重等于或大于5.0的金属,如cd、cr、zn、mn、cu、hg、fe、ni、as等,它们当中有植物生长所必需的元素,如:fe、mn、cu、zn;有些是植物生长所不需要的元素,如:hg、pb、cd等。过量的重金属是造成环境污染的重要因素之一。 

 

一、我国土壤—植物系统重金属的污染状况 

 

据报道,目前我国受镉、砷、铬、铅等重金属污染的耕地面积近20.0×103km2,约占总耕地面积的1/5。其中被工业“三废”污染的耕地为10.0×103km2,污水灌溉的农田面积已达到3.3×103km2。某省曾经对47个县和郊区的2.59×103km2耕地(占全省耕地面积的2/5)进行过调查,其结果表明,75%的县已受到不同程度的重金属污染的潜在威胁,而且污染程度仍在加重。污水灌溉等对农田已造成大面积的土壤污染。如沈阳张士灌区用污水灌溉20多年后,污染耕地25.0×103km2,造成了严重的镉污染,稻田含镉5~7mg/kg。天津近郊因污水灌溉导致0.23×103km2农田受到污染。广州近郊因为污水灌溉污染农田27.0km2,因施用含污染物的底泥造成13.3km2的土壤被污染,污染面积占郊区耕地面积的46%。20世纪80年代中期对北京某污灌区进行的抽样调查表明,大约60%的土壤和36%的糙米存在污染问题。 

 

二、土壤—蔬菜系统中重金属污染概况 

 

(一)土壤中重金属污染形态 

植物从土壤中吸收的重金属量与土壤中的重金属总量有一定关系,但土壤中的重金属总量并不是植物吸收程度的一个可靠指标。研究表明,石灰性污灌土壤0~20cm土层中,pb、cd主要以碳酸盐结合态和硫化物残渣态存在,其次是有机结合态,交换态和吸附态较少;pb的吸附态大于交换态;而cd则相反。 

(二)重金属污染物在土壤中的分布 

土壤中的重金属污染物由于无机及有机胶体对阳离子的吸附、代换或络合、生物作用的结果,大部分被固定在耕作层中,一般很少迁移至46cm以下的土层,但砷在土壤中的动态行为与铜、铅、镉等有所不同,在含有大量铁、铝组分的酸性(ph5.3~6.8)红壤中,砷酸根可与之生成难溶盐类富集于30~40cm耕作层中。还有研究表明,金属污染物主要累积在土壤耕作层,而且其可给态含量较高,分别占全量的60.1%、30%、38%和2.2%。灌溉污水中的汞呈溶解态和络合态,进入土壤后95%被土壤矿质胶体和有面质迅速吸附或固定。它一般累积在土壤表层,在剖面上分布自上而下递减。 

(三)重金属污染的特点 

重金属的污染物的特点可以归纳为以下几点:(1)形态多变;(2)金属有机态的毒性大于金属无机态;(3)价态不同毒性不同;(4)金属羰基化合物常含剧毒;(5)迁移转化形式多;(6)重金属的物理化学行为多具有可逆性,属于缓冲型污染物;(7)产生毒性效应的浓度范围低;(8)微生物不仅不能降解重金属,相反某些重金属可在土壤微生物的作用下转化为金属有机化合物(如甲基汞)产生更大的毒性。同时重金属对土壤微生物也有一定毒性,而且对土壤酶活性有抑制作用;(9)生物摄取重金属是积累性的,各种生物尤其是海洋生物,对重金属都有较大的富集能力;(10)对人体的毒害是积累性的。重金属污染的另一特点就是它们不能被降解而消除。无论现代的何种方法,都不能将重金属从环境中彻底消除。这一点与有机污染物迥然不同。重金属在自然界净化循环中,只能从一种形态转化为另一种形态,从甲地迁移乙地,从浓度高的变成浓度低的等等,由于重金属在土壤和生物体内积累富集,即使某种污染源的浓度合符“排放标准”,仍然会通过污染蔬菜造成对人类的危害。 

 

三、土壤—植物系统中重金属污染的危害 

 

(一)铬 

1.土壤环境中铬元素的基本情况和来源 

铬是耐腐蚀的重金属。土壤中铬含量主要来源于成土母岩。正常土壤含铬5~1000mg/kg,平均含量为20~200mg/kg。土壤全铬含量极少部分可溶,仅占0.01%~0.4%。我国土壤中铬的含量为2.2~1209mg/kg,平均为61.0mg/kg。土壤中铬的污染来源主要是某些工业的“三废”排放。通过大气污染的铬污染主要是铁铬工业、耐火材料工业和煤的燃烧向大气中散发的铬。通过水体污染的铬污染源主要是电渡、金属酸洗、皮革鞣制等工业的废水。此外,城市消费和生活方面,以及施用化肥等,也是排放铬的可能来源。 

2.铬在土壤中的形态与迁移转化 

铬的存在形态有金属铬和铬的各种化合物,其化合物主要有三价和六价。金属铬无毒性,但三价铬有毒、六价铬毒性更大,还具有腐蚀性。土壤中的铬主要是三价铬和六价铬,其中以正三价铬最为稳定。六价铬以阴离子的形态存在,一般不易被土壤吸附,具有较高的活性,对植物易产生毒害,已经证明它有致癌作用。含铬废水中的铬进入土壤后,也多转变为难溶性铬,大部分残留积累于土壤表层,因此,土壤中为农作物可吸收的铬一般很少。受铬污染的土壤,其中的铬可借风力而随表层土壤颗粒迁移入大气,也可被植物吸收进而通过食物链进入人体。 

