HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 模具加工

模具加工

时间:2023-05-30 10:55:43

模具加工

模具加工范文1

1、模具坯料准备。模具坯料大多为金属,以锻造加工为例,锻造用的原材料一般是棒材、板材以及管材。操作人员主要根据毛坯的具体形状和几何尺寸进行选用。对于薄板毛坯,可以采用普通冲裁落料或精密冲裁下料。如果需要锻造环形件,也可以用管材切割制坯。

2、零件粗加工。零件粗加工我们以铣削加工为例,只要给出零件的外轮廓和岛屿,就可以生成加工轨迹。并且可以在轨迹尖角处自动增加圆弧,保证轨迹光滑,以符合高速加工的要求。主要用于铣平面和铣槽。可选择多轮廓、多岛屿进行加工。

3、半精加工。半精加工阶段是完成次要表面的加工,并为主要表面的精加工做准备。

4、热处理。热处理是将材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的组织结构,来控制其性能的一种综合工艺过程。热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。

5、精加工 。精加工比粗加工的加工余量要小,选用好道具进行切削,控制好道具的走速及转速,注意材料的尺寸和光泽度外观。

6、型腔表面处理 。模具不同的表面处理方法,可以改变模具表层的化学成分、组织、性能,大幅度地改善和提高模具的表面性能。例如硬度、耐磨性、摩擦性能、脱模性能、隔热性能、耐高温和耐腐蚀等性能。这一步对于提高模具质量。

7、模具装配。按照一定的规定技术要求,将零件组合成组件,并结合成部件以至整台机器的过程。装配的形式有两种,一种是固定装配,一种是移动装配。不同批量的生产选用不同的装配方式。

(来源:文章屋网 )

模具加工范文2

一、模具材料种类、特性简介

为便于对后面高效模具加工刀具介绍的理解,有必要对模具材料及加工方式作一个简单介绍。

(一)模具类型

模具主要分为以下几个类型:大型汽车外覆盖件冲压模具、普通塑胶注塑模具、PVC注塑模具、吹塑模具、五金冲压及板金模具、热挤压模具、热锻模具等等。

(二)模具材料

每种不同的模具以及同一模具的不同部位所采用的材料有相当大的差别,其加工特性也有很大的区别。模具材料的种类极为繁多,这里只介绍与本文相关的被加工材料。

1.C45W中碳钢:牌号为S50C~S55C 45钢,香港称为王牌钢,此钢材的硬度为HB170~220,模具有70%~80%的加工采用这种钢材,适用于大多数加工对象。

2.40CrMnMo7预硬塑胶模具钢:硬度HRC28~40,很适合做一些中低价模具的镶件,有些大批量生产的模具模架也采用此钢材,好处是硬度比中碳钢高,变形也比中碳钢稳定,这种钢在塑胶模具上被广泛采用,较为普遍的品牌有718S、718H、738H、NAK80、NAK55等,这种钢材的应用占模具的15%~20%左右,其加工难度大于45钢,主要为型芯和型腔加工。

3.fc250-fc350,fcd500-fcd700:材料中添加了Cu、Ni、Mo等合金,通过对总碳量、Si、Mn、P、S、Mg等组成元素进行控制,在分子结构上由于晶体易于变形,使之易于马氏体化。

一直以来,国内汽车行业所使用的模具材料主要包括铸态和锻态两大类。铸态材料常用的牌号为HT300、钼铬铸铁、铸态风冷钢(7CrSiMnMoV);铸铁材质主要用于模具基体,铸钢材质则用于镶块。锻态材质常用的牌号为锻态风冷钢(7CrSiMnMoV)、Cr12MoV,主要用于制造汽车外覆盖件模具。

二、汽车外覆盖件模具粗加工用球头铣刀

近年来,工业领域使用的刀具产品样式不断变化,且绝大多数企业本着降低制造成本的生产理念,要求生产高精度、高品质的产品。这种现象在汽车行业加工领域也不例外。针对客户的要求,株钻刀具技术公司采取的策略是不断提高刀具使用寿命以及缩短加工时间。株钻公司最新推出了几种新型高效刀具,在车门、保险杠、车架等零部件的冲压模加工时,能够大大提高刀具使用寿命、降低加工成本。其中BMR03系列刀具就是其中之一。

该款刀具适用于汽车外覆盖件模具粗加工时的型面轮廓强力仿形切削,一般来说,D50、D40的刀具进行型面开粗,D30的刀具进行型面的半精加工和圆弧过渡面的清根加工,被加工工件的材质主要是以上介绍的冷作模具钢和钼铬合金铸铁,为了降低成本,有些低档卡车模具也采用GCr15钢和灰口铸铁,甚至采用A3钢堆焊的毛坯生产。因此要求该刀具有极高的综合切削性能:(一)适用于各种被加工材质的刀片槽型和结构;(二)优秀的抗冲击性能,强力铣削加工时不能出现切削刃意外崩缺;(三)长的刀具使用寿命,一般客户希望能够在不更换刀片情况下不间断地加工完一个型面,对于加工一个大型模具意味着4~12小时的加工寿命;(四)低的切削振动,这是制约加工效率提高最难逾越的因素;(五)高的形状精度和高负荷加工下刀具的精度保持性;(六)高的刀体可靠性。

转贴于 该刀片的槽型是综合考量各种实际切削因素,并且通过长达两年的用户试验,不断优化而最终定型的。具体而言,主要在以下几个方面进行了优化设计。

比传统刀具更高的精度,刀片安装在刀体上后,与理想球体的理论误差应尽可小,而且曲线不能太复杂,以免造成研磨困难。株钻球头铣刀的球形刃设计精度(所有系列)均为≤0.005mm,制造轮廓误差≤0.05mm(ZOLLER测刀仪检测)。

中心刀片的刀尖设计保证更低的切削振动和抗冲击性能,过中心区域切削速度极低(接近于零)。切削阻力极大,非常容易出现刀尖崩缺现象。必须进行大量试验室试验和客户实际试验来提高刀片性能。举例来说,其中有一项为切削阻力和切削振动对比试验,试验方案如下:试验刀具为A、B两种国外D40球头铣刀,被加工材料为P20HRC35,切削参数:Vn=3000,ap=0.5mm,ae=1mm,f=3000mm/min,测试仪器:KISTLER动态电荷测力仪。

由试验结果可知:

(一)在其他条件相同的情形下,f=0.5mm/z时,A刀具的最大主切削力Fx=400N,最大主切削力Fx=50N,最大振幅为350N,平均切削力为230N;

(二)在其他条件相同的情形下,f=0.8mm/z时,A刀具的最大主切削力Fx=600N,最大主切削力Fx=80N,最大振幅为520N,平均切削力为290N;

(三)在其他条件相同的情形下,f=0.5mm/z时,B刀具的最大主切削力Fx=800N,最大主切削力Fx=160N,最大振幅为640N,平均切削力为400N;

(四)在其他条件相同的情形下,f=0.8mm/z时,B刀具的最大主切削力Fx=1000N,最大主切削力Fx=200N,最大振幅为800N,平均切削力为500N。

由以上四点可知,在1mm的小切深情况下,在所有切削条件相同的情况下,B刀具的刀尖受力情况明显比A差很多,平均受力大了几乎一倍,刀具在同等频率下振动的振幅也明显大得多,而上述切削参数在大多场合都是正常切削参数,这说明在刀具刀尖的处理上A刀具的设计方案明显优越。而B刀具由于切削阻力和切削振动太大,且刀尖的切削前角仅为-20°,刀尖过于单薄,刀具的过中心刀尖非常容易崩缺。

因此刀尖的形状设计非常重要,对刀具的实际切削效果有显著的影响。实际上优化设计刀尖形状和参数是一个非常繁杂的过程,要平衡诸多因素,如切削振动、刃部强度、刀具使用的工艺特点、刀片材料特性、本身的工艺性等等,很难一蹴而就,要往返多次不断完善。

刀片的槽型优化设计,球头铣刀的圆弧切削刃各点的切削线速度都不相同,轴心区低,外部高,线速度的变化极大,因此各点承受切削阻力相差很大。

当切削速度低于某个值时,切削阻力会急剧增大,而高过此值时,变化会比较平缓,因此设计主切削刃棱带、槽型主参数时必须遵循这个规律。对于球头刀来说,设计为变棱宽棱带、光滑曲面的切屑导流槽、连续变化的前角、槽宽等最为合适,配合前刀面的减振凸台设计可以在保证刃口强度的基础上尽可能减少棱宽,从而最大化减少切削阻力和抑制振动。分屑槽刀片,对于大直径刀具D50、D40刀具和大悬长刀具来说,在进行过渡全刃接触铣削时,几乎难以加工,排屑非常困难。刀片极易被挤缺。这时需要采用分屑技术的刀片。在实际验证时,加工效率得到2倍以上的提高。

转贴于 极限过载和疲劳破损校验,进一步改进刀具结构,确保刀具能够长期稳定切削。极限试验主要用于检测刀具在推荐切削参数下的安全性能,包括一系列的超载试验。这需要投入极大的物力和精力,一个产品的开发必须包含此项验证。这里列举其中一项试验:

检验刀具:BMR03-040-G32-XP30-02-M;刀片:XPHT40R2004;牌号:YBG302

被加工材料:NAK80(HRC40)

切削参数:Vn=2500,ap=5mm,ae=4mm,f=2000mm/min

试验结果:加工16小时后,刀具出现疲劳损坏裂纹。刀体上部安装刀片的刀槽底面与侧面出现明显裂痕,刀体已经无法继续使用。

正是疲劳试验发现了该刀具的内在缺陷,为此进行了四次大的改进来解决这个问题,其中包括(一)面与面间采用圆弧过渡,消除应力集中;(二)更高精度的锁进螺纹配合,提高刀片的安装刚性;(三)采用优质耐热合金钢制造刀体;(四)改变表面处理和热处理工艺,提高抗疲劳性能。改进产品小批量客户试验证明,消除缺陷的产品完全可以满足实际使用要求,现在大批量订货也没有出现问题。

新型球头铣刀较传统刀具有较大优势,加工实例证明了其高效切削性能,比原来传统球头铣刀提高加工效率2倍以上,且刀具寿命更长,性能可与国外先进厂家相当;批量应用证明该刀具性能稳定可靠,由于性价比高,节约了刀具消耗成本。

三、新型大进给铣刀

株钻刀具公司推出的新型大进给铣刀几乎已成为HPM的狭义对等词。这种大进给铣刀结合了低振动切削和高进给切削两种切削形式的优点,能够进一步提高刀具的切削性能。刀片基本形状为类三角形,三个边完全对称,每个边由修光刃、第一主切削刃、突起过渡区、第二主切削刃和刀尖圆弧等组成。刀具的原理及形状专利正在申请中。

(一)低振动大进给铣刀的原理及特色

所谓低振动切削是指刀具采用大的悬伸量加工深的部位,而刀具的刚性与悬伸长度的四次方成反比,加工效率的主要制约因素是因为加工振动而不得不降低走刀速度。FEETE公司的理论研究和试验证明,通过改变切屑的形状,可以在切屑截面不变的情况下提高走刀速度,或者说在同等金属去除率的情况下,可以降低切削阻力和消耗功率15%~25%。这是一个非常可观的数据,实际上由于受到几何形状以及残余加工区域面积的限制,产品应用达不到这一理论值。

株钻公司开发的新型大进给铣刀成功地将小的主偏角与切屑形状控制理论结合起来。该铣刀在切削深度ap小于凸起过渡区到修光刃时,参与切削的为第一主切削刃,这与传统的大进给铣刀并无任何区别。

