HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 电源技术

电源技术

时间:2023-05-30 09:28:11

电源技术

电源技术范文1

英文名称:Telecom Power Technologies

主管单位:信息产业部科学技术司

主办单位:武汉洲际通信电源集团公司

出版周期:双月刊

出版地址:湖北省武汉市

种:中文

本:大16开

国际刊号:1009-3664

国内刊号:42-1380/TN

邮发代号:38-371

发行范围:国内外统一发行

创刊时间:1984

期刊收录:

核心期刊:

期刊荣誉:

Caj-cd规范获奖期刊

联系方式

期刊简介

电源技术范文2

1.分布式电源技术的主要内容及其优势

分布式电源主要可以分为以太阳能、地热能以及风能等可再生天然资源发电技术和通过液体式燃料进行发电的热燃机发电技术形式,总而言之,无论是哪种发电技术都满足当今的环保技术需求。当今我国电能主要是通过集中发电的形式,远距离输出电能并与大型电网进行相连,此种电力系统虽然具有很大容量,但其跟踪负荷不太灵活,并且一旦在电网局部发生事故,将很容易扩散为大面积停电的情况。分布式电源与以往传统供电方式有着很大的区别,有着显著的优势,它主要是安装于用户周边,通过与大电网进行相互配合,不但能提升供电的安全稳定性,并且在电网出现事故时,可以防止扩散至大面积范围,避免造成更大的损失。此外,分布式电源还可以最大限度满足用户的峰值负荷,并以此可以降低发电设施的建设成本。

2.分布式电源的应用现状

当今世界很多国家的电力系统都已经将分布式电源相关技术列为重点研究课题之一,尤其基于社会各界越来越关注环保以及地球资源开发利用等方面原因,使得分布式电源技术已经成为未来电力能源行业的发展趋势,并且已经逐步得到广泛使用。我国电力行业主要的研究课题大多停留在电源本身,对于分布式能源技术等方面的研究仍然较为不足,可虽然我国可持续发展战略目标的深入进展,对于分布式电源技术的科学应用已经成为十分重要的改革工作。发达国家的电网相对比较完善,具有较强的抗冲击能力,因此当分布式电网接入之后,基本不会对主网产生影响。可我国电网结果仍然不够完善,当分布式电源接入电网时则会受到一定的影响,所以国外分布式电源技术不能直接应用于我国,必须先对国外的分布式电源进行完善改良,才能应用于我国电网现状。我国当前一些重要的用电单位已经构建了分布式电源系统,主要采用的是与供电系统进行网络合并的方式。但如今我国分布式电源仍然与世界先进水平存在一定差距,同时也不具备相关政策支持,基于技术层面的不足,也无法吸引投资商进行投资开发,以至于很大程度地遏制了我国分布式电源的应用。

3.分布式电源对电力系统造成的应用影响

分布式电源主要有两种应用方式,分为独立和并网两种方式,如果分布式电源进行独立运行时,将很难确保供电的质量,例如供电的功率以及连续稳定性,如果加入储能设备或者和柴油发电等设备进行并联,虽然某种程度来说,提升了供电质量,但却增加了建设成本与维护费用。当前通常是将一定区域内中的分布式电源进行并联,构成规模性局域电网,实现能源间的互补,从而大幅提升供电质量,并防止额外成本的支出,由此可见分布式电源对电力系统是有着重大意义的革命创新性技术。当分布式电源接入网后,会对网络中的一般用户其供电电压造成直接的影响。供电质量的主要指标即为供电电压,因此电源供应部门必须保证供电电压控制在一定的规定范围之内。虽然电压稳定是全电网系统中的问题,但是供电电压的变化往往只是开始于其中某个负荷点,通过某点电压质量的变化,进而扩散到整个电网系统,因此世界多个国家都对于分布式电源与电网连接的电压有着明确的相关规定,规定配电系统要在35KV以下,并且根据分布式发电的机组容量差异,选取相应的并网电压。通常容量越大,选取的并网电压也就越大。

4.分布式电源的未来发展趋势以及面临的挑战

社会各界对于分布式电源的优势以及应用的可能性已经达成了全面共识,但由于其技术本身尚不够成熟完善,因此此种技术在未来发展的实际应用中仍然存在着些许问题以及挑战。首先分布式运行的规划技术以及开发运行都有待加强,此外为了确保分布式电源可以实现连续性的调度操作与实时同步控制,必须在其中加入先进的通讯网络以及传感器等相关技术。并且给予分布式电源对于电网的影响,还需要进一步开发完善电网借口和储能技术,从而满足分布式电源在这些技术层面的高要求。虽然分布式电源十分符合当今社会对于能源的需要,但由于成本过高,因此必须在未来的实践中,不断研发新技术,以降低控制建设成本。

5.结束语

随着人们生活水平的逐渐提高,人们对环保等方面有了更高的要求,同时为了保障国家的可持续发展战略,节能也成为当今能源技术的重要发展方向。基于当前这种环境形势,使得分布式电源开发技术得以具有广阔的发展前景,但此技术在实际操作的过程这种还存在着些许问题,因此需要电力行业工作者在实际中不断探索、研发、改进分布式电源开发技术,根据我国实际情况,并积极汲取发达国家的先进经验,构建出一套适合于我国电能实际生产需要的分布式电源应用技术系统。

作者:钱胜永 单位:新疆疏勒 69018 部队

电源技术范文3

    1现代便携式设备电源原理

    1.1便携式电源原理粗电指电能质量较差一次交流电,实际应用多数需将其转换为精电即直流电。根据输出,电源可分为4类:整流AC-DC、逆变DC-AC、变频AC-AC和直流变换DC-DC。电源组成原理不同可分为LDO线性直流稳压电源和开关电源,开关电源分为隔离型开关电源和非隔离型开关电源[1]。LDO线性直流稳压电源,纹波小、功耗高、效率低30%~40%,不适合高效便携式电子设备;隔离式开关采用变压器调节输出电压,安全、高效,效率能达到80%,但技术难度大,成本高,体积大,用于较大电子设备;现代便携式电子设备一般采用锂电池供电,电源电路采用DC-DC直流变换,将电池输出直流电压转换成系统需要的各种直流电压,转换效率高、静态电流小,是现代便携式电子设备常用的电源转换电路[2,3]。DC-DC变换是将固定的直流电压变换成系统所需的直流电压输出,经直流斩波,将输入电压斩成脉冲方波,由储能元件实现升压或降压,整流、滤波后输出高效率、高精度、高稳定度二次直流电压[4]。DC-DC变换电路控制方式分为硬开关技术和软开关技术,硬开关包括PWM脉冲宽度调制和PFM脉冲频率调制,PWM调制方式不改变开关周期,改变开关占空比控制输出电压幅度;PFM调制方式是占空比不变,调制信号频率随输入信号幅值变化;软开关谐振变流器是利用LC串并联谐振网络实现开关零电压导通ZVS和零电流关断ZCS,实现开关开通和关断功耗为零,减小变换器开关损耗。DC-DC直流变换器电路形式主要有:Buck降压斩波器,Boost升压斩波器,Buck-Boost降压或升压斩波器等,根据便携式设备要求选择不同的电路形式[5]。1.2便携式电源节能技术现代便携式设备电源技术成熟,便携式设备连续工作时间、待机时间、使用寿命成为各大厂商竞争焦点,增加便携式设备连续工作时间和待机时间最直接的方法增加锂电池容量,提高电源转换效率,降低系统功耗。根据摩尔定律,集成电路内部器件集成度每18个月翻一翻,CPU数据吞吐量增大处理速度提高,系统功耗不断增加,锂电池发展速度远跟不上集成电路发展速度,电池发展相对滞后已经成为制约便携式电子设备发展的一个瓶颈[6]。提高便携式设备电源转换效率主要方法有提高电源整流器件效率,降低电源内部静态电流。传统PWM控制DC-DC变流器,系统平均功耗Pav=CO×V2DD×f,CO负载等效电容,VDD电源电压,f开关频率,看出DC-DC变换器功耗与开关频率成正比,与电源电压平方成正比,降低变换器开关工作频率能有效降低开关动作次数降低功耗,代价是降低CPU数据处理速度,电源装置中无源器件体积增大静态功耗增大,;当前处理器主频不断提高数据处理速度不断加快,降低系统功耗只有降低电源电压[7]。DC-DC直流变换器主要损耗为整流二极管和续流二极管,即使采用快恢复二极管FRD、超快恢复二极管SRD和肖特基二极管SBD,在二极管上产生较大压降,降低电源效率,传统二极体整流电路已无法满足现代便携式电子设备,当前便携式设备电源基本采用同步整流技术,用通态电阻极低功率MOSFET,代替整流二极管,降低整流二极管导通压降,同步整流技术要求栅极电压与被整流电压相位保持同步,有效降低整流损耗,提高电源效率[8,9]。便携式设备电源智能管理技术,指按时间顺序对设备电压和电流智能化管理,根据用户使用情况不同实时控制模块输出电压,有效分配电源功率,降低电源模块静态电流,降低空闲设备能耗,最大限度减小损耗提高系统效率。硬件管理指硬件电路选择静态电流小的COMS器件,降低静态功耗;软件管理指使用便携式电源管理器对电源动态管理,降低空闲设备功耗。现代智能手机功能十分完善,使用不同功能供电不同,例如接打电话、发短信、听音乐、无线上网、看电影,需要不同供电,采用电源智能管理技术能有效降低系统功耗,提高便携式设备电源效率[10-11]。便携式设备电源采用系统整流模块休眠技术提高电源效率,整流模块休眠技术根据输出电流大小实时动态控制电源系统各套整流模块,及时关闭不需要的整流模块,降低系统负载损耗和空载损耗同时保证输出,整流模块休眠技术根据实际需要,采用软件设置休眠时间和休眠次序。整流模块休眠技术要求电源系统至少要有两套以上整流模块,提高电源效率同时也增加了硬件开销,提高便携式设备的实际成本[12]。

