HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 变频技术

变频技术

时间:2023-05-29 17:34:02

变频技术

变频技术范文1

关键词:变频技术;变频空调;结构特点;工作原理

1变频器的基本工作原理

1.1变频技术的发展

在我们国家改革开放时期引进了变频技术,一直发展到现在,变频技术在我们国家已经基本普及。对于我国变频技术的发展总的来说,可以分为三个主要过程,首先是从别的国家引进变频技术,1995年,我国成立空调研究所,对于国外空调的先进技术进行研究,1996年,我国从国外引进变频空调技术,建立我国的变频空调生产基地。其次我国的科研人员进行研究,2000年,我国初步了解了变频空调技术,然后进行了充分的消化吸收,选取相对应我国的变频空调的标准,进行磨合。最后进行自主创新,制造出适合我们国家的变频空调,2008年,国家变频空调标准出台,很多生产商开始生产变频空调,研究者不断地改进变频空调,直到现在,我国的变频空调技术还在不断地发展创新,紧跟时展的脚步,提高核心质量问题。

1.2变频器的基本概念

随着变频空调的广泛使用,越来越多的人对于变频器这一工作器件十分的好奇,开始对变频器进行探究。其实变频空调中最主要的就是变频器,变频器一般是指对电力半导体器件的通断的控制,将交流电工频电源中稳定不变的频率和电压变换为频率和电压可以改变的交流电的电能控制的一种装置,绝缘栅双极晶体管是一种半导体器件,一般称IGBT。变频器的工作过程是在电路中将稳定频率和电压的交流电流转化为直流电流,然后将转化的直流电再转化为可变频率和电压的不同的交流电流,这就是变频器的基本概念。其本质过程就是电流的转化过程,把固定不变频率和电压的三相或者单相电流转化为频率可以适应环境温度改变的可变的频率或电压的交流电流,变频器的本质就是不断地转化的过程,通过不断地转化,来保证变频空调的稳定运行。

1.3变频器的基本构造及工作原理

前面我们简单的介绍了变频器的基本概念以及它的工作过程,那么变频器的基本构造是什么呢?变频器基本构造复杂,其中有很多个电路,最主要的是逆变电路、整流电路、控制电路这几部分。其中三相整流桥组成了整流电路,这个过程是电路将所收集到的三相交流电都整流成直流电,逆变电路主要是由逆变模块和驱动电路组成,其主要作用是由IGBT组成逆变桥,然后根据驱动电路发出的驱动信号把整流所得的直流电转化为频率和电压可变的交流电,这个过程在变频器的工作过程中十分的重要。变频器是构成压缩机的最主要器件,而压缩机是通过控制转速来实现对温度的控制,因此,变频器在变频空调工作过程中是一个桥梁的作用,通过对电流的转换来辅助压缩机工作。以上就是所说的变频器的基本构造和简单的工作原理。

2变频空调的现状

前面我们介绍过变频技术及变频空调的发展阶段,我们都知道,随着时代的不断进步,科学技术的发展日新月异,变频空调也在不断地进行改进和创新发展。相对于以前的变频空调,现在的变频空调更加的节能省电,最重要的是环保舒适,同时更加的人性化,更加的贴合时代的发展主题,提高了人们的生活质量。自从2009年公布的家电下乡公告以后,变频空调也被选入家电下乡活动中,变频空调的生产商也抓住了这次机会,开始进行扩展和推销。现阶段,在变频空调广泛应用中也出现了一些不足和,生产商重视核心问题的普遍性,积极改进,保证质量,同时变频空调本身存在的问题也在不断地解决。变频空调正在迅速的发展,相信不久的将来,变频空调会越来越完善。

3变频空调和定频空调各自的优势及不足

3.1变频空调的优势及不足

我们都知道,变频空调虽然为人们带来了很大的便利,但是同时也存在一定的不足,接下来对变频空调的优势和不足进行简单的分析。首先变频空调的优势在于它节能效果好,因为变频空调内部有变频器随时调节压缩机的运转速度,压缩机保持持续平稳的状态,节能效果十分理想。其次,变频空调的温度控制精度高,变频空调是通过控制压缩机的转动速度来实现对于温度的控制,精确度可以达到一度左右,对于温度的控制十分精确。最后变频空调可以保持室温恒定,变频空调通过变频压缩机控制转速来自动的调节室温,使室温保持恒定。变频空调的不足之处在于价格比较贵,经济条件不好的家庭消费不起。其次,变频空调需要持续开机,才能显示出变频空调的优势来,但是很多家庭会节省电费,不会持续开机,这样变频空调的优势不能更好的显示出来。最后变频空调的核心技术还不够完善,变频空调还会存在一定的问题,需要进行维修和处理。

3.2定频空调的优势及不足

定频空调在变频空调出现之前,在人们的生活工作中还是非常重要的,定频空调相对于变频空调来说,最大的优点是价格便宜,很多的普通家庭都可以消费得起。其次,定频空调对于普通工作或者生活时间小于十个小时的消费者来说,是一个不错的选择。定频空调存在一定的不足,首先是定频空调耗电量较大,定频空调在使用的时候需要不断地根据室温进行调节,这样会对家庭的电路消耗造成很大的影响。其次,定频空调不易调节,精确度不够。最后,定频空调对于达到我们设定的温度的定值的过程历时较长,等待时间较长。