3.对植物和人体的影响 

铬是动物和人体的必需元素之一,现已发现胰岛素的许多功能都与铬有密切的关系。但是它在植物生长发育中是否必需还尚未证实。 

人体缺乏铬可引起粥状动脉硬化,还可使糖、脂肪的代谢受到影响,严重者可导致糖尿病和高血糖症。

(二)铅 

1.土壤环境中铅元素的基本情况和来源 

铅的离子状态以+2、+4价存在。正四价氧化态铅有强氧化性,在土壤环境中不能稳定存在。故土壤中铅以正二价铅为主。铅在地壳中的自然浓度并不高,平均浓度只有14mg/kg。土壤含铅量平均值为35mg/kg,煤中含铅2~370mg/kg,平均为10mg/kg。人类在生产活动中,把铅矿开采出来,经过冶炼、加工和应用于制造各种金属铅和铅化合物的制品。在这些过程中,特别是铅的冶炼,是土壤铅污染的主要污染源。 

2.铅在土壤中的形态与迁移转化 

土壤中的铅主要以pb(oh)2、pbco3、pb(po4)2等难溶态形式存在,而可溶性的铅含量极低。这是由于铅进入土壤时,开始可有卤化物形态的铅存在,但它们在土壤中可以很快转化为难溶性化合物,使铅的移动性和被农作物的吸收都大大降低。因此,铅主要积累在土壤表层。另外,铅也能和配位基结合形成稳定的金属络合物和螯合物。植物从土壤中吸收铅主要是吸收存在于土壤溶液中的pb2+。铅在土壤环境中的迁移转化和对植物吸收铅的影响,还与土壤中存在的其他金属离子有密切关系。 

3.对植物和人体的影响 

植物的正常含铅量为0.05~3mg/kg。植物对铅的吸收主要是通过根、茎、叶吸收土壤和大气中的可溶态铅。铅对植物的直接危害,主要是影响植物的光合作用和蒸腾作用的强度。一般随着铅污染程度的加重,光合作用和蒸腾作用的强度逐渐降低。铅在血液中可以磷酸氢盐、蛋白复合物或铅离子的状态随血液循环而迁移,随后除少量在肝、脾、肾等组织及红细胞中存留外,大约有90%~95%的铅以稳定的不溶性磷酸铅储存于骨骼系统。正常人血液中铅含量约0.05~0.4mg/kg左右。当血液中铅含量达0.6~0.8mg/kg时,就会出现各种中毒症状。铅中毒时对全身各系统和器官均产生危害,尤其是神经系统、造血系统、循环系统和消化系统。铅中毒,出现高级神经机能障碍。严重中毒时,引起血管管壁抗力减低,发生动脉内膜炎、血管痉挛和小动脉硬化。铅中毒还发生绞痛,还可造成死胎、早产、畸胎以及婴儿精神滞呆等病症。 

 

四、结语 

 

对重金属污染的控制要严格按照国家环保部门的规定,对于不符合国家和地方规定的城市污水,坚决禁止排放。对于未经处理的城市垃圾和污泥,禁止用于农田堆肥。禁用含砷、含汞的农药,减少化肥的使用,提倡多用有机肥。以最大限度减少污染源中的汞、镉、锌、铬的排放。对于已经受到重金属污染的土壤,增施有机肥,促进土壤对重金属吸收螯合,减少土壤中重金属有效态含量,减少蔬菜对重金属元素的吸收,同时栽培一些对重金属有超富集作用的植物,使土壤环境得到恢复。归根到底,对于金属污染,首要的是对污染源采取对策;其次要对排出的重金属进行总量控制,而不只是控制排放浓度;再次是研究和开发重金属的回收利用技术,这一点不仅对减少污染是有效的,而且对充分利用重金属资源也是重要的。 

 

[参考文献] 

[1]张太平,段昌群,胡斌,等.玉米在重金属污染条件下的生态分化与品种退化 [j].应用生态学报,1999,10(6). 

[2]王慎强.我国土壤环境保护研究的回顾与展望[j].土壤,1999, (5). 

[3]许嘉琳, 杨居荣.陆地生态系统中的重金属[m].北京:中国环境出版社,1995. 

[4]王先进.中国权威人士论中国怎样养活养好中国人[m].北京:中国财经出版社,1997. 

第10篇

关键词:畜禽养殖场;沼肥;重金属;修复技术;研究

中图分类号:S141 文献标识码:A DOI编码:10.3969/j.issn.1006-6500.2013.05.017

1 畜禽养殖场沼肥重金属污染现状

沼肥(包括沼液和沼渣)是有机物厌氧发酵后的残余物,是一种优质有机肥。但近年来,随着沼肥的广泛应用,沼肥污染问题也越来越引起人们的重视。生猪、奶牛养殖是我国农业中的传统产业,规模化养殖也在不断扩大,已成为我国未来养殖业发展的趋势,但养殖业业主在追求效益最大化的同时,也带来了严重的环境污染问题。许多地方在规模化畜禽养殖过程中,为加快畜禽生长速度、提高饲料利用率和防止畜禽疾病,在饲料添加剂中大量使用铜、锌、铁、砷等中微量元素[1-2]。许多研究表明,饲料中添加铜对猪各阶段有明显的促生长作用[3-5]。目前,在我国及其他国家的生猪养殖中,使用高剂量铜作为猪的促生长饲料添加剂已相当普遍,但重金属元素在动物体内的生物效价很低,大部分随畜禽粪便排出体外,故畜禽粪便中往往含有高量的重金属,从而增加了农用畜禽粪便污染环境的风险[6]。而规模化养殖场的粪污经过处理后最终都会以沼肥、有机肥等形式进入土壤中,造成土壤污染和植株中毒。

