HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 智能制造技术现状

智能制造技术现状

时间:2023-07-19 17:31:01

智能制造技术现状

智能制造技术现状范文1

[关键词]智能 机械自动化 应用

中图分类号:TP29-A5 文献标识码:A 文章编号:1009-914X(2016)22-0307-01

机械自动化指的是运用现代先进的控制技术让机械设备在不需要人员直接操控的状态下自动运行,完成一系列目标任务的机械控制技术。传统形式下的机械自动化虽然具有一定的自主应对目标与进行处理的功能,但从根本上还需要人对其进行编程与监控,机械设备依据事先编程的设定做出反应来完成目标,从根本上离不开人对机械的操控。由于现代电脑与数控技术的产生与发展,完全不需要人参与其中的智能化机械自动控制技术开始出现,计算机可以实现对机械的整个生产过程进行无人化全程控制,从而使得机械自动化的技术相对于以往前进了一大步,不过由于安全性、运行成本等各个方面原因,目前智能型机械自动化的技术尚不够完善,不过就机械自动化技术未来发展的趋势而言,智能型机械自动化必然是今后的一个重要发展方向,因此对于智能型机械自动化技术的研究与探讨是积极的,十分有必要的,本文主要就智能型机械自动化的发展现状与主要模式进行研究,探索机械自动化对我国制造行业造成的影响以及今后的发展方向,希望能通过本文的研究对我国的机械自动化理论的发展做出贡献。

一、智能机械自动化的发展与优势

相对于传统的机械自动化技术,现代的智能机械自动化当中融合了大量的现代科技,其中包括电子技术,计算机技术、通信技术、传感技术等等,这些技术是以往机械自动化领域所不具备的。基于现代计算机技术作为基础的全程控制系统理论的建立是智能机械自动化技术的核心,智能机械自动化具有良好的判断与识别目标的能力,并可以实现自动对机械设备故障情况进行自我检测与采取相应的措施。与传统的机械自动化技术主要追求效率不同,智能机械自动化的发展越来越趋向于机械设备的智能化,也就是完全由计算机为基础的人工智能控制系统来代替人进行机械设备的全面操控。

智能机械自动化技术是综合了大量现代科技而产生的综合性机械控制技术,其所具备的很多优势都远远突破了人对于机械控制的局限性,所有人能够达到的机械控制能力理论上都可以通过智能机械自动化实现,而人的自然属性所固有的能力方面的不足,如精密程度、精力、多角度的注意力、连续工作能力等都是智能机械自动化技术完全可以克服的,因此可以说从发挥机械最大效能的角度观察,由智能机械自动化技术代替人为操控机械将是未来机械控制技术发展的必然趋势。

二、智能机械自动化的应用

目前,智能机械自动化技术已经广泛应用于商品生产与制造业各个领域当中,尤其对于流水化作业而言,智能机械自动化技术的应用使商品从制造生产、检测、包装、标识喷涂到运输,所有环节的效率与精确程度都得到了很大的提高。智能机械自动化技术的应用还可以实现对商品生产与机械制造的质量实施标准化全程自动控制,使得生产环节的效率与质量合格率得到有效改进。在矿山爆破与潜水作业当中,智能机械自动化技术可以实现机械代替人进入高危险作业环境从而避免高危施工带来的工伤隐患,智能机械自动化技术使得原本一些必须由人来操作的工作程序可以实现无人化的自动控制,而使得一些高温、高压、强酸碱、辐射、高危险作业环境的生产作业避免了人的参与而有效减少有可能造成的人员伤亡。与此同时,智能机械自动化技术还越来越多地应用于精密控制制造当中,在微型集成电路板、精密元器件的生产上表现出很好的效果。由于智能机械自动化技术可以使机械设备实现二十四小时无间断工作,因此在一些监控作业当中取代人员控制可以省去人员受自然机能限制而必须要就餐休息睡觉等带来的监控流程的中断,从而更好的提高工作效率。智能机械自动化技术应用于农业生产当中,还可以实现长时间在自然环境中作业而不会受到气候、温度、虫咬等客观条件的影响而对农作物实现全程化更为高效率的培育。

三、 智能型机械自动化未来发展的趋势

目前智能机械自动化技术的应用主要集中在工业制造领域,用于高附加值或技术密集型产品的生产较为广泛,这是由于智能机械自动化技术的应用需要一定规模的投资,虽然可以从很多方面取代人工,但成本因素是制约智能机械自动化技术广泛应用于各个领域的重要原因。不过由于技术的进步,所有与智能机械自动化技术相关的技术成本都会变得越来越低,这为智能机械自动化技术扩展应用于各个生产生活领域提供了契机。在未来的一段时间内,随着技术成本的降低,智能机械自动化技术必将越来越广泛地应用到更多的领域当中,从而为人们的生产生活带来深刻的变革。我国制造业自动化技术也应该深入研究这一发展趋势,把对于智能机械自动化技术的研究作为一项重要课题来对待,顺应科技发展的潮流,走在技术前沿,这样才能在未来的全球化竞争中保持一定的优势。从智能型机械自动化技术应用范围和发展状况观察,今后一段时期智能机械自动化主要发展方向应该是:

光机电液一体化方向(采用光学技术、机电一体化技术、液压技术来提高自动化控制综合水平);信息集成化方向(根据对制造流程数据资料的研究为制造技术与自动化控制提供支持);绿色环保方向(将智能机械自动化技术于环境保护进行结合而实现可持续开发)。认清未来的发展方向有助于我国在发展智能机械自动化技术方面占领先机,通过优先研究相关领域从而更好地把握未来技术的发展趋势。

四、结语

当今时代是一个科技不断发展的时代,随着科技的进步,智能机械自动化技术将越来越多地应用到人们的生产生活各个领域当中,成为今后发展的趋势,智能机械自动化技术的研究将会是一个长期而不断随着科技发展而跟进的工作,我国对于智能机械自动化技术的研究只有与时俱进,才能走在技术前沿,跟上时代与科技发展的步伐。

参考文献:

[1]贾丽萍;我国先进机械制造技术的几点思考[J];科技创新与应用;2012年01期

[2]高歌;浅谈自动化技术在机械制造中的应用[J];中国科技投资;2013年09期

[3] 刘晓峰;浅谈机械制造技术的现状与未来之路[J];电源技术应用;2013年01期

智能制造技术现状范文2

机械自动化 模糊控制 人工智能

【中图分类号】P415.1+3文献标识码:B文章编号:1673-8005(2013)02-0012-01

机械自动化,主要指在机械制造业中应用自动化技术,实现加工对象的连续自动生产,实现优化有效的自动生产过程,加快生产投入物的加工变换和流动速度。机械自动化技术的应用与发展,是机械制造业技术改造、技术进步的主要手段和技术发展的主要方向。机械自动化的技术水准,不仅影响整个机械制造业的发展,而且对国民经济各部门的技术进步有很大的直接影响。如何发展我国的机械自动化技术,应实事求是,一切从我国的具体国情出发,做好各项基础工作,走中国的机械自动化技术发展之路。

1我国机械自动化的现状

机械自动化技术从上世纪20年代开始发展应用以来,在各行各业都得到了迅速发展和广泛的应用,特别是近年来计算机的高度集成化,开始采用计算机集成制造系统,大大加快了机械自动化的发展,但我国让处于初级操作阶段的自动化。

近年来,我国的制造业不断采用先进制造技术,但与工业发达国家相比,仍然存在一个阶段性的整体上的差距。

1.1管理方面

工业发达国家广泛采用计算机管理,重视组织和管理体制、生产模式的更新发展,推出了准时生产(JIT)、敏捷制造(AM)、精益生产(LP)、并行工程(CE)等新的管理思想和技术。我国只有少数大型企业拒不采用了计算机辅助管理,多数小型企业仍处于经验管理阶段。

1.2设计方面

工业发达国家不断更新设计数据和准则,采用新的设计方法,广泛采用计算机辅助设计技术(CAD),大型企业开始无图纸的设计和生产。我国采用CAD技术的比例比较低。

1.3制造工艺方面

工业发达国家较广泛的采用高精密加工、精细加工、微细加工、微型机械和微米、纳米技术、激光加工技术、电磁加工技术、超塑加工技术以及复合加工技术等新型加工方法。我国普及率不高,尚在开发、掌握之中。

1.4自动化技术方面

工业发达国家普遍采用数控机床、加工中心及柔性制造单元(FMC)、柔性制造系统(FMS)、计算机集成制造系统(CIMS)等。我国尚处在单机自动化、刚性自动化阶段,柔性制造单元和系统仅在少数企业可见。

2机械自动化关键技术

自动化制造系统(FMS)系指具有自动化程度高的制造系统。目前所谈及的FMS通常是指在批量切削加工中以先进的自动化和高水平的自动化为目标的制造系统。随着社会对产品多样化、低制造成本及短制造周期等需求日趋迫切,FMS发展颇为迅速,并且由于微电子技术、计算机技术、通信技术、机械与控制设备的发展。