但当切削深度ap超过这一临界值时,切屑的形状发生改变,传统的大进给铣刀应为一段较长的切屑,而新型铣刀为两段切屑,这种断屑方法称为自台阶断屑。下面通过一个试验来证明对新型刀具性能的阐述。

试验机床:MIKRON UCP1000

被加工材料:NAK80(HRC40)

对比试验刀具:进口D32大进给铣刀(加长型);株钻D32大进给铣刀

测量仪器:KISTLER电荷测力仪

加工参数:ap=1.7mm,ae=25mm,V=120m/min,f=0.8mm/z

试验结果:由于受到机床功率的限制,f=0.8mm/z时机床已经达到极限功率,株钻D32大进给铣刀MR01-063-A22-ZD16-04的切屑成两段排出,切削状态正常。

对比的进口刀具已经完全丧失了继续切削的能力,出现强烈的振动甚至抖动。这就证实采用分屑技术与大进给相结合的新型刀具有着更加优越的切削性能。

株钻刀具每刃平均切削寿命为3.5小时,进口刀具为3.7小时,寿命基本相当;株钻刀具的切削振动声音相对较小;株钻刀具切屑细碎,容易被压缩空气吹走,切屑刮擦相对较轻。另外值得一提的是,在采用大进给加工前,采用RDKW1204M0刀片进行加工,大进给刀具有着明显的优势,主要体现在以下几个方面:(一)加工效率提高1~2倍,机床占用率大大降低,大大降低固定资产成本;(二)拐角处振动和大模具加工的优势更加明显,提高效率3倍以上;(三)刀片消耗量大大降低,原来RDKW刀片每月消耗2万片,而大进给刀片消耗量不到3000片。

新型大进给铣刀可以通过分屑方法有效抑制振动,从而进一步提高加长刀具的加工性能;合理的外形设计使该刀具的切削性能和使用寿命达到了预期目的;较传统刀具而言,新刀具的加工效率提高2~3倍,而刀具消耗量仅为原来的1/5,效益相当可观。

模具加工范文3

关键词:冲压模具 精加工

中图分类号:U41 文献标识码:A 文章编号:1672-3791(2012)06(c)-0119-01

随着工业生产技术的不断提高,机械制造相关的设备装置不断更新。冲压模具是机械制造业中一种较为特殊的生产工艺设备,它的加工需要经过精加工工序,其共同的工艺过程大致为:粗加工—— 热处理—— 精磨—— 电加工—— 钳工(表面处理)—— 组配加工。模具零件的加工,是针对不同的材质,不同的形状,不同的技术要求进行适应性加工,它具有一定的可塑性,可通过对加工的控制,达到较好的加工效果,最终保证模具的质量,又能大大提高机械产品的质量。

1 零件热处理

一些内型复杂的紧固件冷作模具,在线切割加工前,不仅要求硬度高、强度和韧性好,更重要的是要保证淬透性。在保证力学性能的前提下,要使模具淬火应力处于最低状态,更重要的是采取一些必要的措施。传统的压铸模具热处理工艺是淬火-回火,以后又发展了表面处理技术。对零件进行热处理,既要针对零件获取相应的硬度,又要控制对内应力,以此达到防止零件变形的目的。压铸模具材料种类繁多,不同的材质要进行不同方式的处理,不同的材质分别有不同的处理方式[1]。如:Cr12、9CrSi、T10、等。以Cr12、9CrSi、T10做材质的零件,粗加工后要做淬火处理。淬火是将钢加热到临界温度以上,保温一段时间后快速冷却的工艺方法。工件在经过淬火后会存留一定的内应力,工件在精加工时易开裂,对于热处理后不再进行机械加工的模具工作面,淬火后尽可能采用真空回火,特别是真空淬火的工件(模具),钢加热到某一温度,保温一段时间后,以适宜速度冷却,使淬火应力消除。在成产的过程中,形状复杂的工件常常遇到,由于其形状淬火应力不能被消除,因此,应力退火应在经加工前进行,就是将钢加热到临界温度以上某一温度,使工件保温一段时间后随炉冷却,也可放在土灰、硅砂等绝热材料中缓慢冷却,这样可以得到接衡状态的组织,充分释放应力,机械性能将被提高,例如,疲劳性能、表面光亮度、腐蚀性等等。由此看来,热处理技术处理是否到位直接决定模具质量的好坏。

2 零件的磨削加工

磨削是指用磨料,磨具切除工件上多余材料的加工方法。它用于加工各种工件的内外圆柱面、圆锥面和平面,以及螺纹、齿轮和花键等特殊、复杂的成形表面。磨削加工工作量将占模具总的制造工时的25%~45%,是应用较为广泛的切削加工方法之一。在磨削之前工件通常都先经过其他切削方法去除大部分加工余量,仅留0.1mm~1mm或更小的磨削余量。精加工磨削时要严格控制磨削变形,因此,精磨的进刀要小,不能大,冷却液要充足,对于尺寸公差在0.01mm以内的精密模具的精密磨削要注意环境温度的影响,要求恒温磨削,防止热变形对工件尺寸造成的误差,各精加工工序都需充分考虑这一因素的影响[2]。精加工磨削时要严格控制磨削变形和磨削裂纹的产生,磨削中冷却要充分,哪怕是工件表面的显微裂纹,在后续的加工使用中也会显露出来,提高磨削速度可减少裂纹的产生,这是因为高速磨削可缩短砂轮与工件表面的连续接触时间,减少工件被磨部位瞬时产生的磨削热,降低表面温升。合理选择磨削用量,如适当减少径向进给量及砂轮速度、增大轴向进给量,使砂轮与工件接触面积减少,散热条件得到改善,从而有效地控制表层温度的提高。精磨时选择好恰当的磨削砂轮十分重要,对于不同的工件材质,应采用不同的磨料。同时,工件的硬度不同,砂轮的硬度也不同,对于硬质合金工件,可采用金刚石磨轮,对于淬火钢件,一般采用陶瓷砂轮或立方氮化硼的砂轮。选用GD单晶刚玉砂轮比较适用,它的性能硬而脆,且易产生新的切削刃,因此切削力小,磨削热较小,在粒度上使用中等粒度,即粗粒度、低硬度的砂轮,自励性好可降低切削热。

3 电加工控制

电加工是现代工厂不可缺少的。电加工有线切割和电火花两种,加工各种异形或高硬度零件。电火花穿孔、成形加工是线切割发展的基础,甚至在一些方面其已取代电火花穿孔、成形加工。线切割加工余量小,加工精度较高,生产周期短,制造成本低,主要用于加工各种形状复杂和精密细小的工件。加工时,使用应力集中方法,运用矢量平移原理,精加工前留0.8mm~0.9mm余量,预加工出型腔形状,再热处理,使加工应力释放,以确保热稳定性。热处理完后,在平磨床上,磨出一个基准平面,以基准平面定位,上线切割机床加工形腔,这样工件在热处理中已完全变形,在精加工中就不会再变形。

4 表面处理

模具表面性能对模具的工作性能和使用寿命有着十分紧密的联系。在加工的过程中,零件的表面常留下疤痕、磨痕,这些地方既是应力集中的部位,也是裂纹扩展的开始部位。因此,加工结束后的对模具的表面强化处理工作变得尤为重要。表面涂覆、表面改性或复合处理技术是表面处理的常用方式。经过表面强化处理。可改变模具表面的形态、化学成分、组织结构和应力状态,来提高模具的使用寿命、修复磨损面。对工件的一些棱边、锐角、孔口进行倒钝,R化[3]。电加工表面会产生6μm~10μm左右的变质硬化层,颜色呈灰白色,硬化层脆而且带有残留应力,在使用之前要充分消除硬化层,方法为表面抛光,打磨去掉硬化层。

5 组配

在模具制造中,每个零件都具有复杂性与特殊性,相互之间具有整体配合性。工艺员要了解零件与零件之间的装配关系及零件在整副模具中的作用,从而合理安排组合或配作工艺是极为重要的。磨削加工和电加工可让工件磁化,使之具有微弱磁力,极易吸着一些小铁沫,可见,工件组装前的退磁处理十分必要。组装时,参照装配图,弄清楚各个零件装备的顺序,着手装配SKD11模具钢材。一般来讲,最先装导柱导套,然后是模架和凸凹模,接着再对各处间隙进行组配调整,尤其是凸凹模间隙。完成后,实行SKD11模具钢材检测,并写报告。

实践证明,良好的精加工过程控制,可以有效减少零件超差、报废,有效提高模具的一次成功率及使用寿命,稳定产品质量有着深远的意义,是模具企业长久有效的生存发展之道。

参考文献

[1] 刘耀,占丽娜,李立.浅谈冲压模具技术的发展[J].萍乡高等专科学校学报,2011(6).

模具加工范文4

一幅模具是由众多的零件组配而成,零件的质量直接 影响 着模具的质量,而零件的最终质量又是由精加工来完成保证的,因此说控制好精加工关系重大。

在国内大多数的模具制造 企业 ,精加工阶段采用的 方法 一般是磨削,电加工及钳工处理。在这个阶段要控制好零件变形,内应力,形状公差及尺寸精度等许多技术参数,在具体的生产实践中,操作困难较多,但仍有许多行之有效的经验方法值得借鉴。

2.模具精加工的过程控制

模具零件的加工,一个总的指导思想是针对不同的材质,不同的形状,不同的技术要求进行适应性加工,它具有一定的可塑性,可通过对加工的控制,达到好的加工效果。

根据零件的外观形状不同,大致可把零件分三类:轴类、板类与异形零件,其共同的工艺过程大致为:粗加工——热处理(淬火、调质)——精磨——电加工——钳工(表面处理)——组配加工。

2.1零件热处理

零件的热处理工序,在使零件获得要求的硬度的同时,还需对内应力进行控制,保证零件加工时尺寸的稳定性,不同的材质分别有不同的处理方式。随着近年来模具 工业 的 发展 ,使用的材料种类增多了,除了cr12、40cr、cr12mov、硬质合金外,对一些工作强度大,受力苛刻的凸、凹模,可选用新材料粉末合金钢,如v10、asp23等,此类材质具有较高的热稳定性和良好的组织状态。

针对以cr12mov为材质的零件,在粗加工后进行淬火处理,淬火后工件存在很大的存留应力,容易导致精加工或工作中开裂,零件淬火后应趁热回火,消除淬火应力。淬火温度控制在900-1020℃,然后冷却至200-220℃出炉空冷,随后迅速回炉220℃回火,这种方法称为一次硬化工艺,可以获得较高的强度及耐磨性,对于以磨损为主要失效形式的模具效果较好。生产中遇到一些拐角较多、形状复杂的工件,回火还不足以消除淬火应力,精加工前还需进行去应力退火或多次时效处理,充分释放应力。

针对v10、aps23等粉末合金钢零件,因其能承受高温回火,淬火时可采用二次硬化工艺,1050-1080℃淬火,再用490-520℃高温回火并进行多次,可以获得较高的冲击韧性及稳定性,对以崩刃为主要失效形式的模具很适用。粉末合金钢的造价较高,但其性能好,正在形成一种广泛运用趋势。

2.2零件的磨削加工

磨削加工采用的机床有三种主要类型:平面磨床、内外圆磨床及工具磨具。精加工磨削时要严格控制磨削变形和磨削裂纹的产生,即使是十分微小的裂纹,在后续的加工使用中也会显露出来。因此,精磨的进刀要小,不能大,冷却液要充分,尺寸公差在0.01mm以内的零件要尽量恒温磨削。由 计算 可知,300mm长的钢件,温差3℃时,材料有10.8μm左右的变化,10.8=1.2×3×3(每100mm变形量1.2μm/℃),各精加工工序都需充分考虑这一因素的影响。