当前,国内外对沼肥重金属污染问题的研究多集中在沼肥中重金属元素分布情况、沼肥对作物产量和品质的影响、沼肥对土壤的影响等[7-8]。钟攀等[9]分析了沼气肥中重金属含量,发现沼液毒性重金属的平均含量为全As>Cr>Cd>Pb>Hg,而沼渣则为全Cr>As>Pb>Cd>Hg。李健等[10]研究发现,配合饲料饲养法沼渣中As、Cd的含量远远超出规定的含量,Hg的含量也已接近极限值;而青饲料饲养法沼渣中主要重金属含量除Pb以外,其他重金属含量基本没有超过允许的范围。段兰等[11]对辽宁省昌图县的饲料、猪粪、沼肥以及连续施用沼肥6年的土壤进行取样测定,分析了沼肥从源头到土壤施用过程中重金属与抗生素类兽药的含量变化。结果表明,施用沼肥的土壤重金属类残留现象总体不明显,但Cu、Zn含量明显增高。高红莉等[12]研究指出,施用沼肥可以改善土壤环境,提高土壤肥力,明显提高作物产量和品质,对土壤重金属元素含量没有显著影响,但是青菜镉、铅含量超出国家标准,因此应谨慎施用。随着人们对农产品质量安全问题的日益关注,沼肥中的重金属特别是毒性重金属的含量将成为评价其质量安全的重要指标。

2 土壤重金属污染修复技术

重金属污染物进入土壤后,不易随水迁移,不能被生物所分解,因而在防治上存在一定的困难。对于沼肥造成的土壤重金属污染,目前生产上常用的改良修复技术主要有物理修复、化学修复和生物修复等。即可通过土壤管理、重金属钝化、微生物降解等技术集成,降低土壤重金属对作物的生物有效性,减少作物的吸收,也可通过秸秆综合利用技术、高富集植物填闲种植等,降低土壤重金属的含量。

2.1 物理修复技术

物理修复技术是通过各种物理过程将重金属污染物从土壤中去除或分离的技术。目前,土壤重金属污染物理修复主要包括电动修复、电热修复、土壤淋洗3种修复技术[13]。在这3种物理修复技术中,应用最多、技术最成熟的是土壤淋洗法,该法是利用淋洗液把土壤固相中的重金属转移到土壤液相中,再用络合或沉淀的方法,使重金属富集并进一步回收处理的土壤修复方法。淋洗液主要有硝酸、硫酸、盐酸、草酸、柠檬酸、EDTA和DTPA等[14]。有研究指出当硫酸单独使用时,铜和铅的去除效果不理想[15],而使用的盐酸/硫酸(1∶1)对污泥进行处理,重金属铜、铅、锌等去除率都达到60%以上,有的重金属去除率甚至可达100%。有机络合剂EDTA和DTPA等也能有效去除重金属,如EDTA能与许多重金属元素形成稳定的化合物,使用0.1 mol·L-1EDTA去除Pb,发现EDTA对Pb的提取率可达60% [16]。

2.2 化学修复技术

化学修复就是向土壤投入改良剂,如有机肥、作物秸秆、蛭石、石灰等,通过对重金属离子的吸附、氧化还原、沉淀等作用,以降低重金属对植物的危害和在植物体内的富集。有机肥可通过改变重金属的存在状态,或改变吸附体的表面性质,进而影响重金属的吸附。张敬锁等[17]研究发现有机质有很大的比表面积,对Cd2+有强烈的吸附作用,更主要的是有机质分解产生的腐殖酸可与土壤中的Cd2+形成鳌合物沉淀。石灰主要是通过提高土壤pH值,促进土壤中重金属元素形成氢氧化物或碳酸盐结合态盐类沉淀。

2.3 生物修复技术

2.3.1 植物修复技术 植物修复技术是指通过植物系统及其根系移去、挥发或稳定土壤环境中的重金属污染物,或降低污染物中的重金属毒性,以期达到清除污染、修复或治理土壤目的的一种技术。植物修复经济有效、成本低,对环境扰动小,产生的富集重金属的植物可统一处理,甚至可以从这些植物体内回收重金属,可以长期、大面积的田间应用,还可绿化环境[18-19]。但在一些区域,简单地使用植物修复法难以起到预期效果,必须与物理化学法等结合起来使用[20]。目前,全世界已经发现超富集植物500多种:Cd超富集植物有商陆、龙葵等[21-22];Cu超富集植物有燕麦鸭跖草、海州香薷等[23];Pb超富集植物有裂叶荆芥、麻疯树等[24-25];As超富集植物有大叶井口边草、蜈蚣草等[26-27];Hg超富集植物有大米草[28]。以及Cd/Zn多重金属富集植物有伴矿景天[29],Pb/Cu/Zn/Cd多重金属富集植物有朝天委陵菜[30]。

2.3.2 微生物修复技术 微生物修复是利用微生物如蓝细菌、菌根真菌以及某些藻类产生的多糖、糖蛋白等物质对重金属的吸收、沉积、氧化和还原等作用,减少植物摄取,从而降低重金属的毒性[31-33]。目前,微生物强化植物修复方面的研究多集中于菌根真菌,它在修复遭受重金属污染的土壤方面发挥着重要的作用[34]。通过筛选重金属抗性菌株、增强植物抗重金属能力来实现植物修复重金属污染土壤是非常有效的手段[35]。许友泽等[36]采用微生物淋溶法去除重金属,在最佳工艺条件下,污泥中Cd、Mn、Cu、Pb、Zn的浸出率分别高达88.0%,88.0%,69.0%,67.0%和83.0%。谢朝阳等[37]研究发现,在细菌的参与下,土壤胶体和粘土矿物对重金属离子的吸附能力有一定程度的增加。

2.4 植物生长调节物质修复技术

植物生长调节物质能通过调节植物的生长状况来增强植物抗重金属胁迫的能力。在重金属胁迫下,利用水杨酸进行处理能促进植株生长,降低质膜透性,减少丙二醛的积累,从而增强植物抗重金属胁迫的能力[38]。赵鹂等[39]也研究发现,施加外源脱落酸能有效缓解汞胁迫下水稻种子的萌发活力,增强植株的抗逆性。