4对交流变频空调、直流变频空调两个方面的变频基本原理分析

4.1交流变频空调的变频调速系统

前面我们简单的介绍了变频器的基本概念和基本组成,接下来我们研究一下交流变频空调的变频调速系统,整流器、滤波器、功率逆变器主要组成了交流变频空调的变频调速系统。整流器采用硅整流器件桥式链接,分为单相和三相输入电流,将交流电源转化为直流电,整流滤波的作用是输出直流电压使之平稳且得到提高。六个IGBT组成上下桥式驱动电路基本构成了功率逆波器,其中功率晶体管被作为开关器件,控制线路,使每只晶体管导通,当控制电路输出信号时,晶体管输出频率变化的三相电流,整个电路的平稳运行是保证变频调速系统运行稳定的重要保障。这就是交流变频空调的变频调速系统简单的工作原理。

4.2直流变频空调的变频调速系统

直流变频空调的变频调速系统和交流变频空调的调速系统在原理上存在一定的不同之处,直流变频空调压缩机采用的是无刷直流电机,无刷直流电机和普通的有刷直流电机和交流直流电机在本质上相差不多,但是有一定的区别,稀有材料制成的永久磁钢制成了无刷直流电机的转子,而且定子采用整距集中绕线,这样提高了转子的运行速率,没有涡流损失,调速性能优良,电磁干扰较小,噪音也小,寿命长。在进行转子检测时,利用电动机内部的位置传感器提供的信号,进行驱动电机换相,或者是可以利用相电压采样信号检测出无刷直流电机的相电压,然后计算可得出,来驱动电机换相,一般都采用后一种方法进行测量转子的位置。

5结束语

随着变频技术的不断发展,变频空调越来越广泛的运用到人们的工作生活中,给人们带来了舒适快捷的享受,本文主要分析了变频技术的发展,变频器的组成和工作原理,在此基础上分析了交流变频空调的变频调速系统和直流变频空调的变频调速系统,总结了变频空调和定频空调的优势和不足,在以后的发展中,变频空调需要不断地改进,紧跟时代的步伐,适应人们的需求,更加的贴合时代节能环保的发展主题,从变频技术的核心问题出发,提高变频空调的质量问题。

参考文献:

[1]杜宇.新风间接换热式数据中心空调辅助系统的节能研究[D].河北工程大学,2013.

[2]周小伟.重庆市既有公共建筑空调系统节能诊断研究及节能改造评价体系构建[D].重庆大学,2012.

[3]余能辉.空调系统冷冻水泵节能改造的节能量认定方法研究[D].重庆大学,2011.

[4]顾建晖.开式管网系统中通风机变速调节节能效果研究[D].同济大学,2007.

变频技术范文2

关键词: 变频节电技术 六个问题 变频调速器

与世界平均水平相比,我国主要工业产品的能耗要高出30%―90%;与工业发达国家相比,我国现有的产业部门的节能潜力约为目前能源消费总量的47%。如普遍推广应用变频节电技术,则全国节电量可达1110亿千瓦小时以上,折合标准煤4484万吨以上。所以变频节能势在必行,但在变频节电技术应用过程中应注意六个问题。

一、变频技术的应用

1.为节电而应用

若为节电,那么变频器所安装设备就应选择负荷变化大的,应在20%以上,另外还有就是应用于大马拉小车,设备功率因数低的负荷上,如果是负荷比较平稳,变化不大,就不必采用变频技术,可以采用其他节电技术。

2.为工艺而采用

变频技术另一主要应用就是调速,若工艺条件要求调速的可优先选用变频技术。

二、技术经济指标

按照预计或实测选择应用变频技术,在预计的节电率及负荷变化,其投资回收期在18个月之内,最长不超过2年。

三、合理选用变频器

由于变频器价格较贵,选用时一定要做详细的技术经济分析论证,对那些负荷较高且非变工况运行的设备不宜采用变频器。变频器具有较多的品牌和种类,价格相差很大。要根据工艺环节的具体要求选择性能较好、价格相对较低的品牌和种类,为此必须了解变频器的技术特性。变频器可以从不同的方面进行分类。

1.按控制方式不同可分为通用型和工程型。通用型变频器一般采用给定闭环控制方式,动态响应速度相对较慢,在电机高速运转时也可满足设备恒功率的运行特性,但在低速时难以满足恒功率要求。工程型变频器在其内部通过检测设有自动补偿、自动限制的环节,在设备低速运转时也可保持较好的特性实现闭环控制。在水泥厂喂料、卸料、窑转速等工艺环节,由于控制相对简单,要求不高,为降低价格、便于维护,选择通用性变频器即可。

2.按安装形式不同可分为四种,可根据受控电机功率及现场安装条件选用合适类型。一种是固定式(壁挂式),功率多在37kW以下。第二种是书本型,功率从0.2―37kW,占用空间相对较小,安装时可紧密排列。第三种是装机/装柜型,功率为45―200kW,需要附加电路及整体固定壳体,体积较为庞大,占用空间相对较大。第四种为柜型,控制功率为45―1500kW,除具备装机/装柜型特点外,与之比较占用空间更大。