精磨时选择好恰当的磨削砂轮十分重要,针对模具钢材的高钒高钼状况,选用gd单晶刚玉砂轮比较适用,当加工硬质合金、淬火硬度高的材质时,优先采用有机粘结剂的金刚石砂轮,有机粘结剂砂轮自磨利性好,磨出的工件粗糙可达ra=0.2μm,近年来,随着新材料的 应用 ,cbn砂轮,也即立方氮化硼砂轮显示出十分好的加工效果,在数控成型磨,坐标磨床,cnc内外圆磨床上精加工,效果优于其它种类砂轮。磨削加工中,要注意及时修整砂轮,保持砂轮的锐利,当砂轮钝化后,会在工件表面滑擦、挤压,造成工件表面烧伤,强度降低。

板类零件的加工大部分采用平面磨床加工,在加工中常会遇到一种长而薄的薄板零件,此类零件的加工较难。因为加工时,在磁力的吸附作用下,工件产生形变,紧贴于工作台表面(见图1),当拿下工件后,工件又会产生回复变形,厚度测量一致,但平行度达不到要求,解决的办法可采用隔磁磨削法(见图2),磨削时以等高块垫在工件下面,四面挡块抵死,加工时小进刀,多光刀,加工好一面后,可不用再垫等高块,直接吸附加工,这样可改善磨削效果,达到平行度要求。

轴类零件具有回转面,其加工广泛采用内外圆磨床及工具磨床。加工过程中,头架及顶尖相当于母线,如果其存在跳动 问题 ,加工出来的工件同样会产生此问题, 影响 零件的质量,因此在加工前要做好头架及顶尖的检测工作。进行内孔磨削时,冷却液要充分浇到磨削接触位置,以利于磨削的顺利排出。加工薄壁轴类零件,最好采用夹持工艺台,夹紧力不可过大,否则容易在工件圆周上产生“内三角”变形。

2.3电加工控制

现代 的模具工厂,不能缺少电加工,电加工可以对各类异形、高硬度零件进行加工,它分为线切割与电火花二种。

慢走丝线切割加工精度可达±0.003mm,粗糙度ra=0.2μm。加工开始时,要先检查机床的状况,查看水的去离子度,水温,丝的垂直度,张力等各个因素,确保良好的加工状态。线切割加工是在一整块材料上去除加工,它破坏了工件原有的应力平衡,很容易引起应力集中,特别是在拐角处,因此当r<0.2(特别是尖角)时,应向设计部门提出改善建议。加工中处理应力集中的 方法 ,可运用矢量平移原理,精加工前先留余量1mm左右,预加工出大致形状,然后再进行热处理,让加工应力在精加工前先行释放,保证热稳定性。

加工凸模时,丝的切入位置及路径的选择要仔细考虑。如图3所示,工件左端夹持,加工时选择路线①比路线②要好,因为路线①工件与材料的夹持部位联接紧密,加工稳定,若采用路线②,第一遍进刀后,工件成悬壁状,受力差,影响后续几遍加工。路线③,采用打孔穿丝加工,效果最佳。高精线切割加工,通常切割遍数为四次,可以保证零件质量。当加工带有锥度的凹模时,见图4,本着快速高效的立场,第一遍粗加工直边,第二边锥度加工,接着再精加工直边,这样可不需进行x段垂直向精加工,只精加工刃口段直边,既节约时间又节约成本。

电火花加工先要制作电极,电极有粗、精之分。精加工电极要求形状符合性好,最好用cnc数控机床加工完成。电极的材质选择上,紫铜电极主要用于一般钢件加工。cu-w合金电极,综合性能好,特别是加工过程中消耗量明显比紫铜小,配合足量的冲刷液,很适合难加工材料加工及截面形状复杂件精加工。ag-w合金电极比cu-w合金电极性能更优,但其价格高,资源少,一般较少采用。制作电极时,需要 计算 电极的间隙量及电极数量,当进行大面积或重电极加工时,工件和电极装夹要牢固,保证具有足够的强度,防止加工松动。进行深台阶加工时,对电极各处的损耗及因排液不畅引起的电弧放电,要予以注意。

2.4表面处理及组配

零件表面在加工时留下刀痕、磨痕是应力集中的地方,是裂纹扩展的源头,因此在加工结束后,需要对零件进行表面强化,通过钳工打磨,处理掉加工隐患。对工件的一些棱边、锐角、孔口进行倒钝,r化。一般地,电加工表面会产生6-10μm左右的变质硬化层,颜色呈灰白色,硬化层脆而且带有残留应力,在使用之前要充分消除硬化层,方法为表面抛光,打磨去掉硬化层。

在磨削加工、电加工过程中,工件会有一定磁化,具有微弱磁力,十分容易吸着一些小东西,因此在组装之前,要对工件作退磁处理,并用乙酸乙脂清洗表面。组装过程中,先参看装配图,找齐各零件,然后列出各零件相互之间的装备顺序,列出各项应注意事项,然后着手装配模具,装配一般先装导柱导套,然后装模架和凸凹模,然后再对各处间隙,特别是凸凹模间隙进行组配调整,装配完成后要实施模具检测,写出整体情况报告。对发现的问题,可采用逆向思维法,即从后工序向前工序,从精加工到粗加工,逐一检查,直到找出症结,解决问题。

模具加工范文5

关键词:高速加工技术;模具;应用

近些年来,随着社会经济的飞速发展和人们生活水平的日益提高,高速加工技术成为了推广模具加工中的应用成为了保障模具加工质量的主要动力来源。加强高速加工技术在模具加工中的应用是提高模具加工质量不可或缺的一部分。由于保障模具加工质量的核心部分是高速加工技术精度的加强,因而相关人员在满足一定的加工技术条件下,应当创新高速加工技术的改进,提高模具加工的精准度,降低模具加工的废品率,进而增加高速加工部门的经济效益和社会效益。

1.高速加工技术在模具加工的应用过程概述

高速加工技术在模具加工中的应用过程主要由生产过程和加工工艺过程这两个部分组成,该过程对高速加工技术标准具有严格的要求。为了优化模具加工的过程,应当做好加工原材料的保存和运输等准备工作,做好模具加工的热处理和加工、收尾等工作。[1]加工企业应当积极引进先进的国外先进的加工工艺,建立科学的管理体制,丰富现代系统工程学理论知识,完善模具加工企业的指导工作,实现现代化模具加工的系统化、科学化和灵活化,进而增强高速加工技术在模具加工中的竞争力,提升模具加工的生产效率,保障模具加工的精准度和质量。由于高速加工技术在模具加工过程中由许多细微的工序组成,模具加工企业应当充分运用先进的科学技术提升模具加工零件的批量生产。

2.科学制定模具加工工艺路线

高速加工技术在模具加工应用中应当制定模具加工工艺路线,技术人员应当仔细审核模具加工设计图,明确每一个模具加工零件的加工工序和模具零件加工的工序尺寸,严格按照已经完善的模具加工工艺规程进行模具的加工,完善模具加工的工艺流程,精准把握模具加工的位置精度,保证模具平面和零件孔的准确合格。[2]模具加工人员还应当严格按照模具生产原则,做好模具的粗精加工,选择精确的加工设备,进而实现模具加工各工序时间的合理安排,实现模具加工有序高效地加工。加工企业还应当统一高速加工技术在模具加工应用中的标准,保证模具加工的质量,加工企业应当加大对高速加工技术和模具加工工艺改进方面的资金投入,重视高速加工技术在模具加工应用中的一些细节工作。同时引进先进的高速加工技术设备,确保模具加工设备安装位置的科学性和精准性,使模具加工设备能够保持整体和谐的观感。为了突破模具加工的整体效果,实现模具加工功能效益的最大化,模具的外观造型和整体协调性是决定模具加工质量的重要因素,有利于提升模具加工设备的观感,促进模具加工的精准化、现代化的整体统一。

3.高速加工技术对模具加工精度影响的探析

3.1高速加工技术原理误差对模具加工精度的影响

在进行模具加工的过程中,加工企业为了完善高速加工技术在模具加工中的应用范围,技术人员应当运用先进的精制刀刃设备对模具表面的轮廓进行相应的完善,同时应当减少高速加工技术原理误差。为了完善模具的表面和模具设计的精确度,加工企业应当引进理想的先进加工原理理论,积极采取一系列的科学合理的工艺措施,实现精确的高速加工技术原理的构建和丰富,引导加工人员追求精准的加工理论,严格按照模具加工的流程和加工规范,进而提高模具的加工效率和加工精度,保证其模具加工的精准度和模具的质量。保证模具加工人员加工规范的科学合理性和完整性,加工企业在创新高速加工技术的影响时,应当严格按照模具加工的操作流程。加工人员应当根据不同加工设备的安装要点和自身的经验对模具加工工作进行科学检测,并选择先进的模具加工工艺,按照固定的加工顺序,引导模具加工人员充分实施每一个加工步骤,进而制定最优的高速加工技术方案。

3.2常用的高速加工技术对提升模具加工精度有效

随着现代加工业技术的飞速发展,模具加工的使用范围也在逐渐推广。由于模具的加工表面和模具的几何形状均需要十分精准的测量、设计和定位,因而采用高新计算机技术提升和完善模具的加工工艺对减少模具的加工误差十分必要。同时笔者通过实践和借鉴国外先进的技术经验,也提出了相应的完善模具加工工艺的方法和提高模具精准度的建议。这不仅有利于合理控制模具加工误差的范围,还为模具加工工艺的完善奠定了坚实的基础,大大提高了模具加工的效能,而且节约了模具加工成本,进而提高了模具加工企业的经济效益和社会效益。这有利于引导模具加工人员科学掌握模具加工的表面质量和尺寸精度,还有利于改进传统的磨削与切削等加工技术,提升模具加工的精度水平,促进模具的精密加工以及高速加工技术的不断完善,实现高速加工技术朝着精准化、自动化、灵活化、科学化的方向发展。

3.3高速加工技术设备对模具加工精度的影响

高速加工技术设备包括机床、工件、工具和夹具,在使用这些模具的过程中,往往会由于夹紧力、切削力以及重力作用影响,使高速加工模具发生变形。如果加工模具发生变形,会导致原本处于平衡状态的加工模具的静态几何关系因受力不均衡而发生变形,进而导致加工模具出现精度误差。因而,为了降低加工模具的精度误差,加工企业应当合理控制加工模具的受力变形程度。如果在进行模具的加工过程中遇到设计方案与实际情形不一致的情况,即模具加工精度误差和设计方向偏离问题。此时设计人员应当及时进行审核和考察,及时纠正遇到的问题。这有利于大大提高模具加工的效能,进而提升模具加工的精度水平。模具加工精度,也被称之为“加工误差”,是衡量模具加工质量的重要标准。模具加工精度是指模具在加工前的设计预想与模具加工后的实际情况相符合的程度。在对模具的加工采用热处理应用技术时,由于各种热力会对模具加工工艺系统产生热变形等破坏性影响,导致模具加工内部的运动关系和几何关系失衡,这种加工误差会占高速加工模具技术精度总误差的绝大部分,比例约为百分之四十至百分之七十。

4.结语

综上所述,随着我国科学技术的日益更新和社会经济的蓬勃发展,为了保证高速加工技术的高质量和高效率的基础,加工人员应当关注模具加工工艺完善和优化的重要性,充分实现模具加工工艺技术与国际化先进工艺的接轨,尽最大努力降低模具精度的加工误差,优化高速加工工艺流程的优化设计程序,使其能够实现模具精度多元化、精确化的加工控制。模具加工人员还应当根据模具的不同特点和适用范围,尤其要注意对优化模具加工精度方法和初始参数的合理选择,采用灵活多样的解决方法解决具体问题,使高速加工技术能够符合模具加工精度的设计要求,进而促进模具加工业技术的优化和创新。