3 结 论

综上所述,当前许多地方在规模化畜禽养殖过程中,为了追求效益,往往在饲料添加剂中大量使用铜、锌、砷等中微量元素,而这些重金属元素大部分随畜禽粪便排出体外,从而增加了农用畜禽粪便污染环境的风险。针对当前规模化养殖带来的沼肥污染现状,本研究探讨了几种缓解重金属污染的技术,有些技术已经比较成熟,有些仍存在疑问,还需进一步完善。随着研究的深入,将会有更完善更成熟的土壤重金属污染修复技术应用到实际的生产中。

参考文献:

[1] 叶美锋,吴飞龙,林代炎,等. 规模化养猪场粪污重金属动态流向分析研究[J]. 能源与环境,2010(4):15-16.

[2] 黄玉溢,刘斌,陈桂芬,等. 规模化养殖场猪配合饲料和粪便中重金属含量研究[J]. 广西农业科学,2007, 38(5):544-546.

[3] 戴荣国,蔡娟,吴天华. 正确认识和应用高铜添加剂[J]. 四川畜牧兽医,2000,27(6):37.

[4] Zhou W, Kornegay E T, Lindeman M D. The role of feed consumption and efficiency in copper-stimulated growth [J]. Journal of Animal Science, 1994, 72(9): 2385-2392.

[5] Lou X G, Dove C R. Effect of dietary copper and fat on nutrition, digestive enzyme activities, and tissue mineral levels in weanling pigs [J]. Journal of Animal Science, 1996, 74(8): 1888-1896.

[6] 刘荣乐,李书田,王秀斌,等. 我国商品有机肥料和有机废弃物中重金属的含量状况与分析[J]. 农业环境科学学报,2005,24(2):392-397.

[7] 王琳,吴珊,李春. 粪便、沼液、沼渣中重金属检测及安全性分析[J]. 内蒙古农业科技,2010(6):56-57.

[8] 陈苗,白帆,崔岩山. 几种沼渣中Cu和Zn的含量及其形态分布[J]. 环境化学,2012,31(2):175-181.

[9] 钟攀,李泽碧,李清荣,等. 重庆沼气肥养分物质和重金属状况研究[J]. 农业环境科学学报,2007,26(S): 165-171.

[10] 李健,郑时选. 沼肥中重金属含量初步研究[J]. 可再生能源,2009,27(1):62-64.

[11] 段然,王刚,杨世琦,等. 杨沼肥对农田土壤的潜在污染分析[J]. 吉林农业大学学报,2008,30(3):310-315.

[12] 高红莉. 施用沼肥对青菜产量品质及土壤质量的影响[J]. 农业环境科学学报,2010,29(S):43-47.

[13] 李广云,曹永富,赵书民,等. 土壤重金属危害及修复措施[J]. 山东林业科技,2011(6):96-101.

[14] 龙新宪,杨肖娥,倪吾钟. 重金属污染土壤修复技术研究的现状与展望[J]. 应用生态学报,2002,13(6): 757-762.

[15] 张树清,张夫道,刘秀梅,等. 高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J]. 中国农业科学,2006,39(2):337-343.

[16] Chen Y X,Hua Y M,Zhang S Z. Transformation of heavy metal forms during sewage sludge bioleaching[J]. Hazardous Materials, 2005, 12(3): 196-202.

[17] 张敬锁,李花粉,衣纯真,等. 有机酸对活化土壤中镉和小麦吸收镉的影响[J]. 土壤学报,1999,36(1):61-66.

[18] 王燕,李贤庆,宋志宏,等. 土壤重金属污染及生物修复研究进展[J]. 安全与环境学报,2009,9(3):60-67.

[19] 袁燕,卞建春,刘学忠,等. 环境中重金属污染的生物治理[J]. 中国兽医学报,2009,29(8):1089-1091.

[20] 曾蓉. 土壤重金属污染现状及修复研究[J]. 安徽农学通报,2012,18(20):20,32.

[21] 傅晓萍. 美洲商陆镉吸收和耐性机理研究[D]. 杭州:浙江大学,2011.

[22] 石磊,金玉青,金叶华,等. 土壤重金属污染的植物修复技术[J]. 上海农业科技,2009(4):24-28.

[23] 唐世荣. 重金属在海州香薷和鸭跖草叶片提取物中的分配[J]. 植物生理学通讯,2000,36(2):128.

[24] 聂俊华,刘秀梅,王庆仁. Pb(铅)超富集植物品种的筛选[J]. 农业工程学报,2004,20(7):255-258.

[25] 李清飞. 麻疯树对铅胁迫的生理耐性研究[J]. 生态与农村环境学报,2012,28(1):72-76.

[26] 韦朝阳,陈同斌,黄泽春,等. 大叶井口边草—— 一种新发现的富集砷的植物[J]. 生态学报,2002,22(5): 777-778.

[27] 陈同斌,韦朝阳,黄泽春,等. 砷超积累植物蜈蚣草及其对砷的富集特征[J]. 科学通报,2002,47(30):207-210.

[28] 田吉林,诸海焘,杨玉爱,等. 大米草对有机汞的耐性、吸收及转化[J].植物生理与分子生物学学报,2004, 30(5):577-582.

[29] 李思亮,李娜,徐礼生,等. 不同生境下锌镉在伴矿景天不同叶龄叶中的富集与分布特征[J]. 土壤,2010, 42(3):466-452.

[30] 胡嫣然,周守标,吴龙华,等. 朝天委陵菜的重金属耐性与吸收性研究[J]. 土壤,2011,43(3):476-480.

[31] 李玉红,宗良纲. 螯合剂在污染土壤植物修复中的应用[J]. 土壤与环境,2002,11(3):303-306.