3.从变频器的电压等级来看,有1AC230V,也有3AC208―230V、380―460V、500―575V、660―690V等级,应根据要求做出正确的选择。

4.从变频器的防护等级来看,有IP00的,也有IP54的,要根据现场环境情况作出相应的选择。

5.从调速范围及精度而言,变频器FC(频率控制),调速范围1:25;VC(矢量控制),调速范围1:100―1:1000;SC(伺服控制),调速范围1:4000―1:1000。

变频器选型时,应兼顾上述各点要求,根据生产现场的情况正确选择合适的形式。一要考虑变频器的安装环境要求,二要考虑企业要求的环境,三要考虑高次谐波对其他设备的启动运行有无影响。变频器的容量选择,应满足在最大工作电流时不超过变频器的过载容量(电流)。在变频器的选型时还应注意,相同设备配用的变频器的规格应尽可能统一,便于备品备件的准备,便于维修管理。选用时还要考虑生产厂家售后服务质量情况。一般的变频厂家在推销时都说其节电率在30%以上,节电率不在于变频器本身,而在于所应用的负荷上决定的,因此在设备选型上一定要征求有关专家或专业机构(节能技术服务中心)的意见,不能仅听推销人员的一家之言。变频器的选择还有国产和进口设备之分,根据我们多年的经验,三方面应引起注意:①进口变频器的价位在800―1000元/kw,国产价位在500元左右/kw;②在应用中15kw―75kw可采用国产变频器,其余建议采用进口变频器;③进口变频器在选用的过程中也有性能和价格的比较。

四、正确安装

对于生产条件比较恶劣、粉尘较大的场合,调速机械大多安装在室外或库下等环境恶劣的地方,而操作人员一般集中在电控室。变频器是较精密的仪器设备,生产现场时常无人且环境较差,对设备不利。变频器应安装在电控室内。如要求多台变频器安装在同一电控室的某一个控制屏内,则必须采用抗干扰的措施以保证系统正常工作。变频器控制线必须采用屏蔽电缆,并且在布线范围内必须与动力线相距大于0.1m,相交时必须转90°角,千万不要将控制线与动力线放在同一电缆托架(或线框)内,以避免变频器控制信号受到干扰。变频器负载输出线也要采取屏蔽措施,选用铠装电缆,以避免变频器对附近仪表产生干扰。部分变频器顶部有散热孔,灰尘和金属物易由此进入装置内部,应采取防护措施,防止内部短路。在变频器接线时要特别注意电源的输入线和输出线绝不能接错,将电源输入线接上变频器输出位置,会立刻损坏设备。通常变频器连接到电机的电缆长度要求不能超过50m,使用屏蔽电缆不能超过25m,这就必须考虑变频器到受控电机之间的距离问题。碰到超过规定距离的情况,通常解决的方法有两个:其一是在超过规定距离的线路上串入电流值适合的出线电抗器;其二是加大变频器功率一个等级,这种方式特别适合于多台集中群控、安装位置狭小拥挤、要求规范等场合。

五、参数设置与调试

做好变频器参数的设置及调试工作是设备正常运转的一个根本保障措施。现场中出现的许多问题往往是参数的设置问题而与设备本身无关,由此可见,合理正确设置参数很重要。在变频调速器开机调试前必须根据负载的特点,将所有参数设定好,检查无错误后方可开机运行。在启动过程中,恒转速过程及减速过程中,要特别注意变频器输出电流,认真观察,如果第一次设定的参数不是十分理想,应逐步接近。转矩提升功能主要考虑负载启动转矩,在负载能平稳启动的原则下,应尽量调低些,否则在低频轻载时励磁太大,容易引起电机严重过热。个别厂在使用变频调速器之后,在某些频率点出现机械共振,其原因是原来设备只是在50Hz工频下运行,改变频率后,则在0―50Hz之间无级变化,因此在某些频率点上造成机械共振。调试时必须细心检查是否存在机械共振问题,如果有,应采用频率回避的方法,即跳过发生共振的频率范围,使变频器不输出发生共振的频率。在变频调速器供电与工频供电相互切换时,必须在变频器输出频率为零时,方可切换变频输出,即变频器不准无负载输出和开路运行,也不允许带负荷切换断电。对于从工频切回变频供电的设备,必须在电动机断电停转后方可切换,以防止因电动机旋转发电而造成变频器的损坏。

六、考核改造前后的节电效果

在改造之前要与供应商谈改造效果的要求,一定要考核改造前后的节电效果,必要时请当地的节能技术服务中心进行测试并充当第三方见证人,避免不必要损失和麻烦。售后服务不能仅听厂家一家之言,要有企业的自身要求,并索取技术资料和使用说明及操作使用说明。

综上所述,变频调速器是一种成熟的技术设备,是用能单位节电改造的理想设备,具有很高的推广价值,广大用能单位应提高认识,重视技术引进工作,加速变频调速技术的推广应用。在应用中,要合理选型,正确安装,做好变频器的参数设置与调试,以取得良好的使用效果。

参考文献:

[1]杨依平,范新忠,吴瑛.智能变频节电技术应用[J].上海节能,2009,(7):33-35.