    2现代便携式设备电源应用

    2.1MC34063原理MC34063输入电压范围宽,静态电流低,输出驱动电流大,振荡频率高是一款典型的双极性现代便携式设备DC-DC电源控制器,输入电压3.0~40V,输出电压1.25~40V,最大输出电流1.5A,开关管集电极与发射极最大电压40V,开关振荡频率100Hz~100kHz,可实现电源升压、降压、反向等变换,效率高达80%以上[13],MC34063内部模块原理及引脚功能如图1所示。MC34063内部包含1.25V带隙参考电源、电压比较器、振荡器、逻辑控制器和开关管。MC34063DC-DC变换器第5脚输入电压与1.25V带隙参考电压比较,比较后结果输入逻辑控制器与振荡器输出振荡方波相与,相与后逻辑电平输入RS触发器控制开关管T1和T2;振荡器内部包含恒流源,第3脚外接定时电容调整振荡频率,外接电容充电,振荡器与比较器同时输出高电平,RS触发器置1开关管导通。电流IS检测端实时检测7脚电阻RSC电压,电流检测端电压超过300mV,振荡器外接电容CT快速充放电,控制开关管占空比,稳定输出电压,MC34063应用电气参数如表1所示,应用条件不同电气参数适当调整[14]。2.2降压电路及参数计算用MC34063DC-DC变换器设计一个输入电压+5V输出电压+3.3V纹波小于10mV降压直流电源,输出电流IO(max)=500mA原理如图2,降压电路电流流经检测电阻R1、开关管T1与T2、电感L1、电容C1、续流二极管D1、负载RL,通过比较器反向输入端第5脚外接电阻R2与R3监视输出电压Vout=1.25×(1+R2R3)。DC-DC变换器处于TON状态,RS触发器S端输入高电平,开关管T1与T2导通,电流经开关管集电极到发射极,第2脚外接储能元件电感L1充磁电容C1充电,电感L1达到最大峰值电流IPK停止充磁,续流二极管D1反向截止;DC-DC变换器处于TOFF状态,RS触发器S端输入低电平,开关管T1与T2截止,第2脚外接储能元件电感L1和电容C1放电为负载提供电流,续流二极管D1导通,由于电感电流不能突变,输出电流方向不变,只要开关频率与储能元件充放速度足够快负载可以得到连续的直流电压,实现降压[15]。根据运放“虚短”和“虚段”,集成电路内部比较器第5脚输入电流为零,取R3=1.2kΩ,输出电压Vout=1.25×(1+R2R3),得R2=2kΩ,通过输出回路电阻R2与R3电流I=VOUTR2+R3=1mA,电阻R2功率P=U2×I=2mW,电阻R2与R3选择0.125W;续流二极管D1选择肖特基二极管1N5819,最大反向浪涌电压VRRM=40V,最大正向浪涌电流IFSM=25A,二极管均方根电压VRMS=28V,平均整流电流I(AV)=1A,正向压降VF=0.6V。设MC34063开关振荡频率f=20kHz,周期T=50μs,由参数手册得TONTOFF=VOUT+VFVIN(MAX)-VSAT-VOUT=3.3+0.65-1-3.3=3.90.7,TON≈40μs,TOFF=7μs,振荡电容CT=4×10-5×TON=4×10-5×40×10-6=1600pF,开关管电流IPK=2IOUT=1A,第7脚电流检测引脚限流电阻RSC=VIPKIPK=300mV1A=0.3Ω功率0.25W,电感L1为VIN(MAX)-VSATIPK×TON=5-0.61×50uS=220uH,输出电容CO实际应用选择100μF耐压10V电解电容[16]。2.3升压电路及参数计算用MC34063DC-DC变换器设计一个输入电压+3.3V输出电压+5V纹波小于10mV升压电源,输出电流IO(max)=500mA原理如图3,升压电路电流流经检测电阻R5、开关管T1与T2、电感L2,续流二极管D2,负载RL,比较器反向输入端监视输出电压,Vout=1.25×(1+R5R6),R6取1.2kΩ,R5为3.6kΩ,功率0.25W。当DC-DC变换器管T1与T2处于TON状态,DC-DC变换器形成2个回路,即电感回路和电容回路。回路1:由电容C6、负载RL构成,电容C6放电,保持电源输出电压和电流幅度稳定、方向不变,续流二极管反向截止,由电容提供能量;回路2:由电感L2、开关管T1与T2构成,电感L2将电源电能转变为磁能存储,充电电流由0到IPK;当开关管T1与T2处于TOFF电感中磁能转换为电能输出提升输出电压,实现升压[17]。

    3性能参数测试

    MC34063DC-DC变换器电路测试仪器有优利德(UNI-T)四位半数字万用表UT56,泰克(Tektronix)100MHz数字存储示波器TDS2014C,负载电阻采用10Ω额定功率5W水泥电阻,经实际测试电源性能参数如表2所示。由MC34063DC-DC构成的便携式设备电源变换器输出稳定可靠,纹波小,线性调整率和负载调整率优良,效率高,自适应性强,完全能满足便携式设备实际使用要求。

    4结束语

    MC34063DC-DC变换器电源控制电路,体积小,成本低,效率高,静态电流小,待机功耗低,有效提高了现代便携式设备电源电池待机时间、工作时间和使用寿命,是现代便携式设备理想电源变换器,可广泛用于实际生活。

电源技术范文4

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。

总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。

参考文献

(l)林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992

(2)季幼章:迎接知识经济时代,发展电源技术应用,电源技术应用,N0.2,l998

(3)叶治正,叶靖国:开关稳压电源。高等教育出版社,1998

张国君,男,1962年生,博士后,副总工程师,1997年5月于天津大学测控博士后流动站出站,现从事通信电源和电力直流操作电源系统的研究开发工作,并在清华大学电力电子研究中心进行第二站博士后研究工作。

电源技术范文5

1电力电子技术的发展及其特点

电力电子技术经历了一个漫长的发展过程。最早应该追溯到第一个晶闸管(FGH)的诞生。“晶闸管”是美国一家通用电气公司的问世标志,为电力电子技术的发展开了先河,并促进了电力电子技术在许多新领域的应用。目前很多家用电源开关内部使用的都是FGH,是第一代半控型器件,不能自行关断,需要使用者根据需求进行操作。以FGH为核心的变流电路在电子能源转换过程中扮演着重要的角色,主要功能是使交流变成直流,为用户提供全面的安全服务。随着科学技术的不断进步,电力电子技术水平也呈现出不断发展的趋势。传统的FGH逐渐被“GTR、GTO”等新颖的电力转换器件所代替,从“传统电力电子技术”向“现代电力电子技术”转变。电力电子器件的研究和开发,也推动了当前电力行业的进步,使人们进入高频化和智能化的电力时代。“IGBT”的出现,更是实现了电网之间的非同期互联,解决了很多电源开关的不稳定问题,避免电路中出现短路和功损。很多家居用品和用电器等,都需要配置相应的开关,才能为用户提供便利,有效的实现开关和电路互通。在电源开关系统中加入电力电子应用,是新时期的科技需求,也是每个家电设计工作者需要掌握的重点技术。影响电力传输的因素有很多,比如“电路的距离、电压的大小、传输电线的质量、电路设备的品牌”等,这些都会影响电流在线路中的传输速率。如果电路距离过长、电压强度不够、电路设备不够完善,就有可能降低电源开关的反应灵敏度,增加电路能量的消耗。此外,有的用户不注意用电安全,反复使用电源开关,就会导致短路电流,烧断保险丝等问题出现,甚至产生漏电的危险,对用户的人身安全产生威胁。所以新时期的电力工作者必须事先预想这些可能存在的安全隐患,做出有效的应对政策和解决措施,加大电力电子技术在电源开关中的应用。传统的电力传输系统比较简单,不存在电容充电电流,电力的功率损耗也相对较小,这适合小家电的用户使用。很多大型的家用电器,比如“电冰箱、洗衣机、电视机、跑步机”等,就需要改变传统的电力传输系统,采用高压直流输电输送的方式,使电源系统拥有较快的调节速度,方便用户的操作,并且投入到市场当中使用。这些大功率的电子器件,电流的传输形式和传统的小电路不同,用户在使用时必须注意安全,建立有效的防范意识,逐渐改善高压直流输电设备的性能。