参考文献

模具加工范文6

关键词:汽车模具;拐角;铣削力建模;仿真预测

DoI:10.15938/j.jhust.2016.04.010

中图分类号:TG506

文献标志码:A

文章编号:1007-2683(2016)04-0050-09

0引言

模具被广泛应用于汽车、航空航天等领域,而模具材料通常是典型的高强度、高硬度材料,属于难加工材料,模具形貌特征复杂,在其型面或型腔内上存在很多不规则特征的拐角,于是带来诸如加工效率不高、模具表面质量难以充分保证、刀具使用寿命过短等一系列问题,这在很大程度上制约了我国模具技术的发展,在汽车模具中的拐角表现为多样化和不规则性的尖角、圆角或钝角等,角度大小不同的过渡线连接可能出现在平面、斜面或自由曲面上,图l(a)和(b)具有不同复杂拐角的典型汽车模具样件,

模具曲面拐角处的加工,由于刀轴运动响应过快,易超出机床允许值,极易导致模具加工表面出现加工缺陷,如图l(c)所示。

目前,铣削力预测方面的研究主要集中于三轴平面及简单的曲面铣削,对于模具拐角加工刀路轨迹铣削力预测的研究相对较少,在铣削力预测建模方面,Marrtellotti最早提出了平面铣削摆线运动轨迹,同时得到瞬时铣削厚度,而且针对刀具半径远大于每齿进给的情况,把刀具刃线轨迹看做圆,Koe―ni~sberge与SabberwM确立了铣削加工力学模型的基本形式,Takashi Matsumura 利用正交切削数据建立了流屑模型,基于最小能量法提出了针对流屑模型预测的铣削力模型,但利用此预测模型需要大量的计算,过程复杂且预测精度不高,Feng等将铣刀螺旋刃投影到半球面上建立近似的刃线方程,采用包含幂函数的非线性铣削力模型,建立了考虑球头铣刀倾斜和偏心因素的铣削力模型,成群林等提出了单刃螺旋立铣刀斜角切削有限元模型,研究中考虑到了铣削加工切削厚度变化特点,提高铣削力模拟的精度,杨勇建立了双螺旋刃即主、副切削刃同时切削的有限元模型,并对钛合金材料Ti6A14v进行了铣削力模拟研究,方刚等采用DEFORM有限元软件建立了二维有限元模型,模拟了正交切削过程,分析了切削力情况,王聪康应用ABAQUS有限元分析软件对斜角铣削加工过程进行模拟仿真,建立了有限元模型,然而目前有限元模拟分析不能准确的反应实际的铣削加工过程,研究技术依然不够成熟,Li等建立了基于假设刀齿路径呈圆形的铣削力机械模型,在刀具直径远大于每齿进给量的情况下可以获取较高运算精度,但是此法的通用性较差,Wu Lm 针对薄壁件拐角铣削过程,对通过优化切削参数来优化薄壁件拐角切削及加工稳定性进行了研究,吕苗苗对型腔圆角铣削力进行了相关研究,基于切削力经验公式给出了圆角铣削力公式,但该方法需要大量的铣削力系数测试实验,并且计算精度相对较低,吴世雄等针对拐角铣削力因素做了大量实验研究,分析了主要切削参数及拐角角度对铣削力的影响,但只是定性的分析了各个因素的影响程度,而没有给出准确的拐角切削力模型,

铣削力模型建立后,铣削力的仿真可以快速的反映出加工过程中参数的相关变化规律,数控加工仿真按是否考虑物理因素分为几何仿真和物理仿真,几何仿真只考虑刀具和工件几何运动,验证数控加工程序,检查刀具的干涉与碰撞等几何因素,物理仿真是考虑加工参数下,通过仿真模拟加工过程中动态力学特性,进而分析、预测刀具振动变形和刀具磨损等物理参数,Jalili saffa建立刀具的实体模型并利用模型模拟铣削力及刀具变形,模拟结果能很好的匹配上理论分析及实验的结果;Gonzalo建立两刃刀具模型,并利用有限元对铣削过程进行分析得到铣削力;黄志刚等基于切削加工的热一弹塑性有限元技术建立了热力耦合模型并进行切削仿真,将切削力与实验数据进行分析,验证其模型的准确性,丁云鹏针对多轴联动数控机床,建立铣削力模型,利用UG软件开发铣削力仿真系统,但是其铣削力建模是基于静态完成的,实际中动态特征还没有加以考虑,

由于拐角精加工时的加工余量过小,刀具与工件的挤压作用明显,导致工件材料不能以正常的切削状态加工,瞬态强响应的切削抗力易导致刀具系统弹性变形,使得已加工表面在几何尺寸上产生加工误差,从而不能保证加工精度;侧面加工让刀使侧面间隙变小,导致刀具刚性不足,引起刀具颤振后产生凹坑、麻点和模具型面表面粗糙度不均匀,因此,模具加工前对拐角处的铣削力等物理特性进行研究,可以更有效的指导拐角型面铣削加工,减轻或避免上述问题的出现,

1.汽车模具拐角铣削建模研究

瞬时切屑厚度是铣削力机械模型中的重要参变量,是切削加工条件和铣削力微元间的纽带,Mar-telotti提出铣削加工过程中刀具运动轨迹为摆线形状,用一个简化的公式近似表达平面铣削加工过程中的瞬时切屑厚度,Li等假设刀齿路径呈圆形提出切屑厚度计算模型,在刀具直径远大于每齿进给量的情况下可以获取较高运算精度,Ku―manchik 提出的切屑厚度解析表达式考虑了刀齿间距这一影响因素所导致的误差,Sai等提出的面铣瞬时切屑厚度计算方法采用圆弧插补的模式,姚运萍提出了同时考虑刀具偏心和变形的瞬时切屑厚度预测模型,Fontaine等提出运用矢量法计算切屑厚度,但是在刀具运动轨迹较复杂的情况下,进给方向的矢量化表达将变得极其复杂,所以该方法并不具备通用性。

模具任意角度拐角的三维铣削几何示意图如图

2所示

为了描述模具任意角度拐角切削厚度,设计的铣削几何示意图如图3所示。

对相关参数进行如下设定:

1)工件信息:已加工拐角圆弧半径为R1(mm)、待加工拐角圆弧半径为R2(mm)、拐角角度为西(°),

2)刀具信息:刀具半径为R(mm)、齿数为五

3)切削参数:转速为n(r/min)、轴向切削深度为dp(mm)、径向切削宽度为dr(1nln)、每齿进给量为Z(mm/齿),

图3中,H为已加工圆弧AB的圆心,F为已加工拐角圆弧中心,点C为刀轴中心与走刀路径的交点,任意拐角铣削过程中,X方向为进给方向,z为刀具轴向,根据右手坐标系来确定y轴方向,任意角度拐角加工阶段包括:直线进入切削阶段(点I到点Ⅱ),拐角圆弧切削阶段(点Ⅱ到点Ⅲ),直线切出阶段(点Ⅲ到点Ⅳ),假设精加工后两直线段的交点为O,拐角夹角为咖,将O点作为工件坐标系XOY的坐标原点,相对于工件坐标系,已加工拐角圆弧中心H、圆弧中心点F以及几个主要关键点的平面坐标如下:

2.铣削力系数识别

通过应用快速标定铣刀铣削力系数的方法,在固定的轴向切深和接触角的情况下,通过改变进给速度进行铣削力试验,为去除刀具偏心误差的影响,可以通过预先测量主轴每转的总切削力与齿数相除,令实测平均切削力等于理论平均切削力来辨别切削力系数,由于单个的切削刃只有处于切入角切出角范围内(φst≤φj≤φex)时才参与实际切削,单个齿每转周期内的平均切削力可以通过下式(22)计算,

如式(24)所示,通过测得铣削过程中不同进给量f2下的平均切削力,就可以对这些数据进行线性回归得到铣削力系数,这种试验标定过程可以重复应用于各种形状的铣刀,也可用于新型铣刀的铣削力系数的识别,

铣削力系数识别的试验样件如图5所示,工件材料为Crl2MoV模具钢,经淬火处理,洛氏硬度为58,刀具选取直径为8的硬质合金平底铣刀,齿数为4,刀螺旋角为30。,采用全齿切削,实验中应用Kisdel9257B测力仪进行铣削力的测量,实验参数及测量的数据如表1所示。

通过把以上数据进行线性回归便可以得到铣削力系数,各个系数纷性回归如图6、图7和图8所示,得到各铣削力系数如表2所示,

3.拐角铣削力建模

为建立一个稳态下的切削力模型,需要建立两个坐标系,一个是上文提到的直角坐标系,另一个是旋转圆柱坐标系β一R―Z,这两个坐标系共用坐标原点O,前一个坐标系没有绕刀轴方向旋转,而后一个坐标系围绕刀轴旋转,图9所示是所建立的平底立铣刀刀具坐标系,φ是刀刃相对y轴的位置角度,卢是每个切削点相对于切削位置角度,θ是任意切削点相对于Y轴的位置角度,具体如图9所示,定义在X=0处时β=0,β沿着刀轴正方向逐渐增大,

切削力模型中各个位置处的切削厚度,可以应用拐角铣削过程中的几何关系计算出来的结果进行计算。

4.拐角铣削力仿真与试验对比

4.1基于MATLAB的拐角铣削力仿真软件开发

基于建立的拐角加工铣削力仿真模型,通过利用MATLAB软件完成了不同圆弧半径、不同角度拐角加工过程铣削力的仿真,并利用MATLAB中的GUI模块开发出了方便用户使用的软件应用界面,用户只需要按照界面提示信息输入相应参数,如加工工件材料信息、刀具参数信息、主要切削参数及所切削拐角的拐角角度等,就可以简单快捷的获取该条件下铣削力波形曲线,从而在切削加工前就提前预知刀具在该拐角切削过程中各个方向铣削力的大体波动情况,从而更好地指导实际加工,

基于MATLAB2010a完成的设计软件,内部使用的回调函数采用MATLAB提供的M语言编写,最后利用MATLAB中的GUI(graphical user interfaces)模块实现界面制作,用户可以通过选择、激活这些图形对象,使计算机进行用户所设定的动作或变化,然后通过属性设置及相应回调函数的输入,进行GUI界面与所编写的M文件的链接,软件开发原理如图ll所示,拐角铣削力仿真界面如图12所示。

4.2拐角铣削加工试验

基于平底立铣刀拐角铣削力建模相关理论,进行了拐角铣削加工试验,

试验刀具选用平底立铣刀,通常其切削刃螺旋角为20°一45°该刀具半径为R,刀具螺旋角为JB,立铣刀齿数为z,平底立铣刀示意图如图13所示,铣削方式为顺铣加工,拐角几何参数及切削参数如表3所示,试验测得60°拐角各个方向的铣削力如图13所示,相同切削条件下进行的铣削力仿真如图14所示。

由图14可见,在60°拐角切削过程中,铣削力会出现一定程度的波动,特别是Y方向,相比而言,z方向铣削力较为平稳,

由图14、15可见,当刀具铣削拐角时,对于x方向而言铣削力仿真值的峰值大于实际值;Y方向而言,虽然两者有一定差别,但可以看出实际值的极值处于仿真值之间;对Z方向而言,仿真值和实际值基本相同。