2.1计算机辅助设计

未来CAD技术发展将会引入专家系统,使之具有智能化,可处理各种复杂的问题。当前设计技术的一个突破是光敏立体成形技术,该项新技术是直接利用CAD数据,通过计算机控制的激光扫描系统,将三维数字模型分成若干层二维片状图形,并按二维片状图形对池内的光敏树脂液面进行光学扫描,被扫描到的液面则变成固化塑料,如此循环操作,逐层扫描成形,并自动地将分层成形的各片状固化塑料粘合在一起,仅需确定数据,数小时内便可制出精确的原型。它有助于加快开发新产品和研制新结构的速度。

2.2模糊控制技术

模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊控制器具有自学习功能,可在控制过程中不断获取新的信息并自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经网络的自学方法更起人们极大的关注。

2.3人工智能、专家系统及智能传感器技术

迄今,FMS中所采用的人工智能大多指基于规则的专家系统。专家系统利用专家知识和推理规则进行推理,求解各类问题(如解释、预测、诊断、查找故障、设计、计划、监视、修复、命令及控制等)。由于专家系统能简便地将各种事实及经验证过的理论与通过经验获得的知识相结合,因而专家系统为FMS的诸方面工作增强了自动化。展望未来,以知识密集为特征,以知识处理为手段的人工智能(包括专家系统)技术必将在FMS(尤其智能型)中关键性的作用。人工智能在未来FMS中将发挥日趋重要的作用。目前用于FMS中的各种技术,预计最有发展前途的仍是人工智能。预计到21世纪中期,人工智能在FMS中的应用规模将要比目前大4倍。智能制造技术fIMT旨在将人工智能融入制造过程的各个环节,借助模拟专家的智能活动,取代或延伸制造环境中人的部分脑力劳动。在制造过程,系统能自动监测其运行状态,在受到外界或内部激励时能自动调节其参数,以达到最佳工作状态,具备自组织能力。

2.4人工神经网络技术

人工神经网络fANN是模拟智能生物的神经网络对信息进行并行处理的一种方法。故人工神经网络也就是一种人工智能工具。在自动控制领域,神经网络不久将并列于专家系统和模糊控制系统,成为现代自支化系统中的一个组成部分。

3现代机械技术的发展方向

现代机械制造技术的发展主要表现在两个方向上:一是精密工程技术,以超精密加工的前沿部分、微细加工、纳米技术为代表,将进入微型机械电子技术和微型机器人的时代;二是机械制造的高度自动化,以CIMS和敏捷制造等的进一步发展为代表。

3.1精密成形技术成形制造技术包括铸造、焊接、塑性加工等。精密成形技术包括:精密铸造(湿膜精密成形铸造、刚型精密成形铸造、高精度造芯)、精密锻压(冷湿精密成形、精密冲裁)、精密热塑性成形、精密焊接与切割等。

3.2无切削液加工无切削液加工的主要应用领域是机械加工行业,无切削液加工简化了工艺、减少了成本并消除了冷却液带来的一系列问题,如废液排放和回收等等。

3.3快速成形技术快速原型零件制造技术(RPM),其设计突破了传统加工技术所采用的材料去除的原则,而采用添加、累积的原理。其代表性技术有分层实体制造(LOM),熔化沉积制造(FDM)等等。

智能制造技术现状范文3

一、规模

按规模大小FMS可分为如下4类:

1.柔性制造单元(FMC)

FMC的问世并在生产中使用约比FMS晚6~8年,它是由1~2台加工中心、工业机器人、数控机床及物料运送存贮设备构成,具有适应加工多品种产品的灵活性。FMC可视为一个规模最小的FMS,是FMS向廉价化及小型化方向发展和一种产物,其特点是实现单机柔性化及自动化,迄今已进入普及应用阶段。

2.柔性制造系统(FMS)

通常包括4台或更多台全自动数控机床(加工中心与车削中心等),由集中的控制系统及物料搬运系统连接起来,可在不停机的情况下实现多品种、中小批量的加工及管理。

3.柔性制造线(FML)

它是处于单一或少品种大批量非柔性自动线与中小批量多品种FMS之间的生产线。其加工设备可以是通用的加工中心、CNC机床;亦可采用专用机床或NC专用机床,对物料搬运系统柔性的要求低于FMS,但生产率更高。它是以离散型生产中的柔性制造系统和连续生产过程中的分散型控制系统(DCS)为代表,其特点是实现生产线柔性化及自动化,其技术已日臻成熟,迄今已进入实用化阶段。

4.柔性制造工厂(FMF)

FMF是将多条FMS连接起来,配以自动化立体仓库,用计算机系统进行联系,采用从订货、设计、加工、装配、检验、运送至发货的完整FMS。它包括了CAD/CAM,并使计算机集成制造系统(CIMS)投入实际,实现生产系统柔性化及自动化,进而实现全厂范围的生产管理、产品加工及物料贮运进程的全盘化。FMF是自动化生产的最高水平,反映出世界上最先进的自动化应用技术。它是将制造、产品开发及经营管理的自动化连成一个整体,以信息流控制物质流的智能制造系统(IMS)为代表,其特点是实现工厂柔性化及自动化。

二、关键技术

1.计算机辅助设计

未来CAD技术发展将会引入专家系统,使之具有智能化,可处理各种复杂的问题。当前设计技术最新的一个突破是光敏立体成形技术,该项新技术是直接利用CAD数据,通过计算机控制的激光扫描系统,将三维数字模型分成若干层二维片状图形,并按二维片状图形对池内的光敏树脂液面进行光学扫描,被扫描到的液面则变成固化塑料,如此循环操作,逐层扫描成形,并自动地将分层成形的各片状固化塑料粘合在一起,仅需确定数据,数小时内便可制出精确的原型。它有助于加快开发新产品和研制新结构的速度。

2.模糊控制技术

模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊控制器具有自学习功能,可在控制过程中不断获取新的信息并自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经网络的自学方法更引起人们极大的关注。

3.人工智能、专家系统及智能传感器技术

迄今,FMS中所采用的人工智能大多指基于规则的专家系统。专家系统利用专家知识和推理规则进行推理,求解各类问题(如解释、预测、诊断、查找故障、设计、计划、监视、修复、命令及控制等)。由于专家系统能简便地将各种事实及经验证过的理论与通过经验获得的知识相结合,因而专家系统为FMS的诸方面工作增强了柔性。展望未来,以知识密集为特征,以知识处理为手段的人工智能(包括专家系统)技术必将在FMS(尤其智能型)中起着关键性的作用。人工智能在未来FMS中将发挥日趋重要的作用。目前用于FMS中的各种技术,预计最有发展前途的仍是人工智能。预计到21世纪初,人工智能在FMS中的应用规模将要比目前大4倍。智能制造技术(IMT)旨在将人工智能融入制造过程的各个环节,借助模拟专家的智能活动,取代或延伸制造环境中人的部分脑力劳动。在制造过程,系统能自动监测其运行状态,在受到外界或内部激励时能自动调节其参数,以达到最佳工作状态,具备自组织能力。故IMT被称为未来21世纪的制造技术。对未来智能化FMS具有重要意义的一个正在急速发展的领域是智能传感器技术。该项技术是伴随计算机应用技术和人工智能而产生的,它使传感器具有内在的“决策”功能。

4.人工神经网络技术

人工神经网络(ANN)是模拟智能生物的神经网络对信息进行并行处理的一种方法。故人工神经网络也就是一种人工智能工具。在自动控制领域,神经网络不久将并列于专家系统和模糊控制系统,成为现代自支化系统中的一个组成部分。

三、发展趋势

1.FMC将成为发展和应用的热门技术

这是因为FMC的投资比FMS少得多而经济效益相接近,更适用于财力有限的中小型企业。目前国外众多厂家将FMC列为发展之重。

2.发展效率更高的FML

多品种大批量的生产企业如汽车及拖拉机等工厂对FML的需求引起了FMS制造厂的极大关注。采用价格低廉的专用数控机床替代通用的加工中心将是FML的发展趋势。

3.朝多功能方向发展

智能制造技术现状范文4

【关键词】机电一体化;智能制造;实践研究

1前言

近年来随着科学技术的发展,机电一体化系统已经逐步成为机械制造与发展的主要趋势,使更多的机械设备制造实现自动化、智能化的主要方式,机电一体化系统在智能制造中的深入应用,极大的满足社会发展需求,它将在工业发展中表现出无法比拟的优越性,满足工程可靠性与效率需求的同时,有效减少因人工操作造成的失误,从而实现精度的生产,对促进企业生产自能化方面有着举足轻重的作用。