2开关电源的种类和特点

随着科学技术的不断发展和运用,各种各样的电源开关出现在人们生活当中。根据电路类型和电流传输方式的不同,开关电源主要分为以下几类。(1)传统输入和输出的类型。由于输入和输出方式的区别,可以将开关电源分为“DC/DC和AC/DC”两种变换器。“DC/DC”模式更注重电流的可靠性和安全性,而“AC/DC”注重的是电源开关的低耗和低噪声设计,给用户提供更提心的服务。根据两种电流传输形式不同,用户需要选择适合自己家庭的电源开关,发挥“DC/DC和AC/DC”两种变换器的价值和作用。(2)可以通过驱动方式的不同,可以将开关电源分为“接触式和非接触式”两种。通过字面意思理解,“接触式”需要用户接触电源开关才能进行相关的操作,而“非接触式”则强调智能化和自动化,用户远程即可实现对电源开关的控制。“接触式”的开关比较传统,但是灵敏度极高,“非接触式”的开关虽然更加智能化,但助长了人们懒惰的思想。无论是哪种类型的电源开关,只要是用户需要的,都值得各大企业的充分研究和发展。(3)根据控制方式的不同,还可以将开关电源分为“PWM、PFM、脉冲宽度调制”三种。每一种电源开关都有自己的价值和特点,用户可以根据自己的需要自行选择。PWM是“脉冲宽度调制式”;PFM是“脉冲频率调制式”。只有把握电力电子能量传输的方式和方法,才能不断提高电源开关的使用性能,有效保证开关电源的使用效率,减少不必要的能量损耗。

3电力电子技术在开关电源中的应用

在了解电源开关之后,需要对电力电子技术在开关电源中的应用进行分析。通常情况下,电源开关都是利用“R-C或是L-C”的缓冲器。这种缓冲器有利于降低开关电源的能量损耗,为用户解决“开关反应慢”等问题,追求开关电源的高频化。但这种缓冲器的使用,可能会导致开关噪声的增加,还存在多种实用化方面的问题。相关的技术人员可以引入“谐振转换电路技术”,为用户提供较高的服务保障,在实现高频化的同时降低噪音。随着智能科技的持续进步,不间断电源(UPS)逐渐出现在大众的视野中。UPS是结合了计算机、通信系统等多种高科技、高性能的电源,能实现智能化的管理和控制系统,极大的提高了开关电源的使用效率。很多较大功率的“M0SFET、IGBT”等现代化电力电子器件,也可以作为不间断电源的应用模块,以便实现对UPS的智能化管理,使电力电子系统趋于简单化和科技化。此外,开关电源中的主电路设计,也有特定的需求,不能胡乱搭配电器元件。电路中的电子设备,必须满足非线性的特点,才能实现对电路的多路控制,使控制系统更加的结构化和内容化。开关电源的使用频率,可以通过电路的时间周期来控制实现,必要时可以引入通过“模糊控制、微机控制、人工控制”等多种技术来实现,以便为用户提供有效的控制系统。有的用户对家电的用电安全有较高的要求。比如“母婴室”、“儿童用电器”、“家用熨斗”等,使用者一般都是女性或小孩子,他们不懂得电力的传输流程,缺乏一定的安全意识。小孩子在使用这些大功率用电器时,容易发生危险,漏电和跳闸时不知道如何解决,甚至发生安全隐患。为了避免这些现象的发生,电力系统的设计者可以采用“柔性交流输电系统”,从本质上强化家用电器的防漏电功能,才能极大的保障用户的使用安全,为广大群众提供切实可行的电力服务。科学技术和通讯技术的发展,使电力传输系统成为各行各业的重点研究项目,同时也为“FACIS”技术的发展创造了先行性的条件。我们可以运用电力电力科技,在电源开关中加入“IGBT、FACTS”等可关断器件原件,改变系统的结构,提升电源开关的灵敏程度。无论是电路传输系统一致还是相位相反的电流,都要做好详细的设计规划,才能有利于实现电路传输的可靠性,扩大开关电源结合电力电子的市场活动。新时代在不断向前发展,只有结合新时代的科学技术,才能提高开关电源的使用价值。电力企业要广招贤才,收贤纳士,让更多的专业技术人员参与电力行业的研究和开发过程。总而言之,开关电源是现代电力电子技术最常见的应用。但是,开关电源在运行过程中也存在着电路复杂、电磁干扰等多种电路问题,严重时还会影响用户的使用体验。为了保证电力电子输出能量的可靠性,相关的技术人员一定要了解电力电子技术的发展及其特点,才能促进开关电源技术的发展进程,保证主电路正常工作,为人类的社会发展和生活动态提供各方面的支持。

电源技术范文6

关键词:新能源技术;分布式电源;电力系统

DOI:10.16640/ki.37-1222/t.2017.11.139

目前,全球济和科技已经发展到了一定的阶段,人们生活水平较之以往有了非常大的提升,电能作为人民生活和工业生产的重要能源,其需求量在日益增长。在这种形势下,基于新能源的分布式电源在电网中的应用可以增强电力企业在市场中的竞争优势,使其在电网系统中的地位愈发凸显。

1 分布式发电技术的基本概念

分布式发电是在集中式发电方式的基础上提出的一种相对技术,一般指的是发电功率大约为50kW,分散布置在用户周围的一种发电技术,该技术具有小型模块化、可靠性高、运行效率高等特点。从广义上来讲,分布式电源是指安装在电力用户周边的一种小型发电设备,与传统的电厂相比,该技术拥有着更加强大的任意性与自主性。

2 分布式电源在电网中的实际应用以及其特征分析

2.1 实际应用

基于新能源技术的分布式电源主要包括下面几种发电类型:内燃机、燃气轮机、光伏发电设备、生物发电设备以及风力发电设备等。这些技术产生电能使用的都不是传统的煤炭等能源,也不是应用核能,而是采用新技术和新能源来实现电能的转化,具有优良的环保性能,与现代环保理念非常契合。

(1)燃料电池发电技术。该技术的基本工作原理为:在电能转化的过程中,使用天然气以及甲醛等氢元素含量比较高的燃料,这些燃料在在与氧气相互作用的过程中可以生成H2O。在氢氧元素转化成水的过程中,氢氧离子会发生定向转移,从而形成电流。与传统的氢元素燃烧生成水相比,该技术的燃料中的氢元素在不进行燃烧的状况下,发生电化学反应,进而使得燃料中的化学能直接转化成了电能。目前,随着新技术以及新材料的发展,燃料电池发电技术正在日益成熟,其应用的燃料种类正变得愈来愈丰富。比如固体磷酸型燃料电池、电解质燃料电池、碱性燃料电池等。

(2)风力发电技术。该技术的能量转化原理为:在风力的作用下,风力发电机的扇叶发生转动,进而驱动发电机的轮毂发生同步转动,在此过程中齿轮箱的高速轴、联轴器、刹车盘和异步发电机转子进行运转,将机械能转化为电能,完成电能的转化。

(3)微型燃气轮机技术。就单独的微型燃气轮机发电来讲,该技术并不成熟,不适合在实际生活中进行推广,因为该技术将化学能转化为电能的效率仅仅为百分之三十,远远低于同类型发电技术。然而在实际生产中假如可以采用热电联产的方式将其联结,那么微型燃气轮机的发电效率就能够上升到百分之七十五,远高于同类型技术,且其还具备体积小、质量轻、操作简便等优点。从本质上来讲,微型燃气轮机仍然是汽轮机的一种,它使用的燃料主要为天然气、甲烷以及石油。目前,该技术已经比较成熟,具有一定的商业应用潜力。

(4)光伏发电技术。光伏发电技术的原理为通过光伏电池或者光伏设备将太阳能转化成人们生活和实际生产可以直接运用的电能。和传统的一些发电技术比较,光伏发电技术的发展已经较为成熟,其在电网中的应用正在逐渐增多,并且由于光伏发电技术使用的是环保、零污染以及取之不尽用之不竭的太阳能,因此其应用前景非常良好。

2.2 基于新能源技术的分布式电源在电网中的应用特点

与传统的发电技术相比,分布式电源具有高效率、高环保性、能源来源广泛以及节能等优点,因此,在电力需求不断增长,电网系统承受压力不断增大的情况下,分布式电源受到了人们极大的关注。当电力系统由于某些突发的原因产生故障影响其正常运行后,使用分布式电源,可以确保用户对电力的正常使用,还可以有效避免故障的进一步扩大,增强了电力系统运行的机动性与稳定性,可以为电力用户提供更优质的供电服务。另外,基于新能源技术的分布式电源的应用,还可以有效的降低配电站的建设成本以及输电成本,有效减少输电过程中对电能造成的消耗。

3 基于新能源技术的分布式电源在电网中应用的影响分析

分布式电源在电网中应用之后,使得传统的电网系统由辐射状转变成了高度交叉联结状态的电源网络系统,该系统实现了与用户之间的高度互联,对电力系统拥有十分重要的影响。

(1)明确分布式电源的具置以及电源容量是组建分布式电源系统的必要前提,在结合客户终端的具体容量要求以及所处的地理位置的基础上,综合分析所有的衡量指标,从而明确分布式电源采取何种发电方式。其分布式电源采取灰色并联、小波分析以及神经网络等技术,其发电容量要求是以满足负荷正常运作情况下所需具体能量为主,同时还能够承受突发事件,构建负荷模型。

(2)分布式电源在电网中应用之后,会引发一些电能质量以及输送问题。在应用分布式电源的过程中,配电系统潮流单向模式发生了改变,无法维持电压,造成有载调压变压器以及开关电容器等配电网电压调整设备出现了异常反应,进而影响到电能质量以及系统的稳定运行。所以在将来对分布式电源的研究过程中,要增强对电能质量以及电网运行问题的研究。

4 结束

基于新能源技术的分布式电源拥有环保性好、灵活度高、安全节能等优点,并且可以很好的满足电力系统以及用户的需求,因此,在将来,分布式电源在电力系统中的应用与推广是一种必然的趋势,对其进行研究具有十分重要的意义。

参考文献:

[1]崔岩.我国分布式电源发展规划与现状分析[J].电气应用, 2015(09).