[32] 陶红群,李晓林,张俊伶. 丛枝根菌丝对重金属元素和吸收的研究[J]. 环境科学学报,1998,18(5):545-548.

[33] 蔡信德,仇荣亮,陈桂珠. 微生物在镍污染土壤修复中的作用[J]. 云南地理环境研究,2005,17(3):9-12,17.

[34] 夏娟娟. 植物促生内生细菌的筛选及其强化油菜富集土壤铅镐重金属的研究[D]. 南京:南京农业大学,2006.

[35] 江春玉. 重金属铅镐抗性菌株的筛选、生物学特性及其强化植物修复铅镐污染土壤的研究[D]. 南京:南京农业大学,2005.

[36] 许友泽,马超,成应向,等. 微生物淋溶法去除污泥中的重金属[J]. 西南交通大学学报,2012,47(1):169-174.

[37] 谢朝阳,黄巧云,黄敏. 耐重金属细菌对土壤胶体及矿物体系吸附镉的影响[J]. 湖北农业科学,2010, 49(4):855-858.

第11篇

关键词:蔬菜基地;土壤;重金属;累积;来源;生态危害

中图分类号:X830;X820.4 文献标识码:A 文章编号:0439-8114(2013)09-2016-05

土壤是人类的衣食之源和生存之本,即便是经济技术高速发展的今天,土壤依然是最基本的生产要素和各种经济关系的物质载体。然而,随着现代工业和城镇化水平的不断提高,工业“三废”、生活废弃物的大量增加,化肥、农药、农膜等投入品大量使用,致使农业生态环境受到不同程度的污染[1]。重金属在农田土壤中的累积会引起复杂生物效应,一方面会制约作物生长发育,促进早衰,降低产量,并对营养元素的吸收起到颉颃作用从而降低农产品的品质;另一方面,土壤中的重金属可以通过根系进入植物体,再通过食物链的传递和富集,最终危害人体健康[2]。由于重金属元素化学性质稳定,其土壤污染过程具有隐蔽性、长期性和不可逆性等特点而受到全社会的广泛关注。

蔬菜在国民生活中占有重要的地位,是日常生活中必不可少的食物。目前,蔬菜基地已成为我国大中城市蔬菜的主要供应源。一般来讲,蔬菜基地蔬菜生产具有集约化程度高、农业投入品施用强度大、灌溉用水比旱作物多等特点,导致各种外源污染物进入农田土壤的几率也高,势必造成重金属元素在土壤中累积,直接影响蔬菜的质量安全。因此,对天门市蔬菜基地土壤重金属的累积状况与潜在生态危害进行评价有着重要意义。本研究通过对天门市5个主要蔬菜基地土壤进行采样监测,揭示土壤中重金属的累积动态,分析污染物来源,并评估其潜在生态危害程度,以期为蔬菜基地生态环境保护和农产品质量安全监管提供科学依据。

1 材料与方法

1.1 研究区概况

天门市位于鄂中,地处江汉平原北部,汉江下游左岸,跨东经112°35′-113°28′,北纬30°23′-30°54′,属于北亚热带季风气候区。多年日均气温16.4 ℃,年平均降雨量1 113.3 mm,日照时数1 872.4 h,无霜期249.6 d。天门市在菜蓝子工程建设中先后在河湖平原的多宝、张港、蒋场、黄潭、岳口、小板、杨林、沉湖及岗状平原的九真、皂市等乡镇建立了10个蔬菜基地,基地面积1.214万hm2,占天门市耕地总面积的11.21%。本研究区选择在河湖平原,该区土壤发育于江汉近代河流冲积物(Q4),基地土壤为灰潮土,土壤有较强的石灰性反应,主要土壤类型是灰油沙土和灰正土。

1.2 样品采集与制备

调查采样时,按照必须有重金属元素的污染源,采样点具有代表性和典型性,不同采样点应选在相同类型母质上以避免因母质不同而产生差异[3]的原则,选择河湖平原的多宝、张港、黄潭、小板、杨林等5个蔬菜基地为采样区,共布设21个采样点,每个采样点按梅花点法5点取样,用竹铲等量采集0~20 cm耕层土壤,混合均匀后用四分法留取1 kg混合土样。土样经自然风干,剔除样品中碎石、沙砾及植物残体,用木棍碾碎并用玛瑙研钵研磨,分别过20目和100目尼龙筛装袋备用。

1.3 分析方法

1.5 土壤重金属潜在生态危害指数评价方法

2 结果与分析

2.1 土壤重金属含量特征

天门市主要蔬菜基地土壤重金属含量的统计特征值及湖北省土壤背景值、国家土壤Ⅱ级标准值列于表3。由表3可知,天门市主要蔬菜基地土壤重金属Hg、Cd、As、Cr、Pb、Cu的总体平均含量分别为0.066、0.168、6.850、67.940、10.730和27.090 mg/kg。然而,由于人类干扰强度的不同,5个蔬菜基地土壤中6种重金属元素的浓度已呈现出较为明显的空间分布特征。差异显著性分析发现,Cd、Cr和Pb以杨林基地土壤含量最高,与多宝、张港、黄潭、小板4个基地土壤含量存在显著差异;Hg与Cu则以黄潭基地土壤含量最高,与多宝、张港、小板、杨林4个基地土壤含量也存在显著差异;而土壤中As含量黄潭、小板、杨林3个基地土壤含量差异不显著,但与多宝、张港2个基地土壤含量均有显著差异。