由此可见,本文所开发的任意角度拐角铣削力仿真软件能够较好的预测拐角铣削力,为拐角加工过程中铣削力的预测、切削参数的优选等提供有力保障,

5.结论

在各个制造业领域,模具有着广泛的应用,为了提高模具的耐用性和稳定性,加工模具所用的材料都是硬度很高的难加工材料,同时模具中还大量存在形状各异的拐角特征,在这些拐角的数控加工的过程中,往往会存在铣削力变化幅度过大、振动突然加剧,刀具磨损破损过快等现象,为了从理论上解决这些问题,,建立起拐角加工过程中能通过铣削加工参数有效预测铣削力的模型,切屑厚度能有效地将加工参数和铣削力微元间联系起来,因此从分析拐角加工中铣削参数和切削厚度的几何关系出发,最后实现针对拐角加工的铣削参数和铣削力之间的预测模型建立和仿真软件的开发,主要得到以下结论:

1)基于离散刀位点方法,通过对平底立铣刀拐角铣削进行了几何分析,建立了任意角度拐角铣削过程铣削加工参数和平均切削厚度间的计算模型,

模具加工范文7

关键词:模具型腔;数控加工;高速铣削;电火花加工;工艺优化设计

中图分类号:TG547 文献标识码:A 文章编号:1671-7597(2013)12-0121-02

1 概述

在模具的型腔铣削加工工艺中,数控加工中心已经广泛应用开来,随着软件像UG NX的CAM功能的实现及不断发展强大,数控机床在加工质量、精度上都上了一个台阶,然而很大程度上还要取决于加工工艺人员操作及编程水平的技术高低。除此之外,模具的型腔物理性状尽管多种多样,所组成这些基本特征种类是不多的。不同的加工特征,对应着就需要不同的加工工艺,通过对比、研究传统工艺技术要点,研究并总结规律,提高加工效率和加工质量。如何把传统工艺能够很好地结合到数控加工中心是一个能够提高加工效率的有效途径,首先介绍模具数控加工技术相关特征。

1.1 模具制造的基本要求和特点

在设计模具时,若要保证产品的质量,单单设计合理是不够的,还需要拥有一流的模具制造技术来生产制造模具。以下为模具设计的基本要求:

1)制造精度高、产品合格、效能发挥好;2)使用寿命长;3)制造周期短;4)资金成本低。

其特点是模具制造加工过程中和普通机械加工是不一样的,前者难度较大,具有较多特殊性:制造质量高、形状复杂、材料硬度高的模具硬度高及单件生产模具制造、设计和制造周

期长。

1.2 模具制造的主要加工方法

模具制造的主要加工方法分如下几种:

1)铸造加工;2)特种加工;3)数控加工;4)机械加工;5)焊接加工;6)塑性加工。

特别需要注意的是,方法6数控加工中,对刀具悬伸量的控制,其量的大小变化会对加工质量影响变化很大。目前,就国内而言关于刀具悬伸的研究主要有:广东工大机电学院秦哲,通过刀具的合理使用,提高刀具的加工能力;淮海工学院陈书法,对引起刀具变形造成的加工误差进行了论述和分析,提出补偿方法。

1.3 数控铣削刀具及选择

数控加工刀具一定要和数控机床自动化程度、高效率及高速的特征相匹配,一般情况下,包含通用连接刀柄、少量的专用刀柄及通用刀具。

2 型腔模具加工工艺优化

物理模具型腔的数控铣削加工工艺流程如下:首先,对型腔进行粗铣;然后,进行半精铣;其次,选用精铣;最后对模型型腔处理清角。在数控铣削的工艺方案选择上,要综合考虑众多影响因素,如加工选用方法、所需设备、走刀及进退刀方式、切削所用量、制造精度、加工余量、夹持方式等。接下来我们将从三个方面展开描述:影响优化效果的铣削参数;工艺优化目标;两种型腔模具优化方式。

2.1 数控加工的铣削参数

在切削用量的各要素中,其重要性次序:1)切削速度;2)进给速度;3)吃刀量。如何在保证生产率的同时又能使刀具的耐用度保持良好,这是需要控制和掌握的难题。

铣削的主要参数如下:

1)切削深度ap;2)切削宽度ae;3)切削速度vc;4)主轴转速n;5)送进速度vf;6)体积切除率。

常见的两种铣削方式顺铣和逆铣。所谓顺铣,即铣刀切削速度方向与工件的进给方向一致;反之,称为逆铣,见下图1。

2.2 型腔粗铣工艺优化目标

对型腔进行粗铣加工工艺优化时,要达到提高加工效率、降低加工成本及留量均匀,便于半精加工和精加工的目标。

2.3 两种型腔模具加工工艺

型腔模具加工主要采用的方法:1)电火花加工;2)高速铣削。在普通型腔加工工艺研究的基础上,这里提出了一种新的模具型腔加工工艺综合型优化方案,使得生产率及质量上一个台阶,配合高速铣削使用电火花加工,这是一个未来的发展趋势。

2.3.1 工艺分析及设计

在加工模具时,高速切削在切削材料多样性、加工质量、效率、尺寸精度及加工硬度上,都展现了极高的水平。而电火花加工的补充使用,是为了弥补其在半径方面和深度方面的限制。高速铣削的加工工艺特点:在型腔模具加工中,加工比较平坦的质量高、效率高的浅型腔。电火花加工加工工艺特点:在模型需要加工复杂型面时,如带尖角、窄缝、深坑及深且窄小腔等,需要在材料性、表面粗糙度、尺寸精度及机床设备上制定方案。

在零件加工的技术要求层面上,高速铣削用于完成工件大部分加工表面的加工,然后借助于电火花加工来对清角及腔室加工,最后做一些表面处理,像抛光处理使表面粗糙度达到零件的使用要求。

2.3.2 加工工序

电火花加工工艺:使用D7140电火花成形机床完成型腔的加工,采用EROWA夹具来装夹电极,将工件安置在永性磁铁吸盘的台面上,使用千分表来调整工件基准面、机床轴移动之间的平行度,并采用基准球四面分中间接定位。

高速铣削加工工序:机床选择上选用MAKINO V33,刀具使用硬质合金,使用平口虎钳装夹工件,一次装夹完成全部工序。不同的区域采用各自的刀具和加工方式,分层次、多次加工,完成所需工步。合理确定工艺策略,粗铣-半精铣-精铣,合理安排铣削方式、走刀方式以及进退刀方式。

如何合理使用高速铣削加工与电火花放电加工型腔模具,把他们的优势利用起来,提高加工质量、加工效率并缩短制造周期,提高生产效率,是模具加工的重要课题。加工制造结果显示,有效的安排高速铣削与电火花加工工序来加工工件,可取得较好的效果。

3 结束语

本课题以模具型腔为研究对象,结合数控加工工艺,重点研究了模具型腔数控加工工艺的优化问题,对数控铣削和电火花加工工艺作相关分析。主要研究工作所得如下:

进行模具型腔数控铣削加工工艺优化研究。介绍数控铣削、高速铣削及电火花加工,分析对比并提出了合理的加工方式。

模具型腔的数控加工特征分析。详细分析了模具型腔数控加工特点、要求及铣削参数。

进行了铣刀悬长与加工精度的研究。研究了数控加工时刀具悬长对加工精度的影响。

下一步工作建议:

未实现软件自动化生成刀具组合,有待于进一步完成。

未形成能够指导实际应用的数据库。

未全面考虑力、振动因素对加工精度的影响。

模具加工范文8

线切割是冲模零件的主要加工方式,然而进行合理的工艺 分析 ,正确 计算 数控编程中电极丝的设计走丝轨迹,关系到模具的加工精度。通过穿丝孔的确定与切割路线的优化,改善切割工艺,这对于提高切割质量和生产效率,是一条行之有效的重要途径。

2实际轨迹的计算

根据大量的统计数据表明,线切割加工后的实际尺寸大部分处于公差带的中位值(或称“中间尺寸”)附近,因此对于冲模零件图样中标注公差的尺寸,应采用中位值尺寸作为实际切割轨迹的编程数据,其计算公式为:中位值尺寸=基本尺寸+(上偏差+下偏差)。

例如:图样尺寸外圆半径r25–0.04,其中位值尺寸为25+(0–0.04)/2=24.98(mm)。

由于线切割放电加工的特点,工件与电极丝之间始终存在放电间隙。因此,切割加工时,工件的 理论 轮廓(图样)与电极丝的实际轨迹应保持一定的距离,即电极丝中心轨迹与工件轮廓的垂直距离,称为偏移量f0(或称为补偿值)。

f0=r丝+δ电

式中r丝——电极丝半径

    δ电——单边放电间隙

线切割加工冲模的凸、凹模,应综合考虑电极丝半径r丝、单边放电间隙δ电以及凸、凹模之间的单边配合间隙δ配,以确定合理的间隙补偿值f0。

例如:加工冲孔模(即要求保证工件的冲孔尺寸),以冲孔的凸模为基准,故凸模的间隙补偿值为:f凸=r丝+δ电,凹模尺寸应增加δ配。而加工落料模(即要求保证冲下的工件尺寸),以落料的凹模为基准,凹模的间隙补偿值f凸=r丝+δ电,凸模的尺寸应增加δ配。见图1。偏移量的大小将直接 影响 线切割的加工精度和表面质量。若偏移量过大,则间隙太大,放电不稳定,影响尺寸精度;偏移量过小,则间隙太小,会影响修切余量。修切加工时的电参数将依次减弱,非电参数也应作相应调整,以提高加工质量。

图1凸模与凹模的间隙补偿值

(a)凸模(b)凹模

根据实践经验,线切割加工冲裁模具的配合间隙应比国际上所流行的“大”间隙冲模(《手册》推荐值)应小些。因为凸、凹模线切割加工中,工件表面会形成一层组织脆松的熔化层,电参数越大,表面粗糙度越差,熔化层较厚。且随着模具冲裁次数的增加,这层脆松的表层会逐渐磨损,使模具的配合间隙逐渐增大,满足“大”间隙的要求。

3穿丝孔的确定

穿丝孔的位置对于加工精度及切割速度关系甚大。通常,穿丝孔的位置最好选在已知轨迹尺寸的交点处或便于计算的坐标点上,以简化编程中有关坐标尺寸的计算,减少误差。当切割带有封闭型孔的凹模工件时,穿丝孔应设在型孔的中心,这样既可准确地加工穿丝孔,又较方便地控制坐标轨迹的计算,但无用的切入行程较长。对于大的型孔切割,穿丝孔可设在靠近加工轨迹的边角处,以缩短无用行程。在切割凸模外形时,应将穿丝孔选在型面外,最好设在靠近切割起始点处。切割窄槽时,穿丝孔应设在图形的最宽处,不允许穿丝孔与切割轨迹发生相交现象。此外,在同一块坯件上切割出两个以上工件时,应设置各自独立的穿丝孔,不可仅设一个穿丝孔一次切割出所有工件。切割大型凸模时,有条件者可沿加工轨迹设置数个穿丝孔,以便切割中发生断丝时能够就近重新穿丝,继续切割。

穿丝孔的直径大小应适宜,一般为φ2mm~φ8mm。若孔径过小,既增加钻孔难度又不方便穿丝;若孔径太大,则会增加钳工工作量。如果要求切割的型孔数较多,孔径太小,排布较为密集,应采用较小的穿丝孔(φ0.3mm~φ0.5mm),以避免各穿丝孔相互打通或发生干涉现象。

4切割路线的优化

切割路线的合理与否将关系到工件变形的大小。

因此,优化切割路线有利于提高切割质量和缩短加工时间。切割路线的安排应有利于工件在加工过程中始终与装夹支撑架保持在同一坐标系内,避免应力变形的 影响 ,并遵循以下原则。

(1)一般情况下,最好将切割起始点安排在靠近夹持端,将工件与其夹持部分分离的切割段安排在切割路线的末端,将暂停点设在靠近坯件夹持端部位。

(2)切割路线的起始点应选择在工件表面较为平坦、对工作性能影响较小的部位。对于精度要求较高的工件,最好将切割起始点取在坯件上预制的穿丝孔中,不可从坯件外部直接切入,以免引起工件切开处发生变形。