电源技术范文7

1.1交直流一体化电源系统的直流充电模块

直流充电模块主要包括蓄电池组、绝缘监测、单元集中监控、单元直流馈电、单元充电模块、交流配电单元等共同组成。由于受到了开关器件性能的影响,因此每个开关电源模块只有几千瓦的最大输出功率,然而在实践中直流系统供电需要几百千瓦。为此,必须要选择并联多个高频开关电源模块的方式确保充电机完成大功率的输出,隔离变压器由于高频化因此具有更小的质量和体积,这样对模块化的实现非常有利。除此之外,选择软开关技术可以使开关损耗得以大幅度减少,并且使变换效率得以提升。在直流系统中绝缘监测可以对正负母线对地的绝缘情况进行时刻监视,如果正母线接地就有可能会导致出现保护的误动作,如果系统在负母线接地的时候出现一点接地的现象,就会导致断路器拒动[1]。

1.2交直流一体化电源系统的通信电源模块

在常规变电站中通信电源往往都是独立设置,从而将稳定可靠的电源提供给运动装置和融信设备。然而这种方式具有较高的设备投资、较大的占用空间等不足,而且其具有与站内直流系统相类似的一些功能,无法使智能变电站网络化、经济化以及简约化的要求得到满足。根据我国电网公司的最新规定,一些变电站必须要选择使用交直流一体化电源系统,不再单独配置通信电源,也就是经过DC/DC变换之后由直流系统向通信设备供电。在直流充电模块中选择冗余技术、均流技术、软开关技术、模块化小型化等高频开关电源技术在通信电源DC/DC变换器中同样适用。

1.3交直流一体化电源系统的UPS电源模块

在站用变压器发生供电故障之后,UPS可以将可靠的电能提供给交换机、五防闭锁机以及后台监控机等重要的负荷。在具体的运行过程中UPS存在着2路输入电源,其在正常的时候经整流、逆变将由交流输入的电能提供给负载。如果中断交流输入,那么在经过逆变后,将由直流输入的电能提供给负载。在UPS中的逆变部分和整流部分仍然对高频开关电源技术进行了应用。除此之外,UPS的非常重要的发展方向就是冗余技术和模块化[2]。

2交直流一体化电源系统均流技术和N+1冗余技术

UPS电源、通信电源和直流充电电源都选择了冗余供电方式并联N+1模块化,N+1冗余技术由于高频开关电源的模块化、小型化和高频化而得到了较快的发展。N+1冗余主要指的是选择N个电源模块并联供电从而使全部负荷的电能需要得到充分的满足,而要想使供电可靠性得以进一步提升,就需要再将一个电源模块并联进来,这样剩下的N个模块在其中的一个模块发生故障之后人仍然可以使供电的要求得到满足。相对于采用单台电源供电的方式而言,采用这种方式具有更高的可靠性。同时,选择热插拨方式能够在系统中随时将故障电源模块退出,这样就确保维护检修工作的方便性[3]。常用的高频并联电源模块均流技术为:以输出阻抗的大小为根据选择均流技术,采用这种方法具有较低的均流准确性,主从均流技术一般需要将一个主模块人为的确定下来,然后与其他的从模块之间开展通信。而民主均流技术并联运行的各个电源模块中并非是人为事先设定主模块,而是以哪个模块具有最大的输出电流为根据来确定,如果某模块而具有最大的输出电流那么其就属于主模块,而从模块就是剩余的模块,采用这种自动设定主模块的方法就可以确保冗余设计的实现。

3结语

目前新投用的变电站中大部分都属于智能变电站,因此其具有更高的可靠性要求,本文立足于UPS、通信电源和直流充电电源中应用高频开关电源技术的角度,对高频开关电源的小型化以及模块化等优点进行了分析,对提升直流电源可靠性的并联高频开关电源模块的均流技术和N+1冗余技术进行了重点研究。

电源技术范文8

【关键词】电力通信;通信电源;蓄电池

【中图分类号】TN86【文献标识码】A【文章编号】1006-4222(2016)10-0136-02

引言

这几年,我国对通信设备技术这方面比较关注,在这方面的发展日也益深入,并且也取得了非常大的成果,在我国通信网络正在不断的完善,这使电网运行的稳定和安全大幅度增高。通信电源对于通信设备来说非常重要相当于人的心脏,在通信过程中有着不可忽视的低位。目前,我国关于通信的理论性研究也正在不断壮大,电源设备的加强成了发展的必须。现阶段通信技术研究与开发的供电设备,主要是针对供电设备在整流电流器的应用。

1关于通信设备供电方式

通信电源对于通信设备来说就像是人的心脏,哪怕是在通信站里,都有着非常重要的地位。目前这方面的理论技术也在不断的进步,随之,通信电源也跟着不断的发展,主要变现是供电方式不同了,由集中向分散式供电靠拢和新型电力电子整流技术的使用以及免维护蓄电池的应用等。通信电源的供电方式都是采用集中供电的供。这种供电方式需要条件,一般是在可控硅相控整流器以及普通铅酸蓄电池的情况下运行,而且还存在缺点,其设备大、噪声严重、并且还伴有酸雾,所以不能将其放在靠近人群的地方。由于电力设备和负荷中心两者距离很远,并且在花费方面也比较高,因此该系统并不可靠。从20世纪80年代到现在,我国对开关整流器和免维护蓄电池的应用越来越重视,让我们看到了分散式供电的未来。关在使用分散式供电的同时也同样可以使用集中式供电,如果在通信机房中安置上供电设备,依据其相关环境我们可以有各式各样的方法。其与一般的供电发方法不同,它有投资少,操作方便、可靠,且容易实现智能化管理和不需要安排人值班的优点。与此同时也存在着缺点:电池的数量和花费的增多,对于交流供电的可靠性、电磁兼容性、供电设备等操作性能和维修人员的技术水平都有较高的要求。

2电力通信设备电源新技术

2.1开关器件

对于通信电源系统来说,整流器显得也尤为重要,其技术含量很高,同时对于技术更新程度也是很快的。晶闸管相控整流器在早期最常使用,并且现在正在广泛应用。对于开关整流器来说,开关装置是不可忽略的。在以前的使用中,可控硅整流做为整流开关,其输出电压和工作频率使用变导通角来实现的,这对于电网来说是致命的,且相应的液晶工作频率也为整流电源频率,使其出现体积大、低功率密度等现象的发生。现如今,MOSFET和IGBT等新开关器件被广泛使用,MOSFET的工作频率很大,可以达到几百千赫,甚至更高,在软开关技术后,达到数百千赫都是有可能的,这些都使高频率和高功率密度的整流器的发展有了很好的铺垫。开关电源作为DC-DC转换器的关键,并且受到世界的高度重视,成为各个国家研究的重点,最近30年以来,DC-DC变换技术也完成了从硬件到软件的转变过程。

2.2功率因数校正

一般来说,双击变换作为开关整流器内场使用的形式:首先由AC-DC整流以及滤波电路把交流输入改为到直流,然后由相应的DC-DC环节变成直流。对于非线形元件以及储能元件来说,它们为上一个阶段的整流和滤波电路的一个组合,因此,从电网侧看,可以把开关整流器看作以一个电容负载,以上所说使得电网供电过程出现不可预计的问题,不再是单一的基础波频率的正弦波,会出现谐波污染现象。同时还会使配电系统和变压器的损耗增加,使其电路电流增大,对于各种无线通信来说同样这是致命的干扰。

2.3防雷网络

雷电会使没有被保护的设备在一瞬间达到很高的电压,对于电力设备来说,其损害无法估计。雷击分为两类:①直击雷另;②感应雷,直接雷击线路和沿线的电线或电缆通过大量的雷电电流,同时会出现很大的电压直接加载到电源设备上和,会持续若干微赫兹,使电网无法正常工作,并且相关的整流器的工作频率也都是工频,导致出现体积大和低功耗密度的现象。