2机电一体化概述及发展现状

首先,机电一体化技术主要是为了满足社会工业生产的需求,于20世纪60年代出现,主要是将电子与机械集于一体的先进科学技术,其中它涵盖了计算机、机械、信息技术、传感和自动控制等多项技术于一体的综合性技术。其中,详细的说机电一体化的基本组成部分主要有机械体,实现各部件之间的连接构造;驱动动力部分,提供动力并帮助机械实现能量的转化,使实现动力功能;遥感测试部分,检测机械内外部环境实现其预算计测功能;执行部位,接受控制信息,对要求动作完成;信息处理单元,运算、处理、决策、实现控制功能。这一技术进入21世纪以来,融入了微处理技术和计算机技术的精华,得到了快速发展,之后又融入信息电子技术,模拟人脑对生产流程进行分析判断,使企业的生产逐步实现智能化。其次,机电一体化发展现状介绍,机电一体化技术主要是应用于一些大型的生产企业中,机电一体化依赖于众多学科的先进技术的融合,实现对人脑的模拟,使其对企业机器生产的全过程能够进行有效分析,判断和处理,通过发出各项指令操作,通过机器实现复杂的生产流程,通过机械设备进行智能控制,运用机械操作代替人力的操作,使整个生产过程简单,便于管理,在极大减轻人工工作用负担的同时,也为企业的发展减少了很大的成本。随着世界经济一体化进程的加深,世界工业的发展早已不再仅仅局限于某一领域内,或是某一区域内,而是考虑利用最小成本的同时,实现世界各地的就地取材,面对这种发展现状,机电一体化体系也有了新的发展要求,将远程控制技术也应用于机电一体化体系中来,因此,不难看出机电一体化技术是伴随着生产技术要求和科学技术的发展不断向前发展的,机电一体化技术有着广阔的发展空间,另外,机电一体化技术也逐步打破企业的自有生产方式,通过对机电生产产品的统一标准,生产流程的规范,从而实现模块化的集成机电生产。

3智能制造技术及其发展

智能制造是指通过运用计算机程序模拟人类的思维活动,实现机器对在无人控制操纵下的机械自动化生产。智能制造技术已经成为现阶段机械制造技术主流的趋势,通过智能化的制造可以有效帮助人解决很多复杂繁琐的操作,极大的避免了因人工不小心失误造成的生产损失,提高了生产设备的精确度,因此,智能制造的应用要比往往传统的制造具有无法比拟的优越性。使机械设备的制造在人类不可能达到的空间展开。智能制造在机械生产制造方面已经为人类创造了很大的价值。智能控制技术是发展人类智能中一个重要的领域,其主要目的是为了改善以往传统制造中较为复杂多样的控制任务。

4机电一体化技术在智能制造中的应用

机电一体化体系中,智能控制的应用途径十分的广泛,在我们社会生产生活的方方面都有体现,随着科学技术的进步,现阶段的机电一体化正在逐渐向人工智能化的方向发展,这是社会发展所需求的在必然趋势,是经济发展水平与科技发展相结合的应然产物,在我国机械制造业发展过程中,能够有效快速实现机电一体化是机械制造发展的重点内容,机电一体化能在提高生产产品效率的同时,还能确保产品的质量,目前的科学技术水平在机械制造的领域内最大的实现计算机网络技术和智能制造控制技术有机结合,从而实现由人工管理操作到智能控制监管的有效过度。同时,智能监管控制的部分,还可以实现对机械设备运作的检测预测管理工作,实现对可能发生的机械事故有预测的作用,以确保生产的顺利进行,或是通过智能控制系统有效协调工作的进行。(1)机电一体化中应用智能制造的优势。智能控制技术对机电一体化系统中的程序或部分结构进行智能化调试与控制以保证程序系统工作的可靠安全性;工作人员采用计算机网络技术将编写的程序或是代码输入到机电一体化系统中,实现对机械的智能控制;智能控制技术可以实现根据外部环境变化,对其工作内容,进行调控,实现机电一体化工作的精确度。(2)以机电一体化体系中智能制造在建筑领域的应用做详细解释说明,智能控制在建筑领域的广泛应用主要体现在两方面,分别是在保暖制冷系统和建筑照明系统中。其中的照明智能控制系统,是通过应用通信技术和计算机网络技术两者有效结合实现的,能够有效的实现对照明区域,照明亮度,照明时间的合理控制与调节。从而有效节约能源,较大可能的提高资源利用率。(3)机电一体化技术中的智能制造在数控领域的有效应用。社会生活的各行各业都在应用机电一体化技术,而其中的数控技术对机电一体化技术的要求越来越高,数控技术由于其是进行大规模的生产,数控技术在逐步实现智能化方面具有很大的发展空间,利用计算机网络技术在数控方面实现智能监控,编程,建立自身的数据库。智能控制技术在数控技术中的应用还可以实现,在一些较为大型复杂的工程问题或是机器设备有问题的情况下,人工无法实现的检测,借助数控技术可以进行推理与演算,适时给出修改意见。

5结语

伴随着科技的发展,机电一体化在智能制造中的应用产品已经渗透到了我们生产生活的多方面,这种通过多种高新技术结合的产物极大的为我们生产生活带来便捷,这种机电一体化的智能发展方式进一步推动生产方式的深化改革。仍将有广阔的发展前景,需要我们相关从业人员根据实际的生产生活不断的进行改进,为我们社会经济的发展做更大的贡献。

参考文献:

[1]吴小龙.机电一体化技术在智能制造中的应用[J].城市建设理论研究:电子版,2015,1(29):68.

[2]秦立峰.机电一体化技术在智能制造中的应用分析[J].工程技术:引文版,2016(4):272.

[3]纪钰珩.机电一体化技术在企业智能制造中的发展与应用[J].企业技术开发月刊,2014(8):42.

[4]林少锐.机电一体化技术在智能制造中的应用[J].科技资讯,2015(14):92.

智能制造技术现状范文5

关键词:机械制造技术;现状;制造行业

机械制造技术与我国的发展建设,存在很大的关联系,目前,我国机械制造技术,与发达国家相比,仍旧存在一定的差距,我国深入研究制造行业的实践需求,推行机械制造技术的应用与发展,打破传统机械制造的限制,优化机械制造技术的实际应用,改进我国制造行业的发展状态,体现机械制造技术的现行状态。

1 机械制造技术的特点

机械制造技术在制造行业中,参与了设计、制造等多个模块,技术特点非常明显[1]。分析机械制造技术的特点,如:(1)综合性:机械制造技术在产业中表现出了综合性的特点,不仅仅是应用到制造生产中,还应用到设计、加工等环节内,综合制造出规定的产品;(2)系统性:表明机械制造中融入了系统化的技术,满足制造行业中的多样化需求;(3)一体化:机械制造技术一体化的特点,确保了不同功能技术在机械制造中的重要价值,维护机械制造功能的协调与统一,便于提高机械制造的效率和效益,体现机械制造一体化实践的价值。

2 我国机械制造技术的现状分析

近几年,机械制造技术的发展速度相对比较快,其可应用到多领域的制造行业中,反映了机械制造技术的现行状态。根据制造行业的发展,重点分析我国机械制造技术的现状。

2.1 设计现状

我国机械制造技术的设计过程中,初步引入了计算机技术,而且计算机技术的应用并不成熟,实际机械制造技术的设计,与发达国家的差距比较大。例如:发达国家在技术设计方面,强调了创造与技术更新,计算机技术为设计的基础,仅起到辅助作用,而机械制造技术的设计核心是数据操作,进入了无纸设计的状态,体现了我国机械制造技术设计中的缺陷与不足[2]。虽然我国加快了技术设计的速度,但是还要注重技术的可行性,不能盲目引进,更要确保机械制造技术与制造行业的相符性。

2.2 制造现状

机械制造技术在我国行业中的制造方式,处于研究和初步实践的阶段,制造的水平偏低,多项制造方法并未得到有效的普及。此时发达国家机械制造技术的制造应用,进入了成熟、普及的状态,如:高精密制造、激光制造等,机械制造的过程朝向复合化的状态发展。机械制造技术在工艺中的应用,反馈了此类技术在我国的基本情况,我国应该积极探究机械制造应用,逐步落实先进的机械制造技术。

2.3 管理现状

发达国家机械制造技术的管理工作,进入了信息化的模式,采用计算机统筹管理机械制造技术,构建管理模式。发达国家较为重视机械制造技术的管理,通过管理实现技术的规范化应用,而我国将机械制造的重点放在技术方面,忽略了技术管理的重要性,信息化的管理方法仅出现在大型机械制造产业中,导致我国机械制造技术的管理状态参差不齐。由于我国机械制造技术的管理缺陷,制约了技术自身的发展,技术与管理同处于落后的状态。