变频技术范文3

[关键词]水利工程;自动化;变频;供水;

中图分类号:TV 文献标识码:A

前言

随着自动化的快速发展和在各个领域的渗透,使基于自动化技术的水利工程建设和管理发展到了一个新的水平,并展示出了强劲的生命力和应用前景。特别是变频供水技术的成熟和迅速普及,给水利自动化提出了新的要求。近年来,伴随着大量供水输水工程的建设及改造,变频供水技术在水利工程中的运用越来越广泛。变频供水技术的广泛应用标志着水利行业技术水平随着时代的发展不断进步。

二、变频器简介

变频器的英文译名是VFD(Variable-frequency Drive),是应用变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件。变频器之所以能实现对电动机的调速功能,主要是变频器能够将电源的三相(或单相)交流电,经整流桥整流为直流电(交—直变换),再把直流电经逆变器变为电压和频率可调的三相(或单相)交流电源(直—交变换)。其间电能不发生任何变化,而只有频率发生改变。三相异步电动机的转速计算公式为:

式中:n--转速; f1--供电频率; s--异步电动机转差率; p--磁极对数。

由上述公式可知,异步电动机调速的途经有改变磁极对数、改变转差率和调整供电频率。

三、变频与供水关系论述

在供水系统中,流量是最根本的控制对象。由水泵—管道供水原理可知,调节供水流量,原则上有二种方法;一是节流调节,开大供水阀,流量上升;关小供水阀,流量下降。调节流量的第二种方法是调速调节,水泵转速升高,供水流量增加;转速下降,流量降低,对于用水流量经常变化的场合(例如生活用水),采用调速调节流量,具有优良的节能效果。变频器控制水泵,主要是通过变频器控制水泵的转速来调节水的流量,在普通泵的基础上增加了变频器控制。其工作原理为:风机水泵类负载,电机能耗与转速的立方成正比,使用变频控制水泵较使用进、出口阀门调节水泵要更加节能。由于水泵的轴功率与转速的立方成正比,因此水泵用变频器来调节转速能实现压力或流量的自动控制,同时可获得大量节能。另外使用变频器控制还可以减少起动电流和对泵的冲击,泵停车时还可以通过参数设置来避免泵的水锤效应。

变频供水技术以其节能、安全、供水高品质等优点,在供水行业得到了广泛应用。变频供水系统实现水泵电动机无级调速,依据用水量的变化(实现上为供水管网的压力变化)自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今先进、合理的节能型供水系统。在实际应用中如何充分利用变频器内置的各种功能,对合理设计变频器速供水系统,降低成本、保证产品质量等有着重要意义。

四、变频供水的安全问题研究

(1)水锤效应的产生与消除

异步电动机在全电压启动时,从静止状态加速到额定转速所需要的时间只有0.25s。这意味着在0.25s的时间里,水的流量将从零猛增到额定流量。由于水具有动量和不可压缩性,因此,在极短时间内流量的巨大变化将引起对管道的压强过高或过低的冲击,并产生空化现象。压力冲击将使管壁受力而产生噪声,犹如锤子敲击管子一样,故称为水锤效应。在直接停机时,供水系统的水头将克服电动机的惯性而使系统急剧地停止。这也同样会引起压力冲击和水锤效应。由此可以看出,产生水锤效应的根本原因,是由于启动和制动过程中的动态转矩太大。

水锤效应具有极大的破坏性:压强过高,将引起管道的破裂,反之,压强过低又会导致管道的瘪塌。此外,水锤效应也可能破坏水泵、阀门和固定件,大大降低供水质量。采用了变频调速后,可以通过对升速时间的预置来延长启动过程,使动态转矩大为减小,在系统停机过程中,同样可以通过对降速时间的预置来延长停机过程,减小动态转矩,从而彻底消除水锤效应,大大延长了水泵及管道系统的寿命。

(2)供水电机及电网的保护

由于变频供水基本上都采用了变频软启动,启动频率低,启动电流小,因此,除了对供水机泵和供水管网有保护作用,还能有效地防止大电流对电机和电网的冲击,对供水电机和电网有良好的保护作用,供水系统电机直接启动与变频启动的对比表如下表所示。

五、对变频干扰的处理

凡是安装有变频器的测控系统一般都伴随着电磁干扰的问题。变频器的干扰问题一般分为变频器自身干扰;外界设备产生的电磁波对变频器干扰;变频器对其它弱电设备干扰3类情况。

变频器自身就是一个干扰源。变频器由主回路和控制回路两大部分组成,变频器主回路主要由整流电路,逆变电路,控制电路组成,其中整流电路和逆变电路由电力电子器件组成,电力、电子器件具有非线性特性,当变频器运行时,它要进行快速开关动作,因而产生高次谐波,这样变频器输出波形除基波外还含有大量高次谐波。所以对电源侧和输出侧的设备会产生影响。与主回路相比,变频器的控制回路却是小能量、弱信号回路,极易遭受其它装置产生的干扰。