与湖北省土壤背景值[4]相比,5个蔬菜基地土壤重金属的平均含量除As、Pb外,黄潭和小板基地的Hg、杨林基地的Cd、多宝与杨林基地的Cr以及黄潭基地的Cu均高于相应元素的背景值,存在明显的累积现象;与保障农业生产,维护人体健康的国家土壤Ⅱ级标准值[6]相比,21个供试土样重金属Hg、Cd、As、Cr、Pb、Cu的含量均在标准限量内。由此可见,天门市主要蔬菜基地土壤中As、Pb处于本底状态,Hg、Cd、Cr、Cu在不同基地高于湖北土壤背景值,但低于国家土壤环境质量Ⅱ级标准值,土壤尚没被污染,只是受到外源污染物Hg、Cd、Cr、Cu的轻度玷污,其土地利用一般不受限制[7]。

2.2 土壤重金属累积特征

2.3 土壤重金属来源

农田土壤重金属来源于成土母质和人类活动,同一来源的重金属之间存在着相关性,因此可根据土壤中重金属全量相关性推测重金属来源。若不同重金属间有显著的相关性,说明有相同来源的可能性较大,否则来源不止一个。由表5可知,天门市主要蔬菜基地土壤中,Cr与Pb的相关系数最大,为0.709,达到极显著正相关水平;其次,Hg与Cu、As与Cu、Cd与Pb的相关系数分别为0.637、0.620、0.548,也均达到极显著正相关水平,表明Pb、Cu及Cr同源的概率较大。

根据实地调查及有关资料分析,天门市主要蔬菜基地土壤中外源重金属以4种来源为主。来源一为大气中重金属沉降。大气中的重金属主要来源于工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含有重金属的有害气体和粉尘等,大多数是经自然沉降和雨淋沉降而进入土壤[9]。来源二为施用含有重金属的化肥、农药等农业化学投入品。通常化肥中含有一定成分的重金属,一般磷肥、含磷复合肥含有较高的Hg、Cd、As和Pb等重金属元素,氮肥和钾肥中这些重金属元素含量较低,但氮肥中Pb的含量较高。天门市分别始于1951年、1954年和1972年在农业生产上施用氮肥、磷肥和复合肥。我国第一次农业污染源普查结果显示,天门市2007年度纯N施用量为788.85 kg/hm2,P2O5为345.45 kg/hm2,其单位面积施用量双双位居全省各地、市、州的第一名,分别是全省平均施用量的1.52倍和1.67倍。可见,天门市如此长时间、高强度地施用氮肥、磷肥和复合肥,必然会造成Hg、Cd、As、Pb等重金属元素在农田土壤中的累积。同时,天门市主要蔬菜基地一般由老棉田演变而来,曾于1971年前多年使用汞制剂农药氯化乙基汞(西力生)和醋酸苯汞(赛力散)、1962年起使用铜制剂农药硫酸铜和1972年起使用砷制剂农药甲基胂酸锌(稻脚青)防治棉花苗病,以及改种蔬菜后使用各种铜制剂农药防治蔬菜病害,导致Hg、Cu、As等重金属元素在农田的累积。来源三为施用含有重金属的畜禽粪便与生活垃圾。随着现代畜牧业发展,饲料中一般都含有一定量的Cu、As等重金属元素,这些重金属元素随粪便排出体外,施入农田后在土壤中累积。据估算[10],2006年度天门市仅猪粪、鸡粪中Cu、As的排放量全市耕地平均污染负荷量就达1.738和0.223 kg/hm2。而农村生活垃圾堆肥中往往重金属含量也比较高,如垃圾中电池、日光灯管、体温计等含Hg废弃物较多,施入农田其重金属也会在土壤中累积。来源四为地膜残留。天门市从1982年开始推广地膜覆盖技术,但因地膜强度低,易破碎,使用后难以捡拾回收,地膜残留量大,造成了土壤的白色污染,且覆盖年限越长,污染也越严重[11]。由于地膜在生产过程中加入了含有Cd、Pb的热稳定剂,残留地膜中的Cd、Pb向土壤中渗透、迁移,污染其土壤[12]。

2.4 土壤重金属潜在生态危害评价

3 结论

1)天门市主要蔬菜基地土壤重金属As、Pb处于本底状态,Hg、Cd、Cr、Cu在不同基地高于湖北土壤背景值,但低于国家土壤环境质量Ⅱ级标准值,土壤尚没被污染,只是受到外源污染物的轻度玷污,其土地利用一般不受限制。

2)土壤重金属累积性评价结果表明,Hg、Cd、Cr、Cu在不同蔬菜基地已形成轻度累积,5个基地土壤重金属综合累积水平为轻度累积。

3)大气中重金属沉降、施用含有重金属的化肥、农药、禽畜粪便和生活垃圾以及地膜残留是天门市主要蔬菜基地土壤中重金属来源的主要贡献者。

4)潜在生态危害指数法评价结果表明,5个蔬菜基地土壤重金属的潜在生态危害程度处于轻微生态危害状态,Hg与Cd为土壤中主要生态危害因子。

参考文献:

[1] 王 军,陈振楼,王 初,等.上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估[J].环境科学,2007,28(3):647-653.

[2] 陈迪云,谢文彪,宋 刚,等.福建沿海农田土壤重金属污染与潜生态风险研究[J].土壤通报,2010,41(1):194-199.

[3] 苏年华,张金彪,王玉默.福建省土壤重金属污染及其评价[J].福建农业大学学报(自然科学版),1994,23(4):434-439.

[4] 刘凤枝,马锦秋.土壤监测分析实用手册[M].北京:化学工业出版社,2012.

[5] HAKANSON L. An ecological risk index for aquatic pollution control-A sedimentological approach[J]. Water Research,1980, 14(8):975-1001.

[6] GB 15618-1995,土壤环境质量标准[S].北京:中国标准出版社,1995.

[7] 夏家淇,骆永明.关于土壤污染的概念和3种评价指标的探讨[J].生态与农村环境学报,2006,22(1):87-90.