(3)为减小工件变形,切割路线与坯件外形应保持一定的距离,一般不小于5mm。

线切割加工中对于一些具体工艺要求,应重点关注切割路线的优化。

(1)二次(或多次)切割法对于一些形状复杂、壁厚或截面变化大的凹模型腔零件,为减小变形,保证加工精度,宜采用二次切割法。通常,精度要求高的部位留2mm~3mm余量先进行粗切割,待工件释放较多变形后,再进行精切割至要求尺寸。若为了进一步提高切割精度,在精切割之前,留0.20mm~0.30mm余量进行半精切割,即为3次切割法,第1次为粗切割,第2次为半精切割,第3次为精切割。这是提高模具线切割加工精度的有效 方法 。

(2)尖角切割法当要求工件切割成“尖角”(或称“清角”)时,可采用方法一,在原路线上增加一小段超切路程,如图2所示的a0-a1段,使电极丝切割的最大滞后点达到程序a0点,然后再前进到附加点a1,并返回至a0点,接着再执行原程序,便可切割出尖角。也可采用图3所示的方法二的切割路线,在尖角处增加一段过切的小正方形或小三角形路线作为附加程序,这样便可保证切割出棱边清晰的尖角。

图2尖角切割方法

图3尖角切割方法二

(3)拐角的割法线切割放电加工过程中,由于放电的反作用力造成电极丝的实际位置比机床x、y坐标轴移动位置滞后,从而造成拐角精度较差。

电极丝的滞后移动则会造成工件的外圆弧加工过亏,而内圆弧加工不足,致使工件拐角处精度下降。为此,对于工件精度要求高的拐角处,应自动调慢x、y轴的驱动速度,使电极丝的实际移动速度与x、y轴同步。也就是,加工精度要求越高,拐角处的驱动速度应越慢。 

(4)小圆角切割法若发现图样要求的内圆角半径小于切割时的偏移量,将会造成圆角处“根切”现象。为此,应明确图样轮廓中最小圆角必须大于最后一遍修切的偏移量,否则应选择直径更细的电极丝。在主切割加工及初修切割加工中,可根据各遍加工时不同的偏移量,设置不同的内圆角半径,即对于同段轮廓编制不同的内圆角半径子程序,子程序中的内圆角半径应大于此遍切割的偏移量,这样就可切割出很小的圆角,并获取较好的圆角切割质量。

5切割前工件的准备

为了减少切割过程中模具的变形及提高加工质量,切割前凸凹模零件应满足以下要求:

(1)工件上、下两平面的平行度误差应小于0.05mm。

    (2)工件应加工一对正交立面,作为定位、校验与测量基准。

    (3)模具切割应采用封闭式切割,以降低切割温度,减小变形。

    (4)切割工件的四周边料留量应为模具厚度的1/4为宜,一般边缘留量不小于5mm。

    (5)为减小模具变形,并正确选择加工方法和严格执行热处理规范,对于精度要求高的模具,最好进行两次回火处理。

    (6)工件淬火前应将所有销孔、螺钉孔加工成形。

    (7)模具热处理后,穿丝孔内应去除氧化皮与杂质,防止导电性能降低而引起断丝故障。

    (8)线切割前,工件表面应去除氧化皮和锈迹,并进行消磁处理。

模具加工范文9

【关键词】模具制造;数控加工;数控车削技术;数控铣削技术

1、模具的数控加工

1)模具数控加工的特点

(1)模具的制造是单件生产。每一副模具都是一个新的项目,有着不同的结构特点,每一个模具的开发都是一项创造性的工作。

(2)模具的开发并非最终产品,而是为新产品的开发服务,一般企业新产品的开发在数量上、时间上并不固定,从而造成模具生产的随机性强、计划性差,包括客户变动大、产品变化多,因此对模具制造企业的人员有更高的要求,要求模具企业的员工必须能快速反应,也就是要有足够的基础知识和实践经验。

(3)模具制造要快速。新产品的开发周期越来越短,而模具又是新产品开发费时最多的项目之一,模具开发的周期随之缩短,因此模具从报价到设计制造过程都要有很快捷的反应。特别是模具制造过程必须要快,才能达到客户的要求。因此就要求模具的加工工序应高度集成,并优化工艺过程,在最短的加工工艺流程中完成模具的尽量多的加工。

(4)模具结构不确定。模具需要按制件的形状和结构要素进行设计,同时由于模具所形成的产品往往是新产品,所以在模具开发过程中需要有更改,或者在试模后,对产品的形状或结构作调整,而这些更改需要进行重新加工。

(5)模具加工的制造精度要求高。为了保证成形产品的精度,模具加工的误差必须时行有效控制,否则模具上的误差将在产品上放大。模具的表面粗糙度要求高,注塑模具或者压铸模具,为了达到零件表面的光洁,以及为了使熔体在模具内流动顺畅,必须有较低的表面粗糙度值。

2)模具数控加工的技术要点

(1)模具为单件生产,很少有重复开模的机会。因此,数控加工的编程工作量大,对数控加工的编程人员和操作人员就有更高的要求。

(2)模具的结构部件多,而且数控加工工作量大。模具通常有模架、型腔、型芯、镶块或滑块、电极等部件,需要通过数控加工成形。

(3)模具的型腔面复杂,而且对成形产品的外观质量影响大,因此在加工腔型表面时必须达到足够的精度,尽量减少、最好能避免模具钳工修整和手工抛光工作。

(4)模具部件一般需要多个工序才能完成加工,应尽量安排在一次安装下全部完成,这样可以避免因多次安装造成的定位误差并减少安装时间。通常模具成形部件会有粗铣、精铣、钻孔等加工,并且要使用不同大小的刀具进行加工,合理安排加工次序和选择刀具就成了提高效率的关键因素之一。

(5)模具的精度要求高。通常模具公差范围在达到成形产品的1/5~1/10,而在配合处的精度要求更高。只有达到足够的精度,才能保证不溢料,所以在进行数控加工时必须严格控制加工误差。

(6)模具通常是“半成品”,还需要通过模具钳工修理或其他加工,如电火花加工等,因此在加工时,要考虑到后续工序的加工方便,如为后续工序提供便于使用的基准等。

(7)模具材料通常要用到很硬的钢材,如压铸模具所用的H13钢材,通常在热处理后,硬度会达到52~58HRC,而锻压模具的硬度更高。所以数控加工时必须采用高硬度的硬质合金刀具,选择合理的切削用量进行加工,有条件的最好用高速铣削来加工。

(8)模具电极的加工。模具加工中,对于尖角、肋条等部位,无法用机加工加工到位。另外某些特殊要求的产品,需要进行电火花加工,而电火花加工要用到电极。电极加工时需要设置放电间隙。模具电极通常采用纯铜或石墨,石墨具有易加工、电加工速度快、价格便宜的特点,但在数控加工时,石墨粉尘对机床的损害极大,要有专用的吸尘装置或者浸在液体中进行加工,需要用到专用数控石墨加工中心。

(9)标准化是提高效率、缩短加工时间的有效途径。对于模具而言,尽量采用标准件,可以减少加工工作量。同时在模具设计制造过程中,使用标准的设计方法,如将孔的直径标准化、系列化,可以减少换刀次数,提高加工效率。

2、数控加工在模具制造中的应用

1)模具的数控加工技术按其能量转换形式不同可分为:

(1)数控机械加工技术。模具制造中常常用到的如数控车削技术、数控铣削技术,这些技术正在朝着高速切削的方向发展。

(2)数控电加工技术,如数控电火花加工技术、数控线切割技术。

(3)数控特种加工技术。包括新兴的、应用还不广泛的各种数控加工技术,通常是利用光能、声能、超声波等来完成加工的,如快速原型制造技术等。

这些加工方式为现代模具制造提供了新的工艺方法和加工途径,丰富了模具的生产手段。但应用最多的是数控铣床及加工中心;数控线切割加工与数控电火花加工在模具数控加工中应用也非常普遍;而数控车床主要用于加工模具杆类标准件,以及回转体的模具型腔或型芯;数控钻床的应用也可以起到提高加工精度和缩短加工周期的作用。

在模具数控制造中,应用数控加工可以起到提高加工精度、缩短制造周期、降低制造成本的作用,同时由于数控加工的广泛应用,可以降低对模具钳工经验的过分依赖。因而数控加工在模具中的应用给模具制造带来了革命性的变化。当前,先进的模具制造企业都以数控加工为主来制造模具,并以数控加工为核心进行模具制造流程的安排。

2)数控车削加工

数控车削在模具加工中主要用于标准件的加工,各种杆类零件如顶尖、导柱、复位杆等。另外,在回转体的模具中,如瓶体、盆类的注塑模具,轴类、盘类零件的锻模,冲压模具的冲头等,也使用数控车削进行加工。

3)数控铣削加工

数控铣削在模具加工中应用最为广泛,也最为典型,可以加工各种复杂的曲面,也可以加工平面、孔等。对于复杂的外形轮廓或带曲面的模具,,如电火花成形加工用电极、注塑模、压铸模等,都可以采用数控铣削加工。

4)数控电火花线切割加工

对于微细复杂形状、特殊材料模具、塑料镶拼型腔及嵌件、带异形槽的模具,都可以采用数据电火花线切割加工。线切割主要应用在各种直壁的模具加工,如冲压模具中的凹凸模,注塑模中的镶块、滑块,电火花加工用电极等。

5)数控电火花成形加工

模具的型腔、型孔,包括各种塑料模、橡胶模、锻模、压铸模、压延拉深模等,可以采用数控电火花成形加工。

总之,模具具有结构复杂、型面复杂、精度要求高、使用的材料硬度高、制造周期短等特点。应用数控加工模具可以大副度提高加工精度,减少人工操作,提高加工效率,缩短模具制造周期。同时,模具的数控加工具有一定的典型性,比普通产品的数控加工有更高的要求。

参考文献

[1]邱言龙.模具钳工实用技术手册[M].北京:中国电力出版社,2010.01

[2]刘洪璞.模具钳工实用技能[M].北京:机械工业出版社,2006.01

[3]张能武.模具工常用技术手册[M].上海:上海科学技术出版社,2008.10

模具加工范文10

对于中国这个制造业大国来说,模具是制造产品的基础,而如今模具的生产肯定离不开数控加工技术,数控加工技术可以连续对进行切换的工序不间断加工,节省了切换工序的时间,提高了工作效率,从而提高了模具制造企业的生产效益,节省了很多的劳动力,这也等于节省了很大一部分成本,而且数控机床加工精细,也大大提高了模具的质量。

二、模具数控加工的意义

第一,节省了模具制造时间,对开发出来的新模具能够及时制造出来。模具并不是最终产品,而是为新产品提供一个创造的工具,所以模具的生产并不是大量的,有可能每种模具就只制造一件,产品更新换代非常快,这就要求新模具的开发要跟上产品的更新换代,所以现在新模具的开发时间也逐渐缩短,而数控加工缩短了模具的制造时间,这就给新模具的开发节省了很大一部分时间,不仅如此,数控加工精细的特点也使加工出来的模具具有较高的质量[1]。第二,对模具的设计进行误差控制。新模具的开发并不是一制造出来就能生产出所需产品的,新模具的结构往往不是那么固定,即使跟随所需形状和结构进行制作出来以后也要进行产品的试生产,所以在模具制造过程中经常会有多处地方需要进行修改,这些修改就要对模具进行重新加工,为了保证产品的质量以及外观,对模具的设计必须要进行误差控制,否则将对产品有很大的影响,模具要求表面不能有较高的粗糙度,而数控加工能够对模具内外表面进行很好的误差以及粗糙度控制,使模具的生产更加符合生产商要求。