2.4免维护蓄电池

一般的开口式电源,在平常水在充电结束阶段被分解,在这个过程中,我们必须要适当添加蒸馏水。同时在充电的最后阶段,产生的氢和氧慢慢上升,并且将硫酸稀释并形成酸雾,对周围环境造成一定程度上的污染,所以必须清洗,这就加大了工人的功能工作量。免维护蓄电池与铅酸蓄电池的电解液一样,但是免维护蓄电池的密封非常好,电解液被吸附在高孔率的隔离板上,与开口式的电池不同的是,其电解液可以自由流动;极板栅往往使用少锑和无锑铅合金,正极和负极板均为独立板,使可以利用的物质不会轻易掉落,这就使其变得使用寿命更长;并且由于密封很好,水分不会被轻易分解,并且阴极吸收法会是气体的产生受到抑制,且氢数产生量也很少,所以无需再加蒸馏水。根据上述所说,免维护蓄电池将会降低了维修人员的工作量,在通信系统中也得到了广泛的应用。

2.5电源集中组网监控

关于通信电源的监控,必须有科学、集中的管理方案对通信电源进行管理,这将成为以后的发展潮流,这要做是为了对设备进行科学化化管理,并对其他通信设备进行集中化监控,能做到远程遥控、远程通信以及实时监控设备的运行状态,能够及时发现问题以此提高供电的效率。目前,国内通信部门正在形成一个智能电力和环境监测网络,同样,做这些工作也是达到对设备进行实时监控,在发现问题后能快速做出判断。

3通信设备对通信电源的要求

3.1可靠

要想使通信能够顺利进行,就必须将通信设备的可靠性提高,另外,还要提高电力系统的可靠性,要求电力系统不能出现1m/s的空隙,一个电源往往服务于几个通信设备,因此电力系统故障,会使通信系统发生故障。要想保障供电的可靠性,往往把整流器和电池进行并联。此外,在先进的开关整流器与多个整流模块并联运行时,若某个模块出现问题不会对供电造成影响。

3.2小型

现如今,集成电路发展迅速,小型化、集成化也越来越多的出现在集成电路中。为了附和通信设备的发展,供电单元必须也实现小型化、集成化。此外,要求通信设备体积小也体现在移动通信设备和航天通信设备中。为了提高各种集成电压调节器的供电质量和供电效率,无工频变压器的开关电源也得到了广泛推广。最近几年,在通信设备中,工作频率非常高并且体积也不大高的谐振开关电源得到广泛应用。

3.4高频率

随着通信设备容量的增加以电力系统负荷的增加,为达到节约的目的,必须将供电设备的供电效率提高。使用有效的设备电源是节能的一个最好方式节,在以前,通信设备大多采用相控整流,这样的电源效率很低而且损耗还特别大。但是高频开关电源不同,能达到2/3以上,所以选择高频开关电源能够做到节能作用。

4发展方向

电力系统通信电源系统设计在现在具有技术限制,电力系统通信电源技术的发展是现在电力行业应关注的重点。通过不断参考国内外相关经验,并把它加到自己身上可以有效提高技术的水平,正确把握发展方向,保证电力系统通信技术的先进性和实用性。

5结束语

现如今,电力系统通信正在不断的发展,同时,电源供电系统也日益发展壮大,供电系统的可靠性增强,尤其在电源发生故障时,其通信设备不能停止,若交流电源停止工作,通信专用的电池仅能维持8h,若果有必要的话,可以配备相应的备用电源。

参考文献

[1]王兆佩.电力通信规划的编制与管理.电力系统通信,2008:12~13.

[2]孙立成,周红军.电力通信专网的规划与实施.黑龙江通信学会学术年会论文集,2005,13.

电源技术范文9

关键词:通信电源;蓄电池的保养;维修管理技术;防雷技术;

1.前言

通信电源系统主要由直流的供电系统、交流的供电系统、监督控制系统、接地的系统这4个主要部分构成[1]。它的主要任务是向整个通信的设备源源不断的提供电力,并且一定要保证供电的质量达到标准,他处于整个通信系统的中心位置。它运行的好坏与整个通信网络运行的速度快慢以及通信的安全息息相关。通信电源系统在迅速发展的同时,也对所有在电源维护方面的工作者提出更多艰辛的任务。本文根据实际经验,在管理维护技术方面对系统对了进一步阐述。

2.通信电源需满足电力通信系统的基本要求

为了在一定程度上保证整个通信系统的安全运行,通信电源系统要满足可靠(即当交流的电源进行供电时,整个通信的设备要使用交流连续的电源;直流的电源进行供电时,整个通信的设备要采用电池和整流器一起并联进行浮充的方式供电)、稳定(用稳压的电源进行供电,不能超过被允许的误差范围)、小型(整个电源的装置设备向着集成小型的方向发展)、高效(用不同的节能措施来提高社会的经济效益和资源的利用效率)的要求。

2.1交流电源应满足的要求

交流的供电系统主要是由降压变压器、高压配电所、UPS、油机式发电机以及低压的配电屏构成。它可以提供的3种基本交流电源分别为:由变化的UPS提供的后备交流用电、由电站提供的市用电、由油机式发电机提供的自备用交流用电。小类型的通信电站的交流电源通常是采用三相或者单向式的交流电源,单向的电压(零线和相线之间有效电压值)一般是220V,三相线电压(相线和相线之间的有效电压值)一般使用380伏。利用三相五线制的交流电源的时候,要综合协调最大值、相序以及频率这三个因素之间的关系。图1为三相五线制的接线原理图。

2.2直流电源应满足的要求

直流电源系统主要由整流器、直流的配电屏、蓄电池组等构成。直流的电源应该满足的要求:(1)直流电源供电应该提供相应的备用设备;(2)电源中的脉动要低于允许值,不允许有电压瞬变;(3)要时常进行分析检修,确保供电及时、可靠。到目前为止,常见的直流设备的供电的电压一般为+24V和-48V,然而一般通信设备采用的电源一般为-48V。

2.3对监控与接地系统的不同要求

通信电源的监控系统要求要把整个电源的维护人员从繁杂的维修护理工作中解脱出来,来提高整体的劳动生产率,减少设备维修和运行的资本,以提高不同设备在运行过程中的经济可靠性。监控功能简单分为监视与控制功能。监视系统要对设备整体的运行状况进行实时监测,并同时对影响设备运行的环境进行监测,以达到获取设备运行中的原始的数据和各种不同的状态,为系统作分析和处理提供来源。监视的功能要求系统一定达到良好的准确性和实时监测性。当维修护理人员发出控制的命令,监测控制系统能够把它转换为让设备可以识别的指令,以保证设备能够执行既定的动作。监控系统可以控制的对象除了主要包括不同种的被监测设备,同时也控制监控系统自身的一些设备。控制功能一样要求整个系统达到更好的实时精确性,以便获得比较满意。接地系统主要有直流的、交流的工作接地以及保护样式的接地和防雷样式的接地等。目前一般使用联合方式的接地,即直流、交流样式接地与保护式的接地和防雷式的接地共同组合用地网。联合式的接地包括接地本体、接地的引入线、接地的汇集地点以及接地本体之间的连接线、导出引线等各个部分构成,它综合有很好的阻抗干扰和预防雷电的作用。

3.通信电源系统的维修护理技术

3.1通信电源系统的维修护理技术

通信电源的维修护理工作指的是对站点的电源设备来进行巡逻检查、安全性能的分析、以及做好应急的准备等。其中包括不定期和定期的对各种电源设备的不同参数设定进行分析和整合,以保证整个通信网络的正常运行。通信电源系统的维修护理工作中应该注重以下几个问题。

(1)通信电源系统功率的大小要适度。在维修护理中,一定要保持整个通信房屋的清洁卫生。并且在使用的时候,着重避免额外增加大功率的设备以及在负载满的情况下运行,否则会使整流模块出现问题。

(2)通信电源系统的设备要按照要求使用。不同的厂家、不同类型的模块是不允许一起使用的,这样因为频率不同,负荷承载程度也就不一样,很容易由于不稳定而出现问题。

(3)一定要防止电池充放电时的大电流。如果电流过大,会使电极板变形导致电极物质脱落,从而造成内阻过大,影响寿命。

3.2蓄电池的维修护理技术

如果市电不正常或者整流器处于非正常状态下,蓄电池就会承担起所有的负载任务。在正常的状况下,整流器与蓄电池是并列运行的,这样可以为整流器提供更高的电质量。因此蓄电池的使用应注意以下几个方面。

(1)电压的范围设置。当蓄电池超过它的浮冲电压时,就会造成蓄电池的损坏;当蓄电池低于它的浮冲电压时,会造成蓄电池的缺电状态,使电池报废。正常应该把浮冲电压设置在53.4~53.9V之间。

(2)对温度设置的要求。如果蓄电池所处的温度过高,就会加重电池自放电现象。因此放电的时候,应该把环境温度设置在-10~+40℃。并保证良好的充放电电压精度,一般2%为宜。

(3)维修护理工作。要不定时的对蓄电池的外貌以及是否出现了一些异常情况比如有无裂缝、漏液现象进行观察。3-6个月对其进行充放电一次,日常还可以涂凡士林对电池的接线柱上进行保护。

3.3防雷技术在通信电源系统方面的应用

雷击会造成很大的生命和财产损失,因此要预防雷电,在运行时做好电源的维修护理工作。最重要的是一定要对进出厂的电缆电线进行防雷以及屏蔽操作。消雷器、接闪器以及避雷器是比较常见的3种防雷设备。消雷器是比较新型的主动式的防雷器件;接闪器用来专门接收被雷直击的金属物品;避雷器是为了防止雷电入侵而防止保护设备破坏的一种器件。做好防雷工作应该做好以下几个方面。

(1)做好配电系统的防雷措施。为了消除直接雷浪涌电流与电网电压的波动影响,根据负荷的特点用分等级减弱雷击带来的残留电压以及能量,以防止雷电的破坏。

(2)做好通信电源系统的三级保护。其中一级保护主要是排泄雷电量,防止雷电沿着架空的线路进入居民室内而造成的破坏。采用的标称泄放电流是25kA/线,为了吸收由电源的前端架空线进入的高压脉冲,同时也为了防止感应的电磁脉冲以及大类型的设备带来的瞬时高压破坏系统。二级保护主要是把防雷技术用在交流屏内,它可以承受15kA/线以下的雷击通流量,防止由配电系统的前端带来的高压脉冲及电脉冲带累的瞬间高压脉冲。三级保护主要是把防雷器设置在断路器的前面,这样可以吸收过量的内部电压,使分配电前引来的传导雷电流降低到设备可以承受的安全电压以下。

4.结语

因此,为了提供合理、安全、稳定的电能,通信电源系统的管理应该制度化先进化,这样才能保证整个系统的安全运行,提高工作效率,取得更好的业绩。

参考文献:

[1]樊勤.通信电源的管理与应用[J].内蒙古科技与经济,2006(3):119-120.