[8] 徐宏林,祝莉玲,杨 军,等.嘉鱼蔬菜基地土壤重金属污染状况调查与评价[J]. 湖北农业科学,2011,50(7):1347-1349.

[9] 赵小虎,王富华,张 冲,等.南方菜地重金属污染状况及蔬菜安全生产调控措施[J].农业环境与发展,2007(3):91-94.

[10] 沈体忠,刘佑林,雷代英,等.武汉城市圈畜禽粪便资源量及养殖业对环境的潜在影响——以天门市为例[J].长江大学学报(自然科学版·农学卷),2009,6(3):70-74,78.

[11] 何文清,严昌荣,赵彩霞,等.我国地膜应用污染现状及其防治途径研究[J].农业环境科学学报,2009,28(3):533-538.

[12] 袁俊霞.农用残膜的污染与防治[J].农业环境与发展,2003(1):31-32.

第12篇

工业污染以及农药、化肥的不当使用,我国农地土壤中的重金属含量迅速增加,使得土壤生产力下降、农产品遭受污染,这已经成为了阻碍农业绿色、高效、可持续发展的重要因素之一[1-2]。重金属在土壤中能够被粮食作物富集[3],进而通过食物链威胁人类的健康[4-5]。例如,Pb、Hg可以对神经系统造成毒害,引起神经系统退行性病变[6];As能够使细胞代谢失常,导致神经麻痹、血溶性贫血及血管坏死[7]。土壤的重金属污染对人类健康的威胁程度正在逐年上升。因此,为了确保粮食的安全供应,从根本上阻断重金属的摄入来源,就必须进行农用地健康评价,以掌控农田土壤及作物的污染情况。重金属对于农地土壤乃至粮食作物质量的危害是多方面的,不仅降低了土壤微生物的种类和数量[8],还会明显降低土壤酶活性,从而降低土壤对残留有机质的分解能力[9]。许多学者结合内梅罗(Nemerow)综合污染指数法对土壤的重金属污染情况进行分级评价,较好的反映了土壤的污染状况[10-12]。土壤-作物系统是重金属威胁人类健康的重要途径,通过研究重金属从土壤转移至作物的累积情况来评价粮食生产安全具有重要的理论价值和现实意义[13-15]。张家港市城市化发展迅速,城镇建设用地快速扩张[16],对农业用地的压力也逐年上升。目前针对该市土壤污染的相关研究较少,对该市土壤环境质量的了解并不全面[17],基于土壤-作物系统的重金属污染研究仍有待开展。因此,本研究选取重金属作为评价农地土壤环境质量的指标,结合内梅罗综合污染指数法对农地土壤中的重金属分布状况进行评价分析,并通过对水稻残根中的重金属残留量的跟踪分析,以期掌握张家港市农地土壤重金属的污染状况及其对粮食质量的动态影响。 1材料与方法 1.1研究区概况 张家港市地处北纬31°43'~32°02',东经120°21'~120°52',位于长江下游南岸,江苏省东南部,现辖8个镇和常阴沙管理区,全市总面积998.48km2。该市属亚热带海洋性季风气候,年平均气温15.2℃,年平均降水量为1042.9mm,年平均日照时长为2047.5h,主导风向为东南风。土壤类型主要为潮土和水稻土,亦有少量黄棕壤零星分布。水稻、小麦、油菜是该市的主要种植作物。 1.2样品采集与分析 采样时间为2010年12月,在张家港市范围内均匀选取样点20个,每个样点选择5处混合样方,每个样方取0至20cm表层土壤及附近的水稻残留根。即先选定中心样方,并向四周辐射约50m分别再取4处样方,将这5个点取得的土样制成1kg左右土壤样品作为该样点的土样,置于通风处风干,风干过程中拣出石子、植物残骸等杂物,过100目尼龙网筛后,称取约200g土样封存于密封袋中,并对应取样地点进行编号;将在同一采样点收集的水稻残留根混合作为该样点的水稻残根样品。样品送南京大学现代分析中心进行进一步的预处理并利用等离子体原子发射光谱仪等仪器分别测定土壤及残留根中的Hg、As、Se、Pb、Cu的含量。 1.3统计方法 分别计算土壤中Hg、As、Pb、Cu4种重金属元素的单因子指数和综合污染指数,并统计分析重金属的平均值、标准差、变异系数等。在SPSS17.0环境下对农地土壤及农田水稻残根Hg、As、Se、Pb和Cu进行Pearson相关分析。 1.3.1单因子指数评价法 单因子指数评价法常用于评价污染物在环境介质中的污染程度。其计算公式为:Pi=Ci/Si,式中:Pi为i污染物的污染指数;Ci为污染物实际测量值,Si为评价标准值[以土壤质量对植物和环境不造成危害和污染的《土壤环境质量标准》(GB15618—1995)二级标准作为评价标准]。Pi值越大,则污染越严重。 1.3.2综合污染指数评价法 综合污染指数评价法突出了污染较重的污染物的作用,可以用来综合掌握土壤重金属的污染情况,其计算公式为:PN=[(P2avg+P2max)/2]1/2,式中:PN为综合污染指数;Pavg为各单项污染指数平均值;Pmax为各单项污染指数最大值。 2结果 2.1土壤重金属含量 综合表1、表2,土壤Hg含量为0.0049~0.4300mg/kg,单因子指数的平均值为0.141,标准差为0.193,变异系数为1.373;As的含量为2.76~5.24mg/kg,单因子指数的平均值为0.162,标准差为0.024,变异系数为0.150;Se的含量为0.041~0.066mg/kg;Pb的含量为11.8~17.8mg/kg,单因子指数的平均值为0.050,标准差为0.005,变异系数为0.105;Cu的含量为12.5~22.9mg/kg,单因子指数平均值为0.172,标准差为0.030,变异系数为0.174;各采样点综合污染指数为0.103~0.645,平均值为0.153,变异系数为0.752。