2.4 自动化现状

自动化是机械制造技术中的重点,我国机械制造自动化中,投入制造生产的有:单机、刚性两类自动化,只存在很少一部分制造产生,投入了柔性制造等自动化技术,而在发达国家,已经取消了单机、刚性自动化技术的应用,比较常用的是柔性制造、集成制造等[3]。我国在发展机械制造自动化的同时,发达国家也在积极建设机械制造技术,逐渐拉开了自动化的差距。

3 我国机械制造技术的发展趋势

纵观我国机械制造技术的现状,应该加快机械制造技术的发展趋势,引进国外先进的发展理念,全面建设机械制造技术,确保我国能跟上发达国家的发展速度。在我国机械制造技术中,分析未来发展的趋势。

首先是完善自动化建设,我国机械制造技术的自动化建设中,以发达国家为标准即可,致力于缩短与发达国家的距离,再主动进行自动化的发展建设。我国机械制造技术在自动化发展的过程中,落实集成系统应用,改善现行的自动化状态。

第二智能化发展,其为我国机械制造技术的发展目标。制造行业涉及到大量复杂的工艺,智能化的发展趋势,能够利用智能化的机器设备,代替人工操作,处理机械制造中的复杂工艺,促进机械制造技术的现代化发展[4]。我国机械制造技术在智能化发展中,深化了诊断、控制等模式应用,实际智能机器人已经取得了研究成果,还能辅助机械制造自动化进入成熟的状态,体现智能化发展的优势。

第三是云制造的应用,云概念本身就是一项新的领域,其在机械制造技术发展中的指导,主要是利用网络提供制造的模式,将机械制造技术作为一项资源,通过网络平台输送到客户端,促使越来越多的客户能够想到到机械制造的服务,拓宽了机械制造技术的应用范围,在云制造的支持下,推进机械制造技术的共享化发展。

第四是低碳化发展,我国机械制造技术应用中,存在一定程度的污染,导致制造企业也成为高污染的风险点,所以机械制造技术的未来发展中,应该注重低碳化发展,落实环保、节能、降耗等多项低碳理念,还要在机械制造技术中深化循环使用,实现机械制造技术的低碳效益。

4 结束语

机械制造技术,有利于推进我国制造行业的发展,属于我国经济建设中的基础技术,综合分析机械制造技术的现状,表明此项技术还未进入成熟的发展状态,存在技术上的薄弱点。剖析我国机械制造技术的现状,主要是规划此项技术的发展方向,以制造行业的需求为主,促进机械制造技术的发展,促使其快速进入完善的应用状态。

参考文献:

[1]付庆生.我国机械制造技术的现状及技术特点论述与分析[J].科技与企业,2012(24):383.

[2]杨国强.论我国机械制造产业及再制造技术的新进展[J].科技风,2014(16):248.

[3]邱俊贤.现代机械制造技术的现状和发展方向[J].闽西职业技术学院学报,2006(04):121-123.

智能制造技术现状范文6

[关键词]航空先进制造技术;制造装备;发展;思考

中图分类号:V261文献标识码:A文章编号:1009-914X(2017)46-0182-01

1、前言

高度发达的航空制造技术,已经成为衡量一个国家综合经济实力与科技发展水平的重要标志。上世纪中期以来,随着以机械工程技术、电子技术、自动化技术、信息技术等多种技术为一体所产生的技术、设备和系统为基础的先进制造业(AdvancedManufacturingTechnology)的空前發展;新技术、新工艺、新产品竞相问世,航空工业制造技术与制造装备的发展水平和规模,近年来处于整个制造业的前沿,起着领航和导向的作用。

2、先进航空制造技术与制造装备的应用

航空先进制造技术是传统制造技术与微电子、计算机、自动控制等高新技术相融合,集机械、电子、光学、信息科学、材料科学、生物科学、管理学等新成就于一身的新兴制造技术,产品主要向高性能、高轻型、高可靠性、高舒适型、高安全性以及长寿命和低成本的方向发展和革新。

近年来,国内先进航空制造技术的发展,主要体现在以下3个领域:复合材料加工、电子元器件设计与安装和新型金属加工成型技术。复合材料领域,如可大幅度降低涡轮发动机净质量和燃料消耗的高温陶瓷基复合材料,轻型航空结构复合材料,具有弹道防护功能的复杂几何形状的制造加工技术。电子元器件设计与安装领域,诸如宽禁带与碳化硅装置、锂电池、MEMS的先进封装与加工技术。金属加工成型领域,诸如材料的加工、铸造、锻造以及连接技术,包括飞行器的轻质薄壁件的加工成型与高强度钛合金、高温合金等的制造工艺技术。现代精密电子元器件设计与机械加工中,对精度要求极高,如飞机陀螺仪中的精密轴承,其圆度、圆柱度、表面粗糙度等,均需达到纳米级别。要缩短航空产品的研制周期、提高产品的设计品质、降低产品装备的全生命周期成本和提高产品研制的经济可承受性,全过程信息化与数字化技术是一个有效的解决途径。

航空产品十分复杂,存在着机、电、液、气、热、控等多领域耦合,在设计时需要对其功能、结构、性能、装配提供统一的建模机制;并在模型的基础上,针对实际产品的特征和需求,用多学科解耦体系和优化技术,获得高精度、高性能和高性价比的产品设计模型。采用虚拟样机技术、数字化工艺技术与虚拟和柔性装配技术,对航空产品进行虚拟环境下的装配生产和品质评估,不仅可以缩短产品的研制周期,而且还能为航空产品的高品质装配、批量化生产、使用与维护提供有效的保证。航空产业的快速发展,离不开先进的航空制造技术,如在航空发动机、飞机驾驶舱薄壁舱壳、机载相控布阵雷达天线等复杂仪表结构件的制造过程中所采用的超高速精密加工机床,其主轴转速达到6万r/min甚至更高,功率50kW,加工精度可达到纳米级别。

航空材料构件的服役环境极端苛刻,对材料性能的要求极高,如输油管道中的精微齿轮轴承及钛合金阀门、涡轮发动机中的涡轮叶片与涡、飞行员座椅弹射器中的弹触器等关键部件,要保证其高性能及高稳定性,必须经过先进的精密化学热处理工艺或精密真空热处理工艺,才能满足使用要求。针对特殊材料(如特软、特硬、脆、耐磨、难切削)、特殊形状尺寸(特大、特小、特薄、特复杂)或其它特殊条件约束下使用的工件,航空制造业先后发展了电火花加工、电化学加工、高能束加工、超声波加工、液体喷射加工、化学加工与复合加工等特种加工技术。

3、航空领域制造技术及装备发展趋势

3.1数控加工工艺转向智能加工工艺的实现

传统数字化加工过程是根据设计模型和工艺要求确定加工工艺及程序,基于空间和时间的确定性关系来完成产品制造,加工状态是依靠人员监控、事后检测来确认的,难以实时掌握加工过程中工况变化并及时调整,导致航空产品零部件质量一致性不稳定、表面质量状态波动大。智能加工工艺将形成一种实时优化调整模式,制造过程中增加对加工过程、时变工况的在线监测,利用智能化技术对获取的加工过程状态信息进行实时分析、评估和决策,实现对加工过程的自主学习和决策控制;通过自主学习形成工艺知识库,支持工艺设计与程序设计过程,实现工件加工工艺的自主决策设计和优化。

3.2传统数控装备向智能装备及智能制造单元转变

传统数控装备是按确定的空间关系和程序逻辑运转的,随着数控系统计算处理能力的不断提升和功能部件不断发展完善,数控装备的加工效率、稳定性、灵活性及信息处理能力有了极大的提高,基于工况的自主处理能力日趋增强。航空制造领域的智能装备及智能制造单元主要包括智能机床、智能机器人、智能控制装置与系统、传感识别与信息采集装置和智能物流系统等,能够对制造过程中运动、功率、转矩、能量和信息等状态进行实时监测,并实现基于规则的自主决策与自适应控制。

3.3智能制造系统将是航空先进制造技术的具体体现

航空产品制造包含一系列工艺过程和工序过程,原材料进入由工艺装备、经过不同的工序或工艺处理等集成控制系统、物流系统和工作人员等组成的全价值链制造系统,形成符合设计要求的产品。以数字化技术为基础,以集成控制技术为核心,引入智能处理决策功能,构建出基于智能化装备、智能化工艺、传感网络、智能决策处理系统及人机互联的智能化制造系统,使制造智能由个体智能跨越到整体智能,提升大数据量、高自动化环境下人们对制造数据、加工状态和调整决策的掌控能力依据航空产品类型和主体制造工艺不同,智能制造系统范畴而有所差异,可分为切削加工、钣金成形、复合材料构件制造和整机装配等不同类型,但他们均应具备智能化工艺设计与优化、工艺装备功能数据、制造数据、产品测量数据的采集与知识库的建立、数据分析与信息流的配置、传感网络与实时处理、智能化运行管控与在线学习和工艺流程优化等基本能力。