三、数控加工技术在模具制造中的应用

第一,控制模具误差方面。模具数控加工一般是通过控制数控加工系统误差来对模具的精确度进行控制的,所谓控制数控加工系统就是提高数控机床的稳定性和几何精度,以用来提高数控加工精度,现在的数控加工精度已经可以控制在亚微米阶段,有关专家正在对纳米级的数控加工进行研究。第二,加工应变能力方面。数控机床能够在同一机床和同一数控系统之下加工不同形状的模具,数控加工不像传统加工一样一次只能对一种模具进行加工,数控加工可以最大程度的实现加工柔性化,数控加工系统通过储存和编辑用户技术经验来进行同机床不同模具的制造。第三,管理方面。通过网络建立多种通信协议,在网络平台上指挥各种工作的完成,比如远程进行监视、远程操作加工程序、网络检测模具质量以及网络进行技术诊断等[2]。除了网络操作机器之外,也在网上监督员工的工作情况等。第四,智能化系统。计算机控制的加工CNC智能系统控制加工过程,具有自己诊断和自己调整特点的智能系统在加工过程中自动编程加工数据控制加工。

四、国内模具制造技术的回顾与模具

数控加工技术的未来发展前景第一,国内模具制造技术的发展回顾。自1978年至今,我国的模具制造业主要分为三个发展阶段,第一阶段,1978年到1990年的发展初期,这个阶段我国主要是靠引进硬件设备结合相应的合资运营方式来进行基础的制造工艺,这时候我国还不具备模具生产能力,但是引进硬件设备也使我国生产水平得到了提高,为后来我国自己制造模具打下了基础;第二个阶段是从1990年到2000年,这一阶段是模具制造技术在我国的稳步发展阶段,这时的计算机发展非常迅速,计算机用于制造业带动了制造业的快速发展,而机床作为制造业的领先者很早就用计算机进行控制,很大程度上提高了我国模具制造的水平,这一时期对于我国制造业而言是一次很大的变革,以前不敢想没法制造出来的模具都可以通过数控机床进行加工制造出来,但是,这一阶段的数控加工技术还存在着很多的问题,比如数控机床制造模具的成本过高,技术不到位,模具质量得不到保证,产量也相对较低,并且这时的数控系统还主要是进口而来,进口成本过高导致数控机床没法得到大量应用,我国的制造能力还是很低;2000年至今是第三个阶段,这一阶段是我国模具数控加工技术发展的阶段,我国现在已经能够自主研发所需要的数控系统,2001年我国加入世界贸易组织WTO,之后在国际贸易上我国终于获得公平对待,可以用平常价引进先进的数控机床,极大的促进了我国制造业的发展,提高了我国的模具制造水平,由此,数控技术开始在我国真正的被广泛应用于模具制造,模具制造技术得到飞速发展,从而产生了很多新的模具制造技术,但是,比起发达国家我国的数控加工技术还相对比较落后,所以我国还需加快对数控加工技术的研究以达到能对一些高精度的大型模具进行制造[3]。第二,对模具数控加工技术的前景展望。未来的模具制造可能会从以下几点进行研究发展:(1)激光加工技术,近几年激光加工技术是模具加工研究的热点,使用激光加工,能使加工的模具更精细化,还能避免磨损以及加工刀具变形等问题;(2)超声波加工,超声波是振动产生的一种物理现象,模具制造中使用超声波能对导电材料和绝缘体进行差别化的切削,使切削方法更严密;(3)高压水射加工,将水的压力势能转化为动能对材料进行切削,这种方法零污染且适用于任何材料的切割,对环境起到一定的保护作用。

五、结束语

综上所述,数控加工技术在模具制造中有着传统加工技术望尘莫及的优势,其不但能使模具的质量有所提高,也能够节省劳动力降低成本,对制造企业而言是非常有利的,我国数控加工技术相对还比较落后,但是政府对数控加工技术的研究非常支持,相信不久我国的模具数控加工技术一定能得到相应的成就。

作者:李华波 单位:马鞍山职业技术学院

参考文献:

[1]杨扬.基于改进GEP的数控铣削过程物理建模及工艺参数优化方法研究[D].华中科技大学,2013.

模具加工范文11

关键词:塑料瓶盖 模具设计 加工工艺

中图分类号:TQ32 文献标识码:A 文章编号:1674-098X(2014)02(c)-0087-02

伴随着中国经济的飞速发展,现代塑料成型技术也得到了长足的发展,其中影响塑料成型生产最关键的三大因素是:高精度的模具、合理的加工工艺方法、高效快速的成型设备。高精度的塑料模具是保证合理的加工工艺方法的实现、保证塑料件的质量的关键因素。先进的制造设备只有配备高精度且合理的模具才能完全发挥设备的效能,当今一般塑料产品的更新换代都以生产模具的更新为基础的。

该文将以塑料瓶盖的模具设计为重点,阐述当今模具设计的一些技术特点。在塑料瓶盖的模具设计中以完整内螺纹式瓶盖最常见,其对模具设计要求也较高,由于其内腔结构复杂,加工精度也较高,需使用先进CAD/CAE技术,配合高精度的加工设备才能达到设计要求。

1 塑料件结构分析

该设计为完整内螺纹式瓶盖,其效果图如图1所示,其塑件总高50 mm,整体壁厚2.5 mm,外径为30 mm,内外壁有拔模斜度,内径螺距为5 mm。可选用较常用的聚乙烯(PE)材质制造。内螺纹式瓶盖与瓶身配合时需具有良好的密封性能,不会产生泄漏。

对于完整内螺纹式瓶盖一般有以下几种成型方法:(1)采用强制脱模的形式,此方法会导致脱模困难,且内螺纹变形严重,产品的合格率也会随之降低。(2)采用活动螺纹型芯的模具进行手动脱模,此方法形式结构较简单,但生产效率较低,人工成本较高,不适用于大批量生产。(3)采用自动脱螺纹技术,此方法结构适中,生产效率高,人工成本低,可适用于大规模批量生产。

完整内螺纹式瓶盖设计属于大批量生产,一般都采用一模多腔。综合开始模具的加工费用等因素,采用一模16腔的模具形式来制造。浇注采用热流道浇注模式,点浇口进料,在动模装置那需设置型芯固定板和推板。

2 塑料瓶盖的模具设计

在做模具设计时,一般应使设计基准与加工基准一致,这样可减少由于尺寸的累积而造成的加工误差。如关键的加工尺寸的定位基准不统一,在加工制造过程中需确定加工基准,需进行相应的尺寸精度换算,消除在加工工程产生的误差,一般要求机械设计员需了解相应的加工工艺。

根据客户的需求和上文所述的塑料件的结构分析,模具设计装配图如图2所示。

2.1 浇注口设计

由于此模具采从模具中心进料,从而利于塑胶填充性能增腔,排气性也较好,在分模时较易实现现有浇注系统冷凝料与塑浇件的切断功能,此方法生产效率较高,所以浇铸系统采用点浇口浇注。因为塑料瓶盖的全螺纹部位需与瓶身上部的螺纹口相配合,为保证螺纹的高强度性,需增加螺纹部分的壁厚来满足性能,为防止在注塑过程出现气泡、表面变型等缺陷,需将相应的点浇口设置在塑胶件的底部中心的位置,此方法可提高塑胶件的流动性,提高注塑件的尺寸稳定性,从而提高产品的质量。

2.2 限位机构设计

此拉杆限位机构比较常用,其是利用螺纹的连接性能来实现定距分模的,结构工艺性较好,其常用来分模时的定距定量。工作时,上卸料板(3)与流道板(4)分开,动模部分也随之往后移动,在拉杆的作用下使上定模板(2)与上卸料板(3)也随之 分离,将流道里的一些冷凝料取出,动模部分将随之往后移,在小拉杆端面限位的作用下,使上定模板4(2)与垫板(10)分开,完成相应的脱模动作。

2.3 螺纹旋转分离结构设计

螺纹旋转分离结构设计是利用塑料零件上的螺纹旋转从而带动轴向移动的方法实现塑件脱模的,在推板的作用下将塑件自然顶出。其工作过程是:在主轴(17)轴向移动下,其连接的太阳轮(15)也随之转动,从而啮合行星轮(9)转动,通过行星轮(9)的转动从而带动行轮轴的传动,在导向螺纹套(12)的作用下,使塑件与向配合的螺纹分离,达到塑件脱模的目的。

3 塑料瓶盖的加工工艺分析

3.1 加工工艺对模具质量的影响

选择合理的加工工艺对模具质量有着极其重要的影响,如加工细长轴、薄厚较薄的支撑件时、若装夹的位置不当,在加工时会导致工艺的变形,从而导致尺寸超差,影响模具的质量。以下阐述的是模具加工过程中常出现的几个典型问题。

(1)在加工模具型腔和型芯倒圆角时,若进给量过大时会留下较深的粗刀痕,这些刀痕一般会产生应力集中,在淬火加回火时会形成微小裂纹,在装配至注塑机上工作时,由于使用时间较长会产生裂纹扩展现象,从而导致工件断裂。

(2)工件的热处理工艺对模具质量的影响也较大,如在工件淬火会影响工件的尺寸,在精加工时需考虑其淬火变形的导致的余量不足问题。如在切割T10等碳钢工件时,由于其材料本身的淬透性能较差,其淬火的位置对工件整体的精度影响比较大,选择不合适的淬火位置会导致工件变形严重大。

3.2 塑料瓶盖模具材料的选用

选择模具材料时需综合考虑模具的使用工况和加工工艺,一般此类热作模具的材料常选用5CrMnMo和5CrNiMo等材料,但由于其材料的合金含量不高,当工件模具的尺寸大于300 mm时,其淬透性较差,心部会出现不能淬透的情况,所以此类材料一般适用于尺寸较小的模具中,若模具尺寸较大,且形状较复杂一般选用5Cr2NiMoVS和3Cr2MoVNi等材料。

3.3 塑料瓶盖模具的合理加工工艺

塑料瓶盖模具加工工艺的基本要求是减少工件变形和加工误差,避免由于应力集中而产生的裂纹。如在加工细长轴或薄壁零件时应增加支撑点来保持工件的加工刚度。其他需要注意的情况如下。

(1)在加工塑料瓶盖模具的型芯倒圆角时,一般在粗加工后留有足够的余量,一般余量取0.5~1 mm,再进行后续半精加工和精加工。留有足够的余量是保证工件在热处理后能够有足够的尺寸余量来精加工。

(2)在精磨加工时一般选用粘结性差和切削力强的精砂轮,在砂轮机上空跑几次后清磨;减小磨削进刀量和使用合适冷却剂,在精磨后一般需进行回火处理,保证工件的尺寸稳定性。

4 塑料瓶盖的常见质量问题分析

塑料瓶盖在注塑模加工过程中,常由于模具、材料和设备等原因导致零件出现飞边、缺料等现象,增加零件的不合格率。常见的质量问题如下。

4.1 缺料

一般在塑料加工过程中,由于模具的型腔填充不满,从而造成零件的外形与设计不符的现象叫缺料。

(1)工艺方法

导致塑胶件缺料的工艺因素很多,其中最重要的原因是填充压力小,注射时间短和模具温度低三个因素造成的。填充压力小时,注塑机在注塑成型时,会导致型腔的压力不足,塑胶很难填充满整个型腔,从而导致零件缺料;注射时间短也会导致塑胶未完全充满型腔,导致零件缺料;模具温度低,会加速塑胶凝固,液体流动性减小,也会导致塑胶不能充满整个型腔,造成缺料现象。