对照国家土壤环境质量标准,研究区Hg、As、Pb、Cu的含量均低于国家二级标准值,单因子指数和综合污染指数总体偏低,说明张家港市农地土壤清洁,基本未受人为活动造成的污染。在常东社区和常北社区的Hg的单因子指数及综合污染指数均略高于其他采样点,出现这种现象的原因可能是这一地区有较多污染工业企业聚集,如玻璃制造、钢制品、机械设备制造、染料助剂等工厂;As、Pb和Cu的变异系数都很低,这几种元素在全市范围内的分布差异不大,相对而言,Pb、Cu在张家港南部高庄村地区的含量更低一些,可能是因为该地区离张家港城区及工业密集区较远,尚未受到城市化及工业扩张的波及。从全市范围来看,各种重金属的分布并未表现出聚集效应,比较零散,没有扩散的趋势,说明目前工业的发展尚未对农地质量构成较大威胁。 2.2水稻残留根重金属含量 由表1可知,除常北社区2个样点分别检测到Hg0.0040mg/kg和0.0044mg/kg,其余采样点并未检测到Hg的残留,这与土壤中的Hg含量分布情况基本一致,值得指出的是,造成这一现象的原因除了周围工业的影响外,也不排除有农户使用了含Hg的农药或除草剂的可能;As的含量为0.83~2.66mg/kg,平均值为1.32mg/kg;Se的含量为0.009~0.030mg/kg,平均值为0.016mg/kg;Pb的含量为2.68~7.46mg/kg,平均值为4.12mg/kg;Cu的含量为9.5~44.2mg/kg,平均值为24.0mg/kg。As、Se、Pb在水稻残留根中的残留量与表层土壤平均含量之比分别为32.65%、29.79%、27.76%,进一步说明这几种重金属基本未对水稻造成危害;Cu在水稻残留根中的平均残留量达到了土壤环境的1.4倍,其中含量较高的点集中于东北部地区,而最南部的采样点含量最低,这与张家港市农田附近工业的分布格局现状相符。#p#分页标题#e# 2.3残留根重金属含量与土壤重金属含量相关性分析 对残留根Hg、As、Se、Pb、Cu与表层土壤Hg、As、Se、Pb、Cu5种重金属的含量逐一进行了Pearson相关性分析,结果表明,残留根中As与土壤中As的Pearson相关系数为0.230(P>0.05),残留根中Cu与土壤中Cu的Pearson相关系数为-0.113(P>0.05),残留根中Se与土壤中Se的Pearson相关系数为0.441(P>0.05),残留根中Pb与土壤中Pb的Pearson相关系数为0.428(P>0.05),残留根中Hg与土壤中Hg的Pearson相关系数为0.574(P<0.05),表明除Hg外水稻残根中重金属含量与土壤中重金属含量无相关性,这种现象一方面是因为土壤中的重金属并不全是能被作物直接吸收的有效态[18],另一方面也说明水稻残根中的重金属可能已经有了一定程度的流失。重金属之间土壤中As与Se、Se与Pb、Se与Cu都达到了极显著相关水平,As与Pb达到显著相关水平(表3);残留根中As与Se、As与Pb、As与Cu、Se与Pb均达到了极显著相关水平(表4)。说明这些元素之间可能存在着一定的伴生关系[19]。 3讨论 研究区农地表层土壤中的Hg、As、Pb和Cu的重金属含量均低于《土壤环境质量标准》二级标准的限制值,对重金属的综合污染指数的分析结果表明研究区土壤均未受到重金属污染,土壤综合质量良好,只有常北社区2号采样点的综合污染指数达到0.645,这主要是因为该处Hg的含量明显高于其他样点,故应重视该区域Hg的污染。各采样点水稻残留根中As为1.32mg/kg,Se为0.016mg/kg,Pb为4.12mg/kg,Cu为24.0mg/kg,Hg只在常北社区1和常北社区2两个采样点检测出,分别为0.0040mg/kg以及0.0044mg/kg。这些结果表明研究区水稻根部的这些重金属含量普遍很低,水稻的质量未受到重金属的影响。相关分析结果表明,部分重金属元素之间存在一定的伴生关系,这可能与外源性的污染如工业复合污染、含重金属农药的施用有关。 本研究结果表明,张家港市农田受重金属污染比较轻微,达到《土壤环境质量标准》二级标准的要求,但在集中了印染、电镀等污染性企业的区域,重金属含量也相对较高,而在污染企业较少的南部地区农地土壤的清洁状况则比较良好;常北社区和常东社区土壤中Hg含量明显高于其他地区,建议排查该地区土壤中Hg的来源,以遏制Hg污染的加剧;Cu在水稻残留根中的含量是土壤中Cu含量的1.4倍,说明Cu作为一种必需微量元素,水稻根部对Cu的吸收能力较强,因此需要控制过多的Cu进入农田土壤。同时研究区水稻残留根中重金属含量的检测结果间接表明了作物根部吸收的重金属量较低,进一步证实了张家港市农田环境优良,能够满足农业粮食安全生产的要求。 重金属污染物具有不可降解性,其一旦造成污染将很难恢复,对粮食作物的质量造成持续性的威胁。尽管目前张家港地区重金属污染较轻,但该市郊区有一定数量的污染性工业企业分布,加上城市扩张的压力,今后仍需对该地区重金属的主要污染来源、主要污染物种类、污染源的分布及辐射粮食作物种植区域的情况进行持续性地跟踪研究。由于生物的富集作用,重金属污染对食物链顶端的人类健康构成严重威胁,因此需继续加强对张家港市粮食作物重金属污染的检测,掌握土壤-粮食作物系统的重金属污染情况,以确保直接供人类食用的农产品的安全。