3.4纳米制造及仿生制造技术

随着我国未来国防战略对战机作战性能要求的不断提高,诸如隐身功能、超音速巡航、高机动性等,纳米制造技术作为纳米技术开发的重点之一,融合了其它各种“学科”的关键技术,可用于发动机中的单晶高温叶片、复合结构隐身材料的涂层以及机载微电子芯片等关键航空部件的生产过程。仿生技术主要应用于飞机的整体结构设计,模仿生物形态、结构和飞行控制原理设计制造出功能更突出、效率更集中,并具有高度仿生形貌特征的航空飞行器。

4、结语

当前我国航空先进制造技术与国外相比,还存在着基础薄弱、设计研发手段滞后、自主创新能力不强以及产品研发与生产过程严重脱节等差距。航空先进制造技术不是一门具体的、单一的科学技术,而是一个集成的、多学科的、综合程度较高的一门技术,其发展需要一个相当长的时间进行理论完善和技术进步,需要我们不断地借鉴国外的先进技术,进一步细化、完善和学习,以提高我国的航空制造技术和生产管理经验。

参考文献 

[1] 杨卫民.高分子材料先进制造的微积分思想[J].中国塑料,2010,7(24):1-6. 

[2] 郭恩明.航空先进制造技术发展趋势[J].航空制造技术,2007(Z1) 

智能制造技术现状范文7

关键词:制造规模 关键技术 发展趋势

一、自动化机械制造规模

按规模大小FMS可分为如下4类

(一)自动化制造单元

FMC:的问世并在生产中使用约比FMS晚6~8年,它是由1~2台加工中心、工业机器人、数控机床及物料运送存贮设备构成,具有设置应加工多品种产品的灵活性。FMC可视为一个规模最小的FMS,是FMS向廉价化及小型化方向发展和一种产物,其特点是实{目单机自动化化及自动化,迄今已进入普及应用阶段。

(二)自动化制造系统

通常包括4台或更多台全自动数控机床及人工中心与车削中心等),由集中的控制系统及物料搬运系统连接起来,可在不停机的情况下实现多品种、中小批量的加工及管理。

(三)自动化制造线

它是处于单一或少品种大批量非自动化自动线与中小批量多品种f:MS之间的生产线。其加工设备可以是通用的加工中心、CNC机床,亦可采用专用机床或NC专用机床,对物料搬运系统自动化的要求低于FMS,但生产率更高。

(四)自动化制造工厂

FMt是将多条FMS连接起来,配以自动化立体仓库,用计算机系统进行联系,采用从订货、设计、加工、装配、检验、运送至发货的完整FMS。它包括了CAD/CAM,并使计算机集成制造系统(C1MS)投入实际,实现生产系统自动化化及自动化,进而实现全厂范围的生产管理、产品加工及物料贮运进程的全盘化。FMF是自动化生产的最高水平,反映出世界上最先进的自动化应用技术。它是将制造、产品开发及经营管理的自动化连成一个整体,以信息流控制物质流的智能制造系统IMS)为代表,其特点是实现工厂自动化化及自动化。

二、自动化关键技术

(一)计算机辅助设计

未来CAD技术发展将会引入专家系统,使之具有智能化,可处理各种复杂的问题。当前设计技术最新的一个突破是光敏立体成形技术,该项新技术是直接利用CAD数据,通过计算机控制的激光扫描系统,将三维数字模型分成若干层二维片状图形,并按二维片状图形对池内的光敏树脂液面进行光学扫描,被扫描到的液面则变成固化塑料,如此循环操作,逐层扫描成形,并自动地将分层成形的各片状固化塑料粘合在一起,仅需确定数据,数小时内便可制出精确的原型。它有助于加快开发新产品和研制新结构的速度。

(二)模糊控制技术

模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊控制器具有自学习功能,可在控制过程中不断获取新的信息并自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经网络的自学方法更起人们极大的关注。

(三)工智能、专家系统及智能传感器技术

迄今,FMS中所采用的人工智能大多指基于规则的专家系统。专家系统利用专家知识和推理规则进行推理,求解各类问题(如解释、预测、诊断、查找故障、设计、计划、监视、修复、命令及控制等)。由于专家系统能简便地将各种事实及经验证过的理论与通过经验获得的知识相结合,因而专家系统为FMS的诸方面工作增强了自动化。展望未来,以知识密集为特征,以知识处理为手段的人工智能(包括专家系统)技术必将在FMS(尤其智能型)中关键性的作用。人工智能在未来FMS中将发挥日趋重要的作用。目前用于FMS中的各种技术,预计最有发展前途的仍是人工智能。预计到21世纪初,人工智能在FMS中的应用规模将要比目前大4倍。智能制造技术fIMT旨在将人工智能融入制造过程的各个环节,借助模拟专家的智能活动,取代或延伸制造环境中人的部分脑力劳动。在制造过程,系统能自动监测其运行状态,在受到外界或内部激励时能自动调节其参数,以达到最佳工作状态,具备自组织能力。

(四)人工神经网络技术

人工神经网络fANN)是模拟智能生物的神经网络对信息进行并行处理的一种方法。故人工神经网络也就是一种人工智能工具。在自动控制领域,神经网络不久将并列于专家系统和模糊控制系统,成为现代自支化系统中的一个组成部分。

三、启动控制技术发展趋势

自二战结束以来,世界各发达国家逐渐重视设计理论和设计方法的研究,先后产生了许多新概念、新思想、新理论和新技术。从设计方法来看,国内外先后提出了并行设计、虚拟设计、协同设计,相似性设计、智能设计等新概念;从设计准则来看,出现了优化设计、可靠性设计、有限元等概念,从设计的手段来看,出现了计算机辅助设计,不仅普及了二维设计 CAD 软件,而且功能全面的三维造型软件也进入了实用阶段。

(一)FMC将成为发展和应用的热门技术

这是因为FMC的投资比FMS少得多而经济效益相接近,更适用于财力有限的中小型企业。目前国外众多厂家将FMC列为发展之重。近年来,计算机网络技术、 Web 技术和数据库技术的出现和飞速发展,给现代机械设计注入了新的生机和活力,机械设计逐渐向数字化、网络化方向发展。基于 Web 的远程设计正是在这种条件下产生的。它的出现,使得各制造企业可以充分利用 Internet 和 Web 的国际互联性和资源共享性,组建企业间的动态联盟或虚拟设计小组,通过组合分散在各个地域企业的技术优势,发挥各个企业的局部特长,同时不同专业的技术人员可以不受地域的限制,在一个统一且易于访问的平台下进行异地的合作与设计,实现信息的交流和共享,进而快速开发出所需产品,提高产品设计的一次成功率。

(二)朝多功能方向发展

智能制造技术现状范文8

关键词:智能化技术;电气控制;烟机设备;应用

1.智能化技术概述

智能化技术是一门现代化的科学技术,涵盖的领域非常广泛,包括语言学、控制学、数字化、自动化等学科内容。智能化技术的应用目的是利用先进的智能化技术代替人工完成一些复杂的人工难以完成的工作,实现人工智能化。经过长时间的发展,智能化技术在多个行业中发挥着越来越重要的作用。

智能化技术应用了很多计算机科学理论知识,并且多以计算机网络作为系统平台,完成智能管理和控制。智能化技术能够有效提高电气自动化控制系统的运行效率,减少电气自动化控制系统的误操作和各种故障。优化人力、物力和财力等资源配置,优化系统的运行状态。

2.智能化技术和电气工程自动化控制系统的结合

在电气自动化控制系统中结合智能化技术,控制和调节系统的响应时间、下降时间等参数,提高系统的运行效率,利用智能化技术实现对控制系统的远程监测和无人控制,实现智能化的调节和控制。同时,利用智能化技术,通过全面掌控系统的运行状态,使电气控制系统及时做出反应,满足系统中动态的、复杂的控制对象的变化需求。另外,在电气自动化控制系统中,由于控制对象并不固定,不同的控制对象有不同的特点,智能化技术可以利用神经网络系统和模糊算法,快速找到不同控制对象的共性和差异性,准确地获得数据处理信息在处理不同数据呈现出较高的一致性,具有较高的准确性。