如果变频器的供电电源受到来自被污染的交流电网的干扰,电网噪声也会通过电网电源电路干扰变频器。供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。另外,安装变频器的配电柜与动力配电室相距太近的话,如果配电室配电柜有大电流流过,将在电流周围行成较强磁场,同样会对变频器的控制回路造成影响。针对以上情况,一般处理方法是要保证良好的接地,接地线愈短愈好,而且必须接地良好;控制回路线使用屏蔽线,而且屏蔽线远端屏蔽层悬空近端接地,一定不能双端接地;根据产品要求合理布线,强电和弱电分离,保持一定距离,避免变频器动力线与信号线平行布线,应分散布线;增加抗无线干扰滤波器,变频器输入和输出抗干扰滤波器或电抗器;采取防止电磁感应的屏蔽措施,甚至可将变频器用金属铁箱屏蔽起来;适当降低载波频率;若用通讯功能,RS485通讯线应使用双绞线。

反过来说,变频器对电网来说也是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。另外,当变频器输入或输出电路与其它设备的电路很近时,变频器的高次谐波信号可通过感应的方式耦合到其它设备中去。其中电流干扰信号主要以电磁感应方式传播,电压干扰信号主要以静电感应方式传播。在本系统试运行初期,最为明显的就是对液位变送,频率设定及反馈等模拟量4-20mA信号的干扰,数值跳动幅度大,以至于无法正常读取。对于这种形式的干扰,首先需要判断扰的对象,是4-20mA供电电源受干扰还是信号线,最好用示波器查看一下信号线波形,可用以下方法降低、避免干扰:4-20mA信号电源用隔离变压器供电;4-20mA信号线用屏蔽线,与变频器三相输入输出分开布线;在4-20mA信号线上加电容(无极性)接地或加信号滤波电感。

六、结束语

新型的变频供水方式与过去的水塔或高位水箱以及气压供水方式相比,不论在设备的投资,运行的经济性,还是系统的稳定性和可靠性,自动化程序等方面,都是具有无法比拟的优势,而且具有显著的节能效果。变频供水系统的这些优越性,引起国内几乎所有供水设备厂家的高度重视,并向着高可靠性、全数字化微机控制、多品种的方向发展。追求高度智能化、系列化、标准化是未来供水设备适应城镇建设中网络供水调度和整体规划要求的必然趋势。

参考文献

变频技术范文4

【关键词】电梯变频器;电动机

随着科学技术的发展和计算机技术的广泛应用,人们对电梯的安全性、可靠性的要求越来越高。现在主流的电梯设计大致可分为绳索式电梯和液压式电梯两大类别。无论是哪一类电梯,基本上都是采用变频器进行调速控制的,并且为了满足系统控制质量及运行效率的要求,均采用PLC与变频器结合的最佳控制方法。同时,变频调速还使用了先进的SPWM技术,具有优异的调速性能和起制动性能,可以达到高效和节能的效果,因此得到广泛的应用。

1.变频调速电梯电路原理

1.1变频器的工作原理

把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作变频器,主要是利用变频器中电力半导体器件的通断作用来实现这一目的。现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元和微处理单元等组成。

1.2 整流与回馈电路

整流回馈电路能够将交流电网的电能变换为直流(整流),并在需要的时候进行逆变运行回馈能量。变频器在驱动某些负载时,可能会出现需要将能量从负载中抽出的情况,能量回馈就是设法将上述机械能量转化为电能回送电网,从而节能。在能量回馈过程中,电动机相当于处于发电状态,原来的逆变装置现在则处于整流状态,而原来的整流装置却被控制处于逆变状态,从而完成将电动机的机械动能回馈电网。因为主电路所用器件是IGBT或IPM模块,根据系统运行状态,既可作为整流器使用,又可作为有源逆变器使用。

1.3 变频调速的控制方式

为满足电梯的控制要求,变频调速系统通过与电动机同轴连接的旋转编码器,来完成对速度的检测及反馈,实现了闭环控制。控制系统主要由计算机或PLC组成,主要用于发出电气系统所需的各项指令,包括运行速度、电流以及位置控制等,同时产生PWM控制信号,并具有自诊断功能。PLC用于完成系统的逻辑控制,负责处理各种信号的逻辑关系,从而向变频器发出起、停等信号。同时,变频器也通过电流互感器、电位器等检测元件,检测变频输出电流、直流回路电压、电网同步信号等参数,并反馈给PLC,形成双向联络关系。

2.变频器的选用原则

由于变频的过载能力没有电机过载能力强,一旦电机过载,首先烧毁变频器,因此变频器的选用型号应根据使用要求仔细考虑。最基本的原则是变频器的额定输出功率和电流选择必须等于或大于被驱动电机的额定功率和电流。除此之外,还应考虑使用环境、电网电压等。环境温度应保持较低,除设置完善的通风冷却系统以保证变频器正常运行外,在选用上增大一个容量等级,以免变频器过热。

3.变频器的参数设置

变频器参数设置前,首先检查主回路及控制回路接线有没有错误,避免造成变频器损坏,检查变频器输出线UVW与电机的UVW一一对应,确认无误后开始变频器的参数设置。

首先将变频器初始化,再根据所选用的变频器参数设定表依次设定参数,主要有额定电压、额定电流、基本频率、加速时间、减速时间等。设置电机的基本参数:最高转速、基本转速、极数、额定电压及额定电流,电机的参数可根据电机铭牌设置进变频器,也可以通过变频器自学习功能直接学习进变频器,自学习时电机必须为空载状态。