(2)设备原因

导致塑胶件缺料的设备原因主要是射嘴部分,一般为射嘴堵塞,一般方法是清理射嘴可以解决;射嘴漏胶也会导致缺料,此类故障一般需更换射嘴。

(3)模具原因

一般由于模具内部排气不通畅造成的,由于型腔内积累的空气无法排出,会造成塑胶填充量不足,从而导致缺料,采取的措施是降低塑胶的充填速度或在模具上增加相应的排气孔。

由于热流道堵塞或流动不平衡造成塑胶熔料流动不顺畅,造成零件的缺料,一般采取的措施是提高缺料产品相对应的热浇流道温度,并使用精致且干净的原料。

4.2 飞边

飞边一般发生在模具的分型位置上,如:模具的分型面、滑块的配合位置、镶件的侧隙、推杆的孔隙等地方。当溢料问题不及时解决将会飞边扩大。镶件侧隙和推杆孔隙产生的溢料会使塑胶件卡在模具上,影响分模。

(1)工艺方法

一般由于注塑机的注塑压力过大或注塑的速度较快的原因造成的。由于其模具型腔内的高压高速导致模具的张力增加产生溢料的现象。一般解决的措施是延长注塑的时间和保压时间。

(2)设备方面

机器自身合模力不够。导致模具不能正常压紧,一般在选择注塑机型号时,机器所标定的的额定合模力一般须大于注射成型件轴向横截面积在注射时所形成的张力,否则将造成脱模,形成飞边。当注塑机的合模装置调节不合适会产生合模不均衡、模具自身的平行度不够也会造成飞边现象。

(3)模具原因

一般是由于模具的设计不合理所造成,此问题很难解决,需重新设计模具。

4.3 缩水

塑料缩水现象主要是因为由于体积收缩,壁厚处的表面原料被拉入,冷却后在成品表面出现凹陷痕迹。缩水是成品表面所发生的不良现象中最多的,大多发生于壁厚处。

(1)工艺方法

注塑机注塑的速度和保压时间较少,使得塑胶件的的流动性不足,首先进入模具型腔的塑胶件冷却较快,无足够的保压时间来进行补缩,一般解决的措施是采用更高的注塑压力。

(2)模具原因

塑料瓶盖的模具内部的排气不通畅,也会导致型腔内有多余空气不能排除,需要补缩的塑胶也较少,零件的收缩较大,一般措施为对模具进行维护保养和增加排气口。

5 结语

该文着重介绍了塑料瓶盖的模具设计与加工,其模具结构比较简单,紧凑且加工成本较低,其合理的限位结构和螺纹旋转分离结构是该文的设计亮点,通过相应的可靠性分析,此模具结构适用于大批量生产,且经济效率较高。对塑料瓶盖的加工工艺分析和典型的质量问题分析进行阐述,合理的运用这些成熟的加工工艺方法可提高塑料瓶盖模具生产效率,也是公司持续发展,取得较好的经济效益的前提条件。也对提高劳动生产率、降低生产制造成本有着深刻的意义。

参考文献

[1] 王先逵.机械制造工艺学[M].北京:机械工业出版社,1995.

[2] 王兴天.注塑工艺与设备[M].北京:化学工业出版社,2010.

模具加工范文12

【关键词】数控加工技术;模具制造;具体应用

对于我国来说,数控加工技术兴起的比较晚,但是发展的比较迅速,而对于数控加工技术在模具制造中的应用这一问题的研究,我国相关的专家和学者已经对其进行了相应的分析,也给出了相应的建议和实施方案,本文主要是在借鉴了相关专家和学者既有研究成果的基础上,结合自身多年来的工作经验和所掌握的理论知识,对此问题的进一步分析,希望能够对行业相关工作人员相关工作的开展起到一定的参考和借鉴的作用。

1数控加工技术的内涵及特点

可以说,数字加工技术的出现带来了一场新的革命,概括的来讲,数控加工技术主要包括数控编程和数控机床加工两个方面。数控编程是一种专业性特别强的编程,尤其是对于比较复杂的模具来说,其难度更大,而数控加工技术中的数控编程是一种高质量的编程,能够很好的满足多种模具的加工要求,也能够充分的发挥数控机床工作的性能,对于模具加工质量和效率的提高都有着很好的促进作用。而数控机床加工属于模具制造的硬件设施应用,他对模具加工的质量和效率也有着十分重要的影响,所以,就目前情况来看,数控机床正朝着高效、高速、高精度“三高”方向发展,以求得模具尺寸的精确度更高、表面质量更好,而与此同时,也能够使得模具的设计、加工方案变得更好、更高效,而从数控加工技术这些变革来看,也使得模具制造工作发生了革命性的变化。而至于数控加工技术的特点,通过相关的分析和研究,总结出如下几点:第一,生产效率比较高。也就是说相比其他的技术,数控加工技术是一种数字一体化的控制技术,所以,将其应用到模具制造的实践工作中去,能够使得整个工作流程变得更加高效、高速,这样一来,不仅使得模具制造的时间得到了有效的减少,而且对于产品质量的提高也有着一定的促进作用。而具体来说,相对于传统的模具加工技术,数控加工技术既能够有效的节省单个产品的生产加工时间,而且也能够有效的缩减各个工序的交接时间,对于生产效率的有效提高有着很好的促进作用。第二,数控加工技术使得模具生产自动化的程度得到了有效的提高。相比传统的模具加工方法,数控加工技术的应用采用的是数字化的机械操作技术,不仅连续性强,而且自动化程度也很高,这样一来,不仅有效的降低了实际操作工人的劳动强度,而且也能够有效的降低模具生产的错误率,使得模具的质量得到有效的提高。第三,数控加工技术的应用使得整个模具生产工作变得更加稳定。相比传统的模具加工方法,数据加工机床配备了一系列的核心装置,而这些装置是由很多高科技的硬件和软件构成的,例如具有CRT显示器、印刷电路板等等,而这些核心装置的应用,使得整个工作变得精确度更高,模具质量更稳定。第四,数控加工技术的应用能够实现多坐标的联动。也就是说,数控机床主要由主轴电机、进给单元、进给电机以及主轴驱动单元等几个关键部分组成,之后,通过电气和电液确保几个进给的联动,同时,也很好的完成了定位、直线以及平面和空间曲线的加工工作,这一操作也比较适合复杂模具的加工,对于加工效率和效果的提高都有着不同程度的促进作用。

2数控加工技术在模具制造中的具体应用

数控加工技术在模具制造中的具体应用,主要从计算机建模、模具的机械加工、机械加工过程中可能出现的问题三个方面进行了分析,具体内容如下所述:第一,对于计算机建模环节,主要是以客户的要求为根本的出发点和落脚点将二维图纸转换为三维图纸,先使用UG软件对虚拟模具进行分模,之后由相关的编程人员根据数控机床的实际性能进行编程加工,也就是说将所编的程序转化格式类型,将其处理成数据机床能够自动识别和运行的程序,为后续工作的开展奠定有效的基础。第二,模具的机械加工可以说是应用数控加工技术进行模具加工的整个工作环节中最重要的一个环节了,在整个环节中的重要内容就是选择合适的专用刀具来进行必要的粗加工和精加工,而且刀具的选择会对模具加工的质量、成本和效率产生直接的影响。就拿最常见的模具加工过程中的铣削加工为例,在铣削加工的过程中经常会用到圆角立铣刀、球头刀、锥度铣刀、平端立铣刀等等,而在实际加工的过程中,对于刀具的选择,一般以被加工模具的型面形状为主要的参考依据来选择道具,而且在进行精加工和粗加工环节所需要的刀具也是不一样的,此外,在选择刀具的过程中需要遵循由大到小、粗加工时尽可能的选择圆角立铣刀等等,也只有这样,才能在增加刀具使用寿命的同时,使得模具加工的质量也得到有效的提高。例如,由于原型材料选用不当出现的加工工艺参数设置不当等系列问题,而且在实际进行模具加工的过程中,也会由于采用的铣刀不合适或者是工艺参数不合理等出现模具表面拉毛等问题,而且在数控铣削的过程中,如果是时间比较长的话就容易出现粘刀等情况,所以,为了有效的避免上述问题的出现,就需要我们在实际加工的过程中做到严格遵守纪律规则,并做到精益求精。又如,对于旋转类模具,一般采用数控车削加工,如车外圆、车孔、车平而、车锥而等。酒瓶、酒杯、保龄球、方向盘等模具,都可以采用数控车削加工。对于复杂的外形轮廓或带曲而模具,电火花成型加工用电极,一般采用数控铣加工,如注塑模、压铸模等,都可以采用数控铣加工。对于微细复杂形状、特殊材料模具、塑料镶拼型腔及嵌件、带异形槽的模具,都可以采用数控电火花线切割加工。模具的型腔、型孔,可以采用数控电火花成型加工,包括各种塑料模,橡胶模、锻模、压铸模、压延拉深模等。对精度要求较高的解析几何曲而,可以采用数控磨削加工。

3提高数控加工技术在模具制造中应用有效性的建议

为了切实的提高数控加工技术在模具制造中应用的有效性,我认为需要从以下几个方面来努力:第一,对模具进行合理的分类,并选择合适的数控机床。事实上,在实际进行模具加工的过程中,用于模具加工的数控机床的类型是很多的,比如数控铣加工、数控电火花加工等等,而在实际加工的过程中,需要将其进行合理的分类,并能够遵循成本最低、生产效果最好的基本原则。第二,要时刻关注行业技术的发展,不断的优化和改进既有的方法和技术。当今时代,各项技术都得到了新的发展和进步,而要想提高数控加工技术在模具制造中应用的有效性,就需要在不脱离当前发展形势的前提下,不断的进行研发和开发,采用更多新的材料和技术,提高模具制造的质量,以不断的提高模具生产的速度,让技术得到不断的革新,也只有这样,才能更快更好的生产出更多的模具,提高整个工作的效率和效果。第三,要不断的优化整个加工的程序,提高生产效率。整个加工程序的优化是提高生产效率和效果的关键内容,而为了不断的优化整个加工程序,一方面需要制定和完善相关的制度规范,细化制度规范的内容和准则,并将其落到实处;另一方面,还需要不断的提高行业工作人员的综合素质,使其整个工作变得更加专业,而这就需要行业工作人员自身要树立终身学习和不断提高自己的理念,同时,也需要企业定期的对其进行相关的培训和考核,从宏观层面对其进行必要的刺激和激励,此外,还需要制定相关的奖惩机制,并与行业工作人员的切身利益直接关联,以此来提高工作人员的责任感和使命感,避免人为原因造成的各种失误和错误,这样一来,不仅使得数控加工技术得到了有效的应用,而且能够真正的提高整个模具制造工作的效率和效果。

4结语

总的来说,数控加工技术在近年来得到了广泛的发展和应用,而这一技术的发展也在很大程度上推动了模具加工行业的发展和进步,对于企业规模的扩大,和企业现代生产的发展和进步都有着一定的推动作用,而由于本人能力有限,本文所做的相关分析仅仅是本人工作经验和理论知识的总结,同时,本人也将在今后的学习和实践工作中做进一步的研究和努力。

参考文献:

[1]姜永梅.基于UG数控加工技术在锥度弯头模具制造中的应用[J].黑龙江科技信息,2010(14):36~37.

[2]滕冠.数控加工技术在模具制造中的应用[J].科技传播,2011(12):185~192.

[3]李媛.浅谈数控加工技术在模具制造中的应用[J].科学咨询(科技•管理),2014(08):88~89.

[4]楚丹妮.数控加工技术在模具制造中的应用[J].电子技术与软件工程,2015(03):172.

[5]黄庆会.数控加工技术在模具制造中的应用及趋势研究[J].现代工业经济和信息化,2015,5(11):42~43.