3.智能化技术在电气工程自动化控制中的应用

3.1智能化技术在烟机设备系统控制和故障诊断中的应用

随着烟草设备的发展,智能化技术在设备电气自动化控制系统中得到了广泛应用。首先,烟草设备采用各种智能控制器,包括西门子、倍福等等,这些控制器的使用极大的简化了原有控制线路,提高了设备可靠性。提高了生产效率。其次,智能化技术可以准确监测出烟草设备控制系统故障,并且及时诊断系统故障原因。在电气控制系统中设置相应的故障监测体统,利用遗传算法和专家系统快速诊断出系统的送电状态、停电状态、过流状态、接地故障以及短路故障等。并且监测控制系统线路的温度、故障电流以及负荷电流等。当系统出现软件故障时,专家系统会自动发出故障排除指令,即使调试软件程序运行,保护其他软件系统的运行状态。当系统出现硬件故障时,专家系统会在人机接口自动显示故障信息,然后利用智能化技术,排除系统的故障和安全隐患,延长硬件设备使用寿命。总之烟草设备大量使用智能化技术,使得各种烟机设备的运行和维护效率得到了大大的提高。

3.2智能化技术烟草设备优化设计中的应用

烟草设备电气控制系统是一个复杂综合的系统,在对设备的维护改进和优化过程中,需要综合电气工程、电力技术、电磁波等方面知识,而CAD技术作为一种重要的智能化技术,被广泛应用在电气自动化系统的设计过程中。CAD技术涵盖了电磁场、电路以及电机等学科知识,在CAD软件平台上,应用智能化技术的遗传算法,利用标准的样本数据,结合电气控制系统的中心参数和宽度参数,可以快速设计出多种负载的电路,不仅可以确保电气工程自动化控制系统设计的可行性,而且极大的提高电路设计的效率和质量,缩短系统设计时间。

3.3智能化技术在烟草电力供应中的应用

卷烟制造工厂,需要一个庞大而可靠的电力供应系统。PLC系统作为一种重要的智能化技术,广泛应用在电力生产供应过程中,PLC技术取代电力系统的继电器,满足电力控制需求。PLC系统可以很好的辅助电力生产,实时监控电力系统运行。电力系统的主站层主要由PLC系统和人机接口共同组成,主站层监控室利用自动化控制系统,减少人工操作。同时结合远程I/O和现场传感器实现监测控制,可以有效提高电力系统的生产运行效率。另外,PLC冗余系统可以实现电力系统的自动切换,极大提高的电力系统的稳定性和安全性。为卷烟制造品质提升提供可靠保障。

智能制造技术现状范文9

关键词:装配和检测技术 材料与处理技术 维修和再制造技术 精密成形技术

中图分类号:TG76 文献标识码:A 文章编号:1674-098X(2013)03(a)-00-01

1 模具制造技术的现状

模具是材料成形的重要工艺装备,材料在外力的作用下受模具约束并产生流动变形,从而得到所需的形状和尺寸的零件。按照成形工艺的不同,模具可以分为冲压模具、铸造模具、锻造模具、挤压模具、注塑模具、拉丝模具、玻璃成形模具、橡胶成形模具、粉末冶金模具和模具标准件等。模具一般由上模、下模和模具标准件组成,而现代大型复杂模具往往包含有独立动力系统、加热冷却系统和控制系统,本身就是完整的制造装备。模具技术包括模具的设计和加工技术、装配和检测技术、材料与处理技术及维修和再制造技术等,是精密成形技术的重要组成部分。模具生产具有高生产效率、制件的高一致性及较高的精度和复杂程度、节能节材等特点,因此是一个国家的工业产品保持国际竞争力的重要保证之一。模具制造技术的五大趋势是绿色、智能、超常、融合、服务。模具制造技术的技术问题是:(1)复杂系统的创意、建模、优化设计技术;(2)零件精确成形技术;(3)大型结构件成形技术;(4)高速精密加工技术;(5)微纳器件与系统;(6)智能制造装备;(7)智能化集成化传动技术;(8)数字化工厂。

机械工程11个技术领域是:(1)产品设计;(2)成形制造;(3)智能制造;(4)精密与微纳制造;(5)仿生制造;(6)再制造;(7)流体传动与控制;(8)齿轮;(9)轴承;(10)模具;

(11)刀具。

2 模具制造技术的发展趋势是模具数字化设计制造技术

2.1 概诉

模具数字化设计制造技术的核心是CAD/CAM/CAE,应用模具数字化设计制造技术可以显著缩短模具开发周期,改善产品质量,降低产品成本,提高服务水平,即可以提高模具企业的TQCS水平。对于推动模具行业的转型和提升模具工业的核心竞争力具有深远的意义。我国数字化模具设计制造技术的重点将集中在两方面:1、通过高可靠性的模具设计技术彻底改变长期存在的凭经验设计模具、可靠性无法保证的状况;2、采用高效、精密的模具制造技术大幅提高模具制造的效率和精度。到2030年,我国模具数字化设计制造技术总体上将达到当时的国际先进水平。

2.2 关键技术

2.2.1 高可靠性的模具设计技术

(1)现状。改善产品零件的可制造性是保证模具设计高可靠性的重要前提,实现可靠性模具设计的基础技术是形成工艺过程的精确仿真。当前的产品工艺性较差,造成模具开发困难,成形工艺仿真采用的模型为宏观仿真模型,即将成形的材料视为连续介质或均匀体,不能完全反应材料的真实成形特性。

(2)挑战。模具的智能化设计将建模、分析和优化集于一体,需考虑多学科的协同以及材料的宏观和微观特性以及成形过程中多物理场的耦合。

(3)目标。模具设计将在知识驱动的设计平台上进行,实现知识资源的共享,发展成形工艺过程的仿真技术和智能化的模具设计技术,实现高可靠性的模具设计,减少试模次数,最终达到零试模。预计到2020年,该技术将使一次试模成功率达到90%以上;2030年,达到95%以上。①产品的可制造性设计技术:通过并行工程、协同设计、成形仿真等开发技术,使模具设计人员在产品开发的早期介入产品设计,将会及早发现产品零件存在的成形性问题,保证其良好的可制造性,为高可靠性的模具设计提供基础。②基于知识的智能化模具设计技术:模具的智能化设计将建模、分析和优化集于一体,更加注重多学科的协同,模具设计将在知识驱动的设计平台上进行,实现知识资源的共享。不仅可以充分利用历史的设计经验和成功案例,还可以在已有的设计知识基础上衍生出新的设计知识,具有更加完美的全关联模具设计功能,从而避免设计错误的产生,实现高可靠性的模具设计。

2.2.2 高效、高精的模具制造技术

(1)现状。目前高效率的模具加工技术,如高速切削和高效的电火花加工尚未得到普遍应用,其他的高效模具加工技术, 例如高能束加工、快速成形技术、高效的表面抛光技术及柔性自动化模具制造技术,虽然显现出其巨大的优越性,但仍在起始阶段。

(2)挑战。在模具生产中实际使用的机床的转速将会达到10万r/min 以上,机床、刀具和高速切削理论均需有所突破;超精密模具加工技术不仅要使用性能极高的加工设备,要求极高的加工环境,同时还必须考虑极微小尺寸所产生的尺寸效应和界面效应问题,以及在微纳尺度条件下的摩擦机理、热传导、精密测量与误差补偿等问题。

(3)目标。以信息技术、仿真技术和虚拟现实技术为基础,实现虚拟模具制造,在实际制造模具之前,准确预测未来模具的性能和制造系统的状态,从而作出正确的决策和优化实施方案;通过采用超精密加工技术、柔性自动化制造技术和基于仿真的虚拟模具制造技术,高效的模具加工技术,使模具加工的效率比现在提高10 倍以上,加工精度达到纳米级。①高效的模具加工技术:高速切削机床和高效的电火花加工机床的加工效率大幅提高,高能束加工、快速成形技术和高效的表面抛光等技术将得到普遍应用。②超精密模具加工技术:为满足制件的微米、纳米级特征尺寸或精度要求,须协调处理高性能加工设备和加工环境以及极微小尺寸所产生的尺寸效应和界面效应等问题,实现精密测量与误差补偿,达到跨尺度高精度的控形和控性。未来20年,模具技术发展趋向主要是精密、复杂、高效、多功能。复杂主要指能实现智能控制的复杂模具,模具本身具有动力系统、加热冷却系统和控制系统;高效主要指模具的结构和性能满足一模多件和高速成形等工艺要求,如多层注塑模具及2000次/min以上高速冲压多工位级进模;多功能主要指能实现多料、多工序成形的多功能复合模具,如多料注塑模具、40工步以上的多工位级进模具和同时完成冲、叠、铆等工序的马达铁芯模具等。

参考文献

[1] 张忠侃.H13钢碳化物球化过程及组织力学性能的研究[D].昆明理工大学,2010.

智能制造技术现状范文10

关键词:机械制造技术,特点 ,发展, 趋势

Abstract: the modern technology unceasing renewal, our traditional mechanical manufacturing technology already cannot satisfy the needs of contemporary, we must make great efforts to the development of advanced manufacturing technology, this paper discussed the mechanical manufacturing technology of the status and characteristics, and on the basis of mechanical manufacturing technology development trend for the detailed explored.