电源技术范文10

关键词:交流抗干扰电路;PFC电路;高压整流滤波;PWM

1引言2计算机电源发展历程

在计算机各部件中最令人注意的就是CPU的频率、内存的大小、硬盘容量,显卡的性能等等。而对于电脑中的一个重要部件电源.却往往总会受到忽略。而事实上,电脑的许多奇怪症状都是由电源引起的。假如我们把计算机比作一个人的话,CPU作为计算机的核心部件起着运算和控制的作用,它相当于我们人类的大脑;而电源作为计算机的动力提供者,完全等价于我们人类的心脏,其重要之处由此可见。所以有必要了解电源内部结构,熟悉电源的工作原理,才能更好地维护好计算机电源,才能从根本上保障公司各部门计算机设备长时间稳定工作。

2计算机电源发展历程

PC/XT_IBM最先推出个人PC/XT机时制定的标准;AT_也是由IBM早期推出PC/AT机时所提出的标准,当时能够提供192W的电力供应;ATX—Intel公司于1995年提出的工业标准。与AT比较主要变化为:

1、取消了AT电源上必备的电源开关而交由主板进行电源开关的控制,增加了一个待机电路为电源主电路和主板提供电压来实现电源唤醒等功能:

2、ATX电源首次引进了+3.3V的电压输出端,与主板的连接接口上也有了明显的改进:ATX12V——支持P4的ATX标准,是目前的主流标准:ATX12V一1.1:在ATX的基础之上增加了4pin的+12V辅助供电线(PIO)为P4处理器供电,改变了各路输出功率分配方式,增强+12V负载能力;ATX12V一1.3:提高了电源效率,增加了对SATA的支持。去掉了一5V输出,增加了+12V的输出能力;ATX12V一2.0:尚未有产品实施的最新规范;电源连接器由20针改为24针,以支持75W的PCIExpress总线.同时取消辅助电源接口;提供另一路+12V输出,直接为4Pin接口供电;WTX—ATX电源的加强版本:尺寸上比ATX电源大。供电能力也比比ATX电源强,常用于服务器和大型电脑;BTX一现有架构的终结者,电源输出要求、接口等支持ATX12V。

3计算机开关电源的工作原理

电源是一种能量转换的设备,它能将220V的交流电转变为计算机需要的低电压强电流的直流电。首先将高电压交流电(220V)通过全桥二极管整流以后成为高电压的脉冲直流电,再经过电容滤波以后成为高压直流电。此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。其中,控制电路也是必不可少的部分。它能有效的监控输出端的电压值,并向控制功率开关三极管发出信号控制电压上下调整的幅度。目前的常见产品主要采用脉冲变压器耦合型开关稳压电源,它分为交流抗干扰电路、功率因数校正电路、高压整流滤波电路、开关电路、低压整流滤波电路5个主要部分。

4交流抗干扰电路

为避免电网中的各种干扰信号影响高频率、高精度的计算机系统.防止电源开关电路形成高频扰窜,影响电网中的其他电器等;各种电磁、安规认证都要求开关电源配有抗干扰电路。主要结构为兀型共模、差模滤波电路.由差模扼流电感、差模滤波电容、共模扼流电感、共模滤波电容组成:

5功率因数校正电路

开关电源传统的桥式整流、电容滤波电路令整体负载表现为容性,且使交流输入电流产生严重的波形畸变,向电网注人大量的高次谐波,功率因数仅有0.6左右,对电网和其他电气设备造成严重的谐波污染与干扰。因此,我国在2003年开始实施的CCC中明确要求计算机电源产品带有功率因数校正器(PowerFactorCorrector,即PFC),功率因数达到0.7以上。PFC电路分为主动式(有源)与被动式(无源)两种:主动式PFC本身就相当于一个开关电源.通过控制芯片驱动开关管对输入电流进行”调制”,令其与电压尽量同步,功率因数接近于1;同时.主动式PFC控制芯片还能够提供辅助供电,驱动电源内部其他芯片以及负担+5VSB输出。主动式PFC功率因数高、+5VSB输出纹波频率高、幅度小,但结构复杂,成本高,仅在一些高端电源中使用。目前采用主动式PFC的计算机电源一般采用升压转换器式设计,电路原理图如下:被动式PFC结构简单,只是针对电源的整体负载特性表现,在交流输人端.抗干扰电路之后串接了一个大电感,强制平衡电源的整体负载特性。被动式PFC采用的电感只需适应50~60Hz的市电频率,带有工频变压器常用的硅钢片铁芯,而非高频率开关变压器所采用的铁氧体磁芯,从外观上非常容易分辨。被动式PFC效果较主动式PFC有一定差距,功率因数一般为0.8左右;但成本低廉,且无需对原有产品设计进行大幅度修改就可以符合CCC要求,是目前主流电源通常采取的方式。

6高压整流滤波电路

目前的各种开关电源高压整流基本都采用全桥式二极管整流,将输人的正弦交流电反向电压翻转,输出连续波峰的“类直流”。再经过电容的滤波,就得到了约300V的“高压直流”。

7开关电路

开关电源的核心部分.主要由精密电压比较芯片、PWM芯片、开关管、驱动变压器、主开关变压器组成。精密电压比较芯片将直流输出部分的反馈电压与基准电压进行比较.PWM芯片根据比较结果通过驱动变压器调整开关管的占空比,进而控制主开关变压器输出给直流部分的能量,实现“稳压”输出。PWM(PulesWidthModulation)即脉宽调制电路,其功能是检测输出直流电压,与基准电压比较,进行放大,控制振荡器的脉冲宽度,从而控制推挽开关电路以保持输出电压的稳定,主要由1CTL494及周围元件组成。使用驱动变压器的目的是为了隔离高压(300V)区与低压区(最高12V),避免开关管击穿后高压电可能对低压设备造成的危害,也令PWM芯片无需接触高压信号,降低了对元件规格的要求。

冲变压器耦合型开关稳压电源主要的直流(高压到低压)转换方式有5种,其中适合作为计算机电源使用的主要为推挽式与半桥式,而推挽式多用于小型机、UPS等,我们常见的电源产品则基本都采用半桥式变换。

8低压整流滤波电路

经过调制的高压直流成为了低压高频交流,需要经过再次整流滤波才能得到希望的稳定低压直流输出。整流手段与高压整流类似,仍是利用二极管的单向导通性质,将反向波形翻转。为了保证滤波后波形的完整性,要求互相配合实现360。的导通,因此一般采用快速恢复二极管(主要用于+12V整流)或肖特基二极管(主要用于+5V、+3.3V整流)。滤波仍是采用典型的扼流电感配合滤波电容,不过此处的电感不仅为了扼制突变电流,更为重要的作用是像高压滤波部分的电容一样作为储能元件,为输出端提供连续的能量供应。实际产品中高压整流滤波电路、开关电路、低压整流滤波电路是一个整体,虽然原理与前述基本相同,但元件个数、分布方式会有很大变化。例如采用半桥式电压变换的电源就有两个高压滤波电容,每一路直流输出对应两个整流管,各负责半个周期的输出;而采用单端正激式电压变换的电源则只有一个高压滤波电容,每一路直流输出对应两个整流管,工作时间按照开关管占空比分配。其他较为重要的部分还有辅助供电电路与保护电路:辅助供电电路一个小功率的开关电源,交流输入接通后即开始工作。300V直流电被辅助供电开关管调制成为脉冲电流,通过辅助供电变压器输出二路交流电压。一路经整流、三端稳压器稳压,输出为+5VSB,供主板待机所用;另一路经整流滤波,输出辅助+12V电源,供给电源内部的PWM等片工作。主动式PFC具有辅助供电的功能,可以提供+5VSB及电源内部芯片所需电压;故采用主动式PFC的电源可以省略掉辅助供电部分,只使用两个开关变压器。

9保护电路

电源主要的保护措施有7种:

1、输入端过压保护:通过耐压值为270V的压敏电阻实现:

2、输入端过流保护:通过保险丝:

3、输出端过流保护:通过导线反馈,驱动变压器就会相应动作,关断电源的输出;

4、输出端过压保护:当比较器检测到的输出电压与稳压管两端的基准电压偏差较大时,就会对电压进行调整:

5、输出端过载保护:过载保护的机理与过流保护一样,也是通过控制电路和驱动变压器进行的:

6、输出端短路保护:输出端短路时,比较器会侦测到电流的变化,并通过驱动变压器、关断开关管的输出:

7、温度控制:通过温度探头检测电源内部温度,并智能调整风扇转速,对电源内部温度进行控制;

10电源的好坏对其他部件的影响

CPU对电压就非常敏感,电压稍微高一点就可能烧毁CPU,电压过低则无法启动;而硬盘在电压不足时就无法正常工作,在电压波动大时甚至会划伤盘片,造成无法挽救的物理损害;诸如此类,不一而足。在很多情况下,主机内的配件损坏了,用户只是认为是配件本身的质量问题.而很少考虑可能是电源输出的低压直流电电压不稳所造成的。所以,输出电压的波动范围就是考查电源质量的重要指标之一。目前,一般的电源产品在空载和轻载时的表现都较好(假冒伪劣产品除外),而重载测验才是烈火试真金的真正考验。

参考文献

电源技术范文11

关键词:通信工程;通信电源;电源技术发展;高频开关电源技术

中图分类号:TN865 文献标识码:A 文章编号:1009-2374(2012)07-0001-0

一、概述

随着我国通信产业的飞速发展,通信产业的竞争也日益激烈。在激烈的竞争下,通信行业技术标准也不断提高,其中通信电源号称是通信系统的“心脏”,对通信系统的稳定可靠工作起决定性作用。通信系统的电源技术也经历了较快的发展,从过去的相控整流器发展到高频开关整流器,从小功率密度供电方式发展到大密度功率供电方式,从机房有人值守发展到无人值守,这些通信电源技术的发展都代表了当今通信电源技术向着更加先进的技术方向发展。

本论文主要结合先进通信电源技术的发展现状,对先进通信电源技术的应用做深入的分析探讨,以期从中能够找到合理有效的先进通信电源技术的应用模式和方式,并以此和广大同行分享。

二、通信电源技术的发展应用概况

随着通信技术的发展和对通信电源要求的不断提高,通信电源技术也得到了不断的发展及应用。一方面,通信电源功率容量不断扩大,从最初的单机容量12.5A、20A扩大到200A、400A;另一方面,过去传统的通信电源所需的直流电压,大多是经过直流-直流(DC/DC)变换器转化过来的直流电压,DC/DC变换器模块一般都直接安装在电源控制主板上,因此对于电源的控制十分方便,而且也能够满足通信电源对于高功率密度的需求。但是随着通信技术,尤其是分布式通信网络格局的发展应用,通信设备逐渐呈现出分布式应用,这对于通信电源也就提出了分布式供电的要求,因此过去传统的直接采用DC/DC变换器模块得到的直流电压不再适用于现如今的通信电源,必须采取分布式供电。由于采取了分布式供电之后,通信电源所需要的电源功率密度相对较小,这样就很方便的能够实现单模块电源的高频化。直流电源频率的提高不仅有利于满足通信设备对电源功率密度的需求,而且还能够满足小模块电源的体积便携性要求。

目前通信电源技术发展的另一个主要方面就是通信电源模块呈现出了一定的通用性和智能性,这主要表现在以下两个方面:

(一) 通信电源的通用性

由于通信电源设备的种类越来越多,通信电源的生产厂家也很多,不同的厂家可能使用不同的协议和接口,这就导致了不同厂家的电源设备相互之间无法兼容,一旦通信设备电源发生故障,只能依赖原厂家的技术支持,这大大增加了通信电源设备的后期维护成本。因此,随着通信电源技术的发展,目前很多通信电源都出现了一系列的标准接口,这些接口大大提高了不同电源厂家之间的协议的兼容性,以及不同通信电源设备之间的兼容性,使得通信电源不再只是专用性,而是具有了一定的通用性。另一方面,通信电源上的较多接口,不仅仅实现了不同厂家的电源设备之间的兼容,更重要的是,对于不同的通信设备而言,能够灵活的借助于通用性接口实现应用不同的电源设备,从而大大提高了通信电源设备的灵活性。

(二)通信电源的智能性

通信电源的发展与应用,不仅仅体现在依赖于一系列接口提高了通信电源设备的兼容性和通用性,更重要的是,随着智能化技术的发展和应用,通信电源设备也出现了一定程度的智能化,比如,电源设备对通信设备的自动适配;电源设备故障的智能诊断;通信电源能够智能的监控自身工作状态,等等,这一系列智能化功能的实现,通过对自身工作电压、工作电流的实时监测,能够实时掌握通信电源设备的工作状态,使得通信电源的工作稳定性、可靠性大大提高,即使电源设备出现故障,也能够依靠自身具备的故障诊断系统给出相应的故障码,从而提高了电源后期维修维护的效率,实现了对通信电源的智能化管理应用。

通信电源技术的广泛应用,一方面有效的提高了通信系统工作的稳定性及可靠性,同时由于通信系统规模的不断扩大,也反过来进一步促进了通信电源技术的飞速发展与应用。

三、先进通信电源技术的发展应用探讨

(一)先进通信电源技术的应用

随着我国电力电子技术的进步发展和应用,我国通信电源技术也得到了长足的发展,一些先进电源技术的普及应用,在很大程度上对于促进我国通信设备及通信事业的发展起到了积极作用。目前得到主要研究与发展应用的先进通信电源技术主要集中在以下几个方面:

1.高频开关电源技术。通信设备需要直流电源,过去传统的方法是利用变压器和整流器实现对通信设备的直流供电,这种供电方式电压不稳,而且电压中夹杂较多的噪声干扰,对于通信设备的长期稳定可靠工作是不利的,因此交流-直流变换、直流-直流变换逐渐得到了广泛研究与应用。近几年,随着开关电源的技术成熟应用,为通信电源实现开关直流电源供电提供了新的模式,而开关电源的开关频率对于通信电源而言是非常重要的一项指标参数,其直接影响着通信电源的功率密度和容量,因此想方设法提高开关电源的频率成为了通信电源研究的主要技术难题。高频开关电源借助于高频、甚至是超高频的开关频率实现对直流电源的“交流”式供电,开关频率越高,电源的功率密度越大,在同等载荷条件下可带负载等级就越高,而且开关频率越高,对于减小通信电源的体积越有利,因此,目前高频开关电源技术在通信电源领域中得到了广泛的研究与应用。

2.无人值守智能技术。无人值守技术是针对通信电源的管理需求,近几年才发展起来的一种先进电源管理技术。要实现无人值守,就必须从两个方面入手研究和应用,下面分别分析:

(1)不间断供电技术。不间断供电就是指能够连续供电,即使在电力系统发生故障的情况下依然能够实现供电,这就需要后备电池组的支持,以及目前广泛应用的UPS电源技术的支持。UPS电源相当于一个可移动的电源箱,能够在通信设备电力系统发生故障的时候自动切换到UPS电源供电,从而保证了通信电源系统的正常工作。

(2)智能监测技术。要实现无人值守,还必须能够实现对通信电源工作状态的实时监测,将电源工作中的相关性能参数,技术指标都监测并实时显示,出现异常情况能够自动报警及进行简单的处理,从而实现通信电源机房的无人值守,大大提高了通信电源管理的效率和智能化。

(二)通信电源技术的发展趋势

随着电力电子技术的发展,以及单片机技术的应用,电源技术得到了更加广泛的应用;由于通信系统、通信设备的不断发展与需求的不断提高,通信电源技术的发展也必将逐渐呈现出高技术要求的发展态势,纵观全球,通信电源技术发展呈现以下几大趋势:

1.高效率,高功率密度,宽的使用环境温度。随着通信机房设备的升级,功率越来越大,机房温度越来越高,因此必然要求通信电源能够在比较高的温度下正常工作,这就要求通信电源具备宽泛的工作温度范围;同时通信设备的功率越来越大,这也要求在保证一定体积的前提下,通信电源的功率、效率应该得到保证,应该具有较高的效率和较高的功率密度,才能够满足通信设备的需求。

2.网络化智能化的监控管理。随着通信电源的要求越来越高,需要对通信电源实时状态监测与管理,依赖于其自身的监测已无法满足对通信电源的管理需求,通信电源的发展呈现出众多的智能化接口管理模式,依赖智能化接口实现对通信电源的网络化智能化的实时监控。通过对电源的监控管理,也就实现了对通信设备的智能化监控管理。

3.全数字化控制。通信电源的发展已经逐渐摆脱了模拟化控制的发展模式,逐渐呈现出数字化、甚至是全数字化的控制模式,依赖数字化的控制模式,能够有效的降低电源的设计制造成本,提高电源工作的稳定性和可靠性,以及便于实现对通信电源的智能化数字化的管理。

4.安全与环保。通信电源发展的永恒指标之一就是安全,不够安全的电源,即使技术再先进也难以得到广泛应用;另一方面,随着电源对环境污染的加剧,近年来逐渐出现了绿色环保电源,主旨是降低电源对环境污染的危害,因此通信电源的发展趋势之一也必然是实现绿色环保式的通信电源。

四、结语

通信电源在整个通信行业中所占比例虽然不大,但它是整个通信网络的关键基础设施,是通信网络上一个完整而又不可替代的独立专业。随着电信技术的飞速发展,电信网络结构日益复杂,信息技术的发展又对电源技术提出了更高的要求,例如:节能、节电、节材、缩体、减重、环保、可靠、安全等,这就迫使电源工作者应朝着高效率节能、网络化管理、全数字化控制、低电流谐波处理技术(绿色电源)的方向研发拓展和不断探索,并利用各种相关技术制造出合格电源产品,以满足现代通信网的技术需求。

参考文献

[1] 秦棣样.通信电源中几个问题的探讨[J].通信电源技术,2001,(2).