4.电梯变频器软件的功能需求

电梯变频器软件系统采用递阶层次结构,即某一层只能被其上层调用,而每一层中的大模块组是平行的,同一层模块之间无耦合关系,从而实现软件功能的并行扩展。设计软件模块的基本准则是模块间尽可能无耦合关系。电梯变频器软件是实时多任务软件,基于DSP的硬件中断机制,通过中断优先级别的判断实现实时多任务调度与管理。这种方法的好处是能精确确定每个任务的执行时间,这对任务实时性必须精确到微秒级的电机控制软件是绝对必要的。

5.电梯工作过程

简单理解电梯的工作原理:它是将动力电能,通过变频装置向驱动装置供电,由驱动装置拖动曳引装置,再通过曳引装置上悬挂的钢丝绳拉动井道内轿厢做上下运行工作。整个电梯系统是由很多的电气装置、机械装置整合后实现的。电梯停候在某层时,当另一层按下外召唤时,指令通过井内电线传输到控制柜的主控制板,它收到信号瞬间再次触动控制板内的程序,执行响应的指令,分别输出至外呼灯亮及驱动装置,最后电机带动变速箱转动,通过钢丝绳与曳引轮的摩擦力带动轿厢运行。每层都有一个平层装置来采集电梯所处位置,当电梯快到目的层时,控制板通过程序来控制驱动装置,使电梯减速到目的层平层开门,实现外召指令。电梯运行过程中通过控制变频器的输出来控制电动机的转速,从而精确控制电梯的加减速,以达到乘坐舒适的目的。

6.电动机工作状态

对于使用交流异步电动机或永磁同步电动机作为驱动主机的电梯,其调速方式为变极调速、调压调速、变频调速等。无论采用哪种调速方式,电梯在起动加速和稳速时都工作于电动或再生状态。满载上行或轻载下行分别工作于正转和反转电动状态,电机从电网吸收电能转化为动能;满载下行或轻载上行分别工作于反转和正转再生状态,这时可以将电机的机械能通过变频器反馈回电网,实现节能的目的,或消耗于制动元件上。

7.结语

实践证明,PLC与变频器在电梯节能控制系统中的应用,通过合理的设备选型、参数设置和软件设计,有效的提高了电梯运行的可靠性和舒适感,并节约了电能。

参考文献:

变频技术范文5

关键词 变频压缩机 变频调速系统 技术现状

1 引言

由于传统的制冷系统采用定速压缩机,因此人们对制冷系统及压缩机的研究重点一直是在名义工况和额定转速下稳态工作时的效率和其它工作特性上。传统的制冷系统采用定转速压缩机,实行开关控制,利用压缩机上附带的鼠笼式电动机驱动压缩机,从而调节蒸发温度。这种控制方式使蒸发温度波动较大,容易影响被冷却环境的温度。压缩机电机在工作过程中要不断克服转子从静止到额定转速变化过程中所产生的巨大转动惯量,尤其是带着负荷启动时,启动力矩要高出运行力矩许多倍,其结果不仅要额外耗费电能,而且会加剧压缩机运动部件的磨损。另外这种运行方式在启动过程中还会产生较大的振动、噪声以及冲击电流,引起电源电压的波动,因此应采用变频压缩机替代定转速压缩机,从而避免这种频繁的起停过程。

而变频调速技术主要由以下4个方面的关键技术组成:逆变器,微控制器,PWM波的生成以及变频压缩机的电机选择。

2 三种变频压缩机的研究状况

针对变频压缩机的研究,是从往复活塞机开始的,但由于其往复运动的特点,影响到变频特性的发挥;从而转到滚动转子式压缩机、涡旋压缩机等回转式压缩机上来,大大提高了压缩机的性能。总体说来,实验研究居多,而理论分析较少。

2.1 往复式活塞压缩机

日本东芝公司在1980年开发了往复式变频压缩机,又在1981年开发了转子式变频压缩机,文献[1]给出这两种机器的制冷量和总效率随频率变化的实验数据,从中可以看出往复式在频率为25~75Hz时,效率高;而转子式在30~90Hz时,效率高。并且两种机型均存在效率最高频率。在大于此频率时效率缓慢降低,小于此频率时,效率则下降很快。另外,Scalabrin测量一台可变速的开启式往复压缩机在不同转速下的制冷量和输入功率,他指出这台压缩机的容积效率在转速为1000rpm时最高,而等熵效率和制冷系数随转速的降低而增高[2]。Krueger讨论了BPM电机及变频器的设计,对转速在2000~5000rpm的冰箱和往复式压缩机进行了实验研究,得到压缩机的转速为3000~5000rpm时制冷系数最高;而文献[3]则给出了其对冰箱用往复式压缩机的性能试验和模拟计算结果,在其研究的转速范围内2000~4000rpm,制冷系数随转速的增加而降低。还有学者对往复式变频压缩机的热力性能进行了仿真研究,计算了压缩机内各部位的换热量和压力损失。