Keywords: mechanical manufacturing technology, the characteristic, the development, the trend

中图分类号: TD406文献标识码:A文章编号:

引言:通常意义上讲我们所涉及的机械制造技术是对产品的设计、加工、出售、使用、维修以及回收等整个过程进行研究的学科。当今大量应用先进机械制造技术的最终目的是迎合社会发展,提高产品质量以及企业竞争力。技术的革新极大程度上提高了我们技术的进步,人民群众对其要求也是越来越高,不仅要求外形美观,质量高档,价格合理,使用方便,还要求有多样的品种,快捷的更新,满意的服务以及高程度的自动化。为了迎合社会的发展,满足当代人越来越高的要求,就必须采用先进的机械制造技术。

1、机械制造技术现状及特点

(1)机械制造的现状:我们的机械制造技术近些年来得到了迅猛的发展,日益受到经济管理部门关注,取得了一系列的突破,尤其是在自主开发创新能力方面以及行业整体技术水平方面显著提高。虽然我国也在不断开发,引进及采用现今的机械制造技术,但与发达国家相比,仍然存在诸多问题,主要体现在设计,工艺,自动化以及管理等方面。随着社会的进步与工业生产的高度发展,人们对于产品的要求也发生了很大的变化。特别是制造过程和制造工艺也有了新的内涵。进入21世纪后,以计算机技术、网络技术和通信技术等为代表的信息技术、生物技术及新材料技术,被广泛应用于机械制造的各个领域,使机械制造技术发生了质的飞跃,制造生产模式发生了重大改变,呈现出高技术化、高数字化、高极端化、高绿色化、高集成化的特点和发展前景。

(2)机械制造技术的特点:先进的机械制造技术具有与时俱进性,系统性,市场性及全球性等特点。先进的机械制造技术既保持了过去制造技术中的有效要素,又要不断吸收各种高新技术成果,并渗透到产品生产的所有领域及其全部过程,与时俱进,不断更新;先进制造技术并不限于制造过程本身,它涉及到产品从市场调研、产品开发及工艺设计、生产准备、加工制造、售后服务等产品寿命周期的所有内容,并将它们结合成一个有机的整体,是一个系统工程;20世纪80年代以后,机械制造业赢得市场竞争的主要矛盾,已经从提高劳动生产率转变为时间、成本和质量的三要素的矛盾,先进的机械制造技术把这三个矛盾有机结合起来,是市场竞争三要素的统一;随着全球市场的形成,使得市场竞争变得越来越激烈,先进制造技术正是为适应这种激烈的市场竞争而出现的。

2、机械制造技术发展趋势

几年来,我国现代机械制造业不断采用先进制造技术,机械制造有了显著的发展,无论制造总量还是制造技术水平都有很大的提高。机械制造从产品研发、技术装备和加工能力等方面都取得了很大的进步,但与工业发达国家相比,仍然存在一个阶段性的整体上的差距。

(1)科技新时代的到来,尤其是网络新时代的到来,标志着机械制造技术也必将朝着信息化方向发展。网络通讯技术的迅速发展和普及给企业的生产和经营活动带来了革命性的变革。产品设计、物料选择、零件制造、市场开拓与产品销售都可以异地或跨越国界进行。此外,网络通讯技术的快速发展,加速技术信息的交流、加强产品开发的合作和经营管理的学习,推动了企业向着既竞争又合作的方向发展。所谓机械制造技术信息化是指机械制造业以信息为主导,借助于物质和能量的力量生产出价值,而不同于以往以物质和能量为主导,借助于信息的力量生产出价值。不久的将来,信息产业和智力产业将成为社会的主导产业。

(2)自动化和智能化在我们国家的技术革新中占据了重要的地位。主要表现在制造系统中的集成技术、人机一体化制造系统、制造单元技术、柔性制造技术和适应现代化生产模式的制造环境等方面。智能化是柔性自动化的重要组成部分。随着社会的发展,人类早已从繁重的体力劳动中解放出来,然而生活水平的提高促使人类不满足于此,如今我们还要从繁琐的计算、分析等脑力劳动中解放出来,以便有更多的精力从事高层次的创造性劳动,智能化促进柔性化的发展,它使生产系统具有更完善的判断与适应能力。智能制造将作为一种模式,是集自动化、柔性化、集成化和智能化于一身,并不断向纵深发展的高技术含量和高技术水平的先进制造系统,也是一种由智能机器和人类专家共同组成的人机一体化系统,它突出了在制造诸环节中以一种高度柔性与集成的方式,借助计算机模拟的人类专家的智能活动,进行分析、判断、推理、构思和决策,取代或延伸制造环境中人的部分脑力劳动。

(3)技术和管理柔性化。实现机械制造的柔性化是为了更好的适应多变的市场和产品需求,柔性化包括技术柔性化和管理柔性化。我们这里所谈论到的所谓技术柔性化也就是我们在施工过程中所使用装备和技术路线不受工艺及产品种类的约束,这样的技术就会使我们的工艺得到更大的提升。我们需要在工作中重视管理的柔性,这就是要求我们需要了解管理柔性化的优势,在我们的实际管理中需要重视组织和管理体制、生产模式的更新发展,推出如准时生产、敏捷制造、精益生产、并行工程等新的管理思想和技术。在整个的流程中我们的人为因素发挥了重要的作用,为了使我们整个制造生产系统无论在技术、管理或是人员、组织上都具备充分的柔性必须进行柔性化管理。柔性化管理必须重视人性化管理,尊重人性,从而增强员工的责任感和自主精神,充分调动员工积极性,在日益强调环保的今天,绿色制造技术的出现赋予柔性化更深的含义。

(4)机械制造的灵活化。灵活化也就是尽可能地缩短从设计生产到出售使用的时间,使机械制造厂的机制能灵活转向。未来的市场是具有高度不确定性的,为了迎合多变的不可预期的市场,机械制造必须具有高度的灵活性。

结语:在技术飞速发展的今天,我们越来越能发现机械制造行业的重要性。我们国家近些年来逐渐将机械制造业发展成为我国工业中的核心,其在国民经济的发展中有着不可替代的作用,对于提高我国的综合技术实力有着十分关键的作用。这就是要求我们从业人员不断加强机械制造技术水平,掌握好相关的发展方向,也就能在最终实现提高产品质量及企业效益的目标,保证我国在激烈的市场竞争中处于不败之地。

参考文献:

[1]谭学深.浅谈我国机械制造技术的现状及发展方向[J].中国科技信息,2008(15):117-119.

[2]王国栋.我国先进机械制造技术的创新及发展趋势[J].技术与创新管理,2008(3):229-230.

[3]杨建伟.试论当今机械制造技术的发展现状[J].硅谷,2008(17):89.

智能制造技术现状范文11

关键词:数控技术;现状;发展趋势

引言

数控技术主要是通过数字信息来达到机械运动与工作行程相关操作做对应的操控技术,这种技术是将传统机械制造人工相关技术、现代操控技术、计算机技术、传感检测技术、光机电技术与网络通信技术得到高度结合后产生的现代性的制造业技术,其操作具有较高的精确性、高效性、智能化等特点,因此可以达到制造业操控的更高水平。数控技术在一定程度上是实现自动化制造的基础条件,同时也是现代制造业发展的关键之处,对于一个国家与企业的工业现代化水平而言,可以通过其数控技术相关水平与装备数量做对应衡量。

1我国数控技术发展现状

当下我国数控相关产业基地已经形成,例如华中数控与航天数控都属于当下具有相当规模的大批量生产的数控系统厂商,在相关研究结果与技术的商品化发展之上构建了大量的数控厂。相关生产厂家构成了我国当下的数控产业生产研发基地,数控技术的发展在我国当下已经初具规模。同时对于数控技术而言,大部分技术已经掌握,同时已经做好了商业化、产业化开发利用的状态,为企业与相关产业的发展赢得了利润与发展动力。整体的产业发展已经进入一种常规的商业运作的循环状态。

2我国数控技术发展问题

2.1数控系统与功能部件水平落后

当下数控技术相关产业的发展受到数控系统与功能部件水平落后的现状而出现发展前进的强大制约。国产中档型数控系统在国内的整体市场中占比为35%,高档型占比95%,其他需要进口来有效支持。功能部件在国内市场中的总体份额占比为30%,中高档型占比相对更低,台湾产占比50%,欧盟与日本等占比20%。

2.2高档数控机床技术有待提升

高速、复合、智能与高精等典型性的高档数控机床技术在一定程度上虽然获得的一定的发展,相关新产品与技术也得到了推进,但是与国际高水平对比,目前我国的高档数控机床技术仍旧处于较为滞后的状态,部分高精尖技术仍旧没有得到充分地掌握,而多数掌握的技术都属于较为基础的技术。对于动态综合补偿技术、高速高精运动控制技术、智能技术、复合加工技术与高精度直驱技术等都存在技术水平的较大差异,与产业化发展仍旧有较大距离。同时也没有建立起以企业为主题、市场为导向以及产学研用一体的研发体系,相关行业自主创新发展仍旧没有高新技术作支撑。