[2] 黄济青.通信电源的技术动态[J].电信快报,2001,(8).

电源技术范文12

新能源是21世纪人类解决能源问题和环境问题两大关键问题的钥匙,未来50年是人类大规模开发利用新能源的关键期,21世纪也是围绕新能源的技术革命和产业高速发展期。新能源技术是涉及电气、动力、材料、控制、电子、计算机、信息等多个学科交叉的高新技术,为了推动新能源发电技术的快速发展,目前需要加紧新能源技术的知识传播和相关人才的培养,为此,北京信息科技大学电气工程专业开设了“新能源发电技术”课程。

根据本校的实验条件和综合实力,新能源发电技术课程的重点不是新能源与电力系统的结合,而是新能源发电技术、电力电子技术和控制技术的结合。该课程旨在使学生了解国内外新能源发电技术现状,掌握风力发电、太阳能光伏发电、水力发电、生物质能发电、核能发电、分布式发电等新能源发电系统的工作原理、系统硬件组成和控制技术,为进一步分析和研究新能源发电系统及控制技术、电力电子系统设计与控制打下基础。

一、新能源发电技术课程教学改革的意义

随着新能源发电技术的快速发展,《新能源发电技术》课程的教学内容要不断更新,实践环节也随之更新,这就需要进行教学改革,其中实践教学改革是重中之重。教学实践表明《新能源发电技术》课程需要工程实践能力加深对新能源发电及控制技术的理解,教学过程中需要突出实践能力的培养,锻炼学生的独立思考能力、动手能力和工程实践能力;《新能源发电技术》课程教学改革更加注重实践性、创新性、开放性,重视培养学生的实践能力和创新能力,以便更好的和课题、科研衔接,为从事新能源专业打好基础。综上,急需进行《新能源发电技术》课程实践教学改革。

二、新能源发电技术课程教学内容

新能源发电技术突出新能源发电技术、电力电子技术与控制技术的有机结合,除了讲透三部分内容,还要将他们有机结合起来。但授课学时仅为32学时,内容繁多,课时有限,要想在课堂教学时间内使学生有效掌握关键技术,需要合理设置课程结构,对教学内容进行有效筛选。梳理教学内容,将其分成两部分:一是利用可再生能源和清洁能源发电,以便持续获得二次清洁能源――电能;二是对电能通过变换与控制,满足高质量的终端能源消费需求和电力的高效管理。

我国具有开发可再生能源的条件和历史,近年来可再生能源的开发和利用取得了长足的进展,以年均超过25%的增长速度成为世界能源领域增长最快的两点。截至2014年上半年,中国水电装机容量达到了2.9亿千瓦,风电装机容量达到了8300万千瓦,太阳能发电装机容量达到了2200万千瓦。其中,可再生能源发电装机超过全部发电装机的30%,可再生能源发电量超过全部发电电量的20%,风电装机容量连续5年快速增长,发展速度大大超过了预期,连续五年新增装机容量位居世界第一,太阳能光伏电池和太阳能热水器产量均居世界第一,水力发电、风力发电、太阳能光伏发电是新能源发电的主力军。生物质能、海洋能、地热源、核能等其他新能源发电技术还处于实验研究或商业探索阶段,市场份额较小。鉴于此,本课程首先介绍国内外新能源发展状况和最近技术,然后介绍新能源发电系统中涉及的电力电子变换电路及相关参数设计,再介绍新能源发电系统中的控制技术及控制算法,最后介绍各种新能源发电系统的工作原理,硬件组成及相关的控制技术。

具体章节安排如下:第1章新能源与发电技术综述,介绍国内外新能源发展技术及经济数据,这部分内容具有较强的时效性,结合每年的BP世界能源统计年鉴、国内外政策分析、各国的能源发展规划,使本章更具科学性和实效性。第2章介绍新能源变换与控制技术基础知识,除了复习电力电子技术里讲述的AC-DC、DC-DC、DC-AC、AC-AC四类典型变换电路,还增加了新能源发电系统里常用的驱动和保护电路分析,新的拓扑结构分析等内容。第3章为太阳能光伏发电技术,重点介绍光伏发电原理,太阳能电池板的电特性,离网型及并网型光伏发电系统、最大功率跟踪控制技术、光伏发电系统的控制策略。第4章为风力发电控制技术,介绍风力发电机组及工作原理,控制策略及相关的并网技术。第5~8章分别介绍水力发电技术、生物质能发电技术、海洋能发电技术及温差发电技术,第5~8章根据学时安排及教学效果,可安排自学,或者作为选学内容。

三、新能源发电技术实践内容建设

新能源发电技术具有很强的实践性和工程性。在实际教学过程中,应该添加实验教学内容,实践教学对帮助学生理解和掌握基本理论,培养学生的操作动手技能、创新意识和探索精神具有非常重要的作用。

实践教学内容分为两部分,仿真实验和实际电路设计实验。仿真实验主要包括太阳能光伏电池建模及电输出特性,光伏并网逆变器非线性控制策略仿真研究,双馈风力发电系统变流器非线性控制策略研究。实际电路设计实验共4个,分别是太阳能最大功率跟踪控制器设计、铅酸蓄电池充电控制器设计、小功率风力发电系统设计、基于uc3906的蓄电池充电管理器。

具体实施办法为,仿真实验在matlab仿真实验环境下进行,每个学生独立完成,仿真完成后按照要求的格式撰写实验报告。实际电路设计实验首先学生选题,根据不同的内容2~5人一组,然后小组成员分工,教师根据学生的程度可适当调整;然后设计电路,进行相关参数计算、器件选型;然后进行电路焊接、调试、软件编程、软硬件联合调试;组织学生答辩,最后撰写报告。由于实际电路设计实验以设计和分析为主,电路选型、参数计算、控制算法都要学生自己设计,要求每个学生都要动手,单独操作,掌握实验的方法和技能,培养独立分析问题和解决问题的能力。

四、教学方法和手段改革

采用开放式、案例式、讨论式、实操式教学方法。开放式教学指教学内容不局限于课本,而是多渠道开放式的,可选自图书馆,也可以选自互联网,教师有引导性的推荐一些主要参考书和阅读资料,鼓励学生自己查找和组织学习资料,这样一方面可以让学生接触国内外最新、最成功的教学内容和学科前沿信息,使学生了解科技的最近发展形势,站在学科发展的前列;另一方面,通过自己查找资料、组织学习内容,培养学生学习主动性、知识管理能力、自学能力和习惯。案例式教学将身边案例搬进课堂,帮助学生理解书本知识,建立起系统设计概念,了解系统设计步骤、设计方法、实验方法和实验设计等。讨论式教学鼓励学生积极参加课堂讨论,帮助学生建立新能源系统的知识结构,同时也锻炼了语言表达能力,将学习过程转化为师生共同学习、共同探索的提高过程。太阳能光伏发电小系统项目式实操教学,在风光互补发电实验平台上,实操太阳能光伏板能量转换实验、环境对光伏转换影响实验、太阳能电池光伏系统直接负载特性实验、太阳能控制器工作原理实验、接反保护实验、太阳能控制器对蓄电池的过充保护实验、太阳能控制器对蓄电池的过放保护实验、夜间防反充实验、离网型逆变器工作原理实验、独立光伏发电实验、并网型逆变器工作原理实验、光伏并网实验、风光互补功能操作。

五、存在的问题

新能源发电技术及相关的控制技术的实际应用越来越多,需要大量的应用技术型人才和研究型人才,在授课过程中发现该课程存在如下问题:(1)教材问题。国内外已经有多种版本的新能源发电及利用技术的专著,由于新能源发电技术涉及能源种类繁多,应用规模和水平相对较低,许多技术有待完善,开设新能源发电技术课程的专业也比较繁杂,缺少一本能兼顾各种新能源发电技术、控制技术、实验设备,并且能和学生专业基础很好结合的教材。(2)缺乏实践教学内容。现有的新能源发电技术实验平台大都是演示型操作平台,价格昂贵,导致不能满足每个学生都有动手设计、动手操作的实验要求,可操作性比较差。(3)师资队伍建设相对薄弱。目前新能源发电技术一线教师大都是从相近专业转型过来的,缺乏新能源发电系统研究,缺乏工程实践背景。