2.2 滚动转子式压缩机

在1984年,日本东芝公司的Sakurai和美国普渡大学的Hamilton建立了简单的滚动转子式压缩机的摩擦损失模型[4],并选取不同的边界摩擦系数和制冷剂在油中的溶解度计算了不同的转速下的摩擦功耗。其结果与实验值相比较,偏差较大。文献[5]叙述了日立公司1983年批量生产的变频转子压缩机在结构和材料上的改进。文献[6]研究了单缸和双缸转子压缩机的转速波动,讨论了电流频率减小时,压缩机性能降低的原因。文献[7]采用低密度和铝合金制作的滑片和转子以降低高转速时滑睡瑟转子间的接触力和转子轴承承载。文献[8]简单分析了适当降低滑片的质量和厚度可以提高变频转子压缩机的效率,并给出了气缸、转子和滑处的温度及应力分布的有限元分析结果。Liu和Soedel分析了变频转子压缩机的吸气和排气气流脉动[9,10]和吸气管气缸间的传热及压缩机的温度分布[11],讨论了影响变频转子压缩机容积效率和气缸压缩过程效率的因素,给出了他们用计算机模拟计算出的在不同转速下的容积效率和压缩过程效率,从实验数据和文献[1]的实验可以看出,其计算的容积效率随转速的增大而很快的增大。

2.3 涡旋式压缩机

涡旋式压缩机的原理早在1886年意大利的专利文献[12]论及到了,1905年法国工程师Creux正式提出涡旋式压缩机原理及结构,并申请美国专利[13]。涡旋式压缩机是一种新型的容积式压缩机,具有结构紧凑、效率高、可靠性强、噪声低等特点,尤其是用于变频控制运行。但由于没有数控加工技术和缺乏对轴向力平衡问题的妥善解决方法,因而长期未能完成其实用化。进入70年代,美国A.D.L公司完成富有成效的研究,首先解决了涡旋盘端部磨损补偿的密封技术。并在此基础上与瑞士合作开发了多种工质的涡旋式压缩机样机。涡旋式压缩机的真正规模生产始于日本。1981年日本三电(SANDEN)公司开始生产用于汽车空调的涡旋式压缩机,1983年日立公司开始生产2~5Hp用于房间空调的涡旋式压缩机。此外,在美国,自Copeland公司1987年建立涡旋式压缩机生产线推出其产品后,Carrier、Trane、Tecumseh等公司也分别设厂生产高质量的涡旋式压缩机。而变频涡旋压缩机已应用于柜式空调器上,节能效果明显,制冷系数提高20%左右,成为目前涡旋压缩机的一个研究热点。

3 变频调速技术的发展及现状

变频调速技术适应于节能降耗和舒适性的要求,目前已应用于新一代的空调器上,在90年代初进入国内空调市场,其核心是:逆变器、微控制器、PWM波的生成和变频压缩机的电机。

3.1 逆变器

变频空调的核心部件是变频器,其主要电路采用交-直-交电压型方式。交-直过程一般采用单相二级管不可控直接整流,直-交过程一般采用6管三相逆变器,另有一个辅助电源,一个逆变器控制器和相应的驱动电路。

早期的变频器采用分立元件构成,整流器采用单相倍压整流电路,逆变器由6只分立的功率晶体管(GTR)构成。这种电路复杂,可靠性差。目前大部分厂家采用的逆变桥由6个绝缘栅极晶体管(IGBT)组成,其综合了MOSFET和GTR的优点,开关频率高、驱动功率小。随着智能功率模块(IPM)技术的发展应用,IPM正在逐步取代普通IGBT模块。由于IPM内部既有IGBT的棚极驱动和保护逻辑,又有过流、过(欠)压、短路和过热探测以及保护电路,提高了变频器的可靠性和可维护性。另外,IPM的体积与普通IGBT模块不相上下,价格也比较接近,因此目前应用较为广泛。比较成功的产品如:日本三菱电机公司所生产的PM20CSJ060型以及日本新电元公司生产的TM系列IPM模块等。

功率因素校正(PFC)环节和逆变桥集成是新一代的空调器逆变电源技术。PFC技术的应用不但可以极大改善电网的工作环境,减少输电线的损耗,而且在变频工作时可以减小输入端电感和输出端电容器,减小模块体积。因此PFC环节和IPM逆变桥集成一体化是家用空调器发展的必然。

3.2 微控制器

微电子技术的发展使变频调速的实现手段发生了根本的变化,从早期的模拟控制技术发展数字控制技术。目前国外一些跨国公司的微控制器产品占据着主要的市场,如:Motorola公司的MC68HC08MP16、Intel公司的80C196MC、三菱公司的M37705等。这些公司的产品性能价格比较高、功能强大,如带有A/D转换器、PWM波形发生器、LED/LCD驱动等,且一般都有OTP产品以及功耗低可长期稳定的工作。微控制器目前主要由单片机向DSP(信号处理器)过渡。以目前应用比较广泛的TI公司的TMS320C240为例,其具有:50Ns的指令周期,544字的RAM,16K的EEPROM,12个PWM通道,三个16位计数器,两个10位A/D转换,WATCHDOG,串行通讯口,串行接口等,采用DSP,可使控制电路简单,而且控制功能强大。