2.3缺乏自主开发与自主品牌竞争力

当下我国数控机床骨干技术的研发条件较为薄弱,资金运用率较低,可持续性的投入能力缺乏,没有关键性的技术与技术突破做支撑,人才结构配置不科学,零部件支撑能力相对较弱,没有形成较为完善的产业研发体系。

3我国数控技术未来发展趋势

3.1高速与高精尖技术与装备发展

为了提升企业与相关产业在国内与国际市场上的竞争力,优化产业结构,提升产业所带来的实际经济效益与社会效益,需要不断地缩短技术装备生产周期,进而有效地提升产业与企业在市场中的竞争实力。其操作主要是通过提升产品所在的档次与质量来完成,高速与高精性加工技术可以在一定程度上有效地提升生产效率。

3.2智能化、开放性与网络化的发展

虽然当下的数控技术已经逐步朝着智能化、网络化等趋势发展,但是在一定程度上其技术运用的广泛性与深度性还有待加强。产业与企业自身为了获取更高的利润,在先进技术的运用上仍旧处于滞后状态。其原因在于先进技术的运用所节省的成本远远低于其采用传统人力成本更高。特别是先进技术使用所带来的设备采购成本与日常技术维护保养成本,并不能达到更优于传统人工操作成本效益。智能化、网络化与开放性所带来的实际作用远远高于当下我国数控技术发展的水平。相关的研发也是市场所需的必然趋势,虽然目前应用尚且不广泛,但是也不能否定其发展的未来价值。智能化系统主要是包括智能诊断、监控等技术方面,可以有效地便于系统的诊断与维修保养。智能化自动变成与人机界面等技术,可以有效地将变成与操作更加的智能化;驱动性与使用连接也能达到智能化操作;在加工效率与质量水平上也可以通过智能化来有效控制生成。开放式数控技术主要是在系统的开发上可以放在统一性的运行平台上操作,可以达到一定特性的品牌产品。开放性可以在变化、扩充与裁剪数控功能等方面展开对机床厂家与客户端用户的服务,完成系列化与快速,达到不同品种与档次开放式数控系统的展现,可以依据用户个性化应用与技术诀窍做有效集合来生成其控制系统。网络化主要是可以有效地达到生产线、制造系统与制造企业在信息集成方面的需要。在国外著名相关单位已经得到了有效的应用,已经形成一定未来发展趋势。

4结语

数控技术当下在我国发展水平较低,需要充分依据实际情况,做产业结构的调整,注重高精尖技术的开发运用,提升生产效率与质量,从而获得市场的认可。

参考文献:

[1]李国巍,王盼,孙凯旋,等.数控技术现状与发展趋势[J].黑龙江科学,2016,7(7):14-15.

智能制造技术现状范文12

关键词:机械制造;技术;发展趋势

引言

对产品的设计、加工生产、出售使用、维修等一系列过程进行研究的学科即为机械制造技术。机械制造技术是一项包含能量流、物质流、信息流的系统性工程,它的目的是为提高产品的质量,加强企业的市场竞争力。随着人民群众的生活水平不断提高,对各项产品的要求也日益上升,产品不但要满足物美价廉,便于使用的基本要求,还需具备品种的多样化、销售服务优质化等特点。为了满足现代市场的需求,先进机械制造技术的使用显得尤为重要。

1.机械制造技术的发展现状

机械制造业的发展一直受到人们的广泛关注。目前,在我国工业中,机械制造业已成为最大产业之一。机械制造业不但已具备一定的技术基础及规模,其开发创新能力也获得了明显的提高。虽然我国在机械制造业取得了不错的成绩,但与其他发达国家相比,在设计、生产工艺及自动化技术等方面,还存在着不足之处。

准则与所需数据更新慢,设计仍采用图纸的落后方法,新的设计技术使用率偏低等问题常出现在制造设计方面;在生产工艺方面,我国对诸如高精度加工、激光加工、纳米加工、复合加工等新型加工技术的使用还不成熟;对于自动化技术,我国对柔性制造系统、计算机集成制造系统、柔性制造单元的使用比较缺乏,还正处于刚性及单机的自动化阶段,也还未完全实现知识智能化以及柔性自动化[1]。

2.机械制造技术的特点

先进性、市场性、全球性及系统性为机械制造技术的主要特点。先进的制造技术在保持传统有效条件因素的基础上,还不断将新的技术运用到产品生产的各个过程。产品的市场调研、工艺设计、加工制造、售后服务等一系列内容均为制造技术所要研究的内容,并将其作为一项系统工程来进行。目前,存在机械制造业中的主要矛盾为成本、时间、质量这三个方面。先进的机械制造技术能有效综合这三个矛盾,为制造业在竞争激烈的市场立足提供坚实的保障[2]。

3.机械制造技术的发展趋势

目前,我国的机械制造技术已逐步向绿色化和灵活化、智能化和自动化、网络化和信息化以及管理柔性化的趋势发展。

3.1.绿色化和灵活化

随着环境污染的日益严重,人们对环境保护也越发重视起来,这也使得众多制造企业加大了绿色生产的力度。机械制造技术绿色化指的是企业在产品加工生产、出售等全过程都是进行绿色无污染操作。绿色无污染操作不仅指使用绿色无污染的原材料及生产设备,而且在产品使用完的回收利用过程中,同样采取无污染的处理方式。

尽量减少产品设计生产的时间,从而实现制造企业对机制进行灵活转向的目的,即为机械制造技术灵活化的体现。未来中国的市场具有不确定性和多变性,机械制造企业为在不可预期的市场里占有一席之地,就必须实现企业机制的灵活化[3]。

3.2.智能化和自动化

我国目前在对自动化技术的研究中,取得了比较明显的成绩。在机械制造技术中,制造单元技术、集成技术、柔性制造技术、人机一体化制造系统以及现代化制造环境等,均为自动化技术的具体体现。在柔性自动化中,其重要的组成部分就是智能化。虽然如今人们已不再需要进行繁重的体力劳作,但更要从繁琐的脑力劳动中解放出来,为更高层次的创造性劳动投入更多的精力。制造技术的智能化促进了企业生产系统中对适应能力和判断能力的完善,同时也加快了柔性化的发展。智能制造技术是一项集智能化、自动化、集成化与柔性化为一体的技术,它由人类专家和智能机器共同组成,是一项具备高技术水平的先进制造技术。智能制造的优势主要表现在产品的制造环节,其通过计算机,采用柔性与集成的方法,模拟人类专家的各项智能活动,实现判断、分析、推理和决策等活动操作,从而取代人的某些脑力劳动。

3.3.网络化和信息化

随着改革开放的不断深入,加快了我国工业信息化的进程,这也使得机械制造技术不断走向信息化和网络化。近几年,随着网络通讯技术的普及,企业的生产经营也受到了不小的影响。企业为适应高度信息化的市场需求,就必须进一步改进并完善相关制造技术。随着市场信息化的不断推进,已实现异地及跨国开展产品设计、生产销售以及市场开拓等工作。除此之外,信息技术的交流、产品的开发与经营的学习也随着网络通讯技术的发展而不断加强。以信息为主导,通过能量及物质的力量而产生价值,即为制造技术的信息化。智力产业和信息产业已逐步发展为市场经济的主流产业[4]。

3.4.柔性化

为使企业满足多变的市场需求,就要实现机械制造技术的柔性化。管理柔性化和技术柔性化为柔性化的主要组成部分。管理柔性化指的是在重视生产模式、管理组织体系的基础上,推出新的管理技术及思想。而技术柔性化则指的是在产品制造过程中,所运用的技术及准备能使用于各种生产工艺。企业的一切生产及经营活动都需要人的参与,柔性化管理必须以人为本,尊重人性,激发员工工作热情,增强员工的自主意识和责任感。

4.结语

在衡量一个国家科技水平以及市场竞争力中,一项重要的标志就是机械制造技术。机械制造业作为工业中重要的产业之一,保证着我国国民经济的发展。为提高企业的产品质量及市场竞争力,保障我国工业行业的稳步发展,获得更好的经济效益,就要加大力度对先进机械制造技术的研究,充分掌握机械制造技术的发展趋势,使其为我国的经济发展作出应有的贡献。

参考文献:

[1]王国栋.我国先进机械制造技术的创新及发展趋势[J].技术与创新管理,2010(3):229-230.

[2]吴剑波,孙多志.浅析我国机械制造技术的现状及发展方向[J].民营科技,2010(02):89-91.

[3]谭学深.浅谈我国机械制造技术的现状及发展方向[J].中国科技信息,2012 (15):99-102.