3.3 PWM波的生成

在家用空调器中,目前国内大部分厂家采用常规的SPWM方法,在国外,在部分厂家以采用磁通跟踪型SPWM生成方法,该方法以不同的开关模式在电机中产生的实际磁通去逼近定子磁链的给定轨迹—理想磁通圆,即用空间电压矢量的方法决定逆变器的开关状态,以形成PWM波形,该方法电压利用率高,低频谐波转矩小,频率变化范围宽、运行稳定,具有比较好的控制性能。近期出现的PAM控制(Pulse Amplitude Modulation)不采用载波频率进行整流,而直接改变电压,减少了整流所需的能耗,提高了变频器的工作效率,满足了节电和降低高次谐波的要求,使供暖能力得到提高。

3.4 变频压缩机的电机

变频压缩机电机主要分为交流异步电动机和直流无刷电动机两种。目前国内一些大的压缩机生产厂家如:万宝、松下、上海日立、东芝万家乐等已有能力生产变频压缩机(包括交流机和直流机),交流电动机成本低,制造工艺简单,但其节能效果较差。直流无刷电机拖动由无刷电机本身,转子位置传感器和电子换向开关组成。转子磁极为永磁体,电枢绕组采用自控式换流,定子旋转磁场与转子磁极同步旋转,通常采用按转子磁场定向的定子电流矢量变换控制,既有普通直流电机良好的调速性能和启动性能,又从根本上消除了换向火花、无线电干扰的弊端,具有寿命长、可靠性高和噪声低,控制方便等优点。以1998年三菱电机公司开发的适用于空调压缩机的节能高效直流无刷电机为例,其具有:转子上安装了8块V字型永久磁体。磁体为埋入式,转子不会在不锈钢外壳中因涡流因而产生损耗;采用了新的压缩机电机驱动方式,效率比普通的无刷电机高,但是这种压缩机电机的价格较高。

变频技术范文6

【关键词】恒压供水系统;变频技术;PLC技术;供水质量

恒压供水是指用户端在任何时候,不管用水量的大小,总能保持管网中水压的基本恒定。恒压供水系统的控制策略是采用可编程控制器(PLC)和变频调速装置优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,在管网流量变化时能达到稳定供水压力和节约电能的目的。

一、系统组成及工作原理

变频恒压供水系统原理,它主要是由PLC、变频器、PID调节器、压力传感器、液位传感器、动力控制线路以及四台水泵等组成。用户通过控制柜面板上的指示灯和按钮、转换开关来了解和控制系统的运行。

系统采用四台水泵并联运行方式,通过安装在出水管网上的压力传感器,把出口压力信号变成4-20mA的标准信号送入PID调节器,经运算与给定压力参数进行比较,得出一调节参数,送给变频器,由变频器控制水泵的转速,调节系统供水量,使供水系统管网中的压力保持在给定压力上;当用水量超过一台泵的供水量时,通过PLC控制器加泵。根据用水量的大小由PLC控制工作泵数量的增减及变频器对水泵的调速,实现恒压供水。当供水负载变化时,输入电机的电压和频率也随之变化,这样就构成了以设定压力为基准的闭环控制系统。

所有水泵电机从停止到启动及从启动到停止都由变频器来控制,实现软启动,避免了启动大电流给水泵电机带来冲击,相对延长了电机的使用寿命。同时,系统供水采用变频泵循环方式,以“先开先关”的顺序关泵,工作泵与备用泵不固定死。这样,既保证供水系统有备用泵,又保证系统泵有相同的运行时间,有效地防止因为备用泵长期不用发生锈死现象,提高了设备的综合利用率,降低了维护费用。

二、系统硬件选择

(一)可编程控制器选择

可编程序控制器采用SIEMENS的S7-200系列CPU-226主机,I/O点数为40点(24个输入点和16个输出点),具有两个RS-485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。模拟量输入采用4路12位A/D模拟量输入的EM231模块,具有较高的精度。PLC编程采用STEP7-Micro/WIN编程软件,它提供一个完整的编程环境,可进行离线编程和在线连接和调试,并能实现梯形图与语句表的互相转换。主要检测元件有光电开关、压力检测开关,共计12个输入信号。执行部件有电机、变频调速器、声光报警器等,共三个输出点。PLC主要完成现场的数据采集、转换、存储、报警、控制变频器完成压力调节等功能。四台水泵由变频器直接驱动,进行恒压控制,变频器的起动、停止分为手动和PLC控制。控制面板上设有一个手动/自动转换开关,PLC对该开关的状态实时检测,当选择手动功能时,PLC只进行检测报警,由人工通过面板上的按钮和开关进行水泵的起、停和切换。当选择自动功能时,所有控制、报警均由PLC完成。

(二)变频器选择

变频器选用SIEMENS的MM系列或ABB的ACS-400系列风机/泵类专用变频器,它们具有RS-485通讯接口,性价比较高。PLC通过自由通讯口方式与变频器通讯,控制变频器的运行,读取变频器自身的电压、电流、功率、频率、累计运行时间和过压、过流、过负荷等全部报警信息等参数,并通过触摸屏显示出来,这比通过外部端口控制变频器的运行具有较高的可靠性,节省了PLC宝贵的I/O端口,又获得了大量变频器的信息。

(三)控制电路设计

在控制电路设计中,注意到系统自动/手动转换、每台水泵的变频接触器和工频接触器、各水泵的变频接触器在电气上的连锁,防止系统中出现一台水泵工频和变频电源同时接通或多台水泵同时接通变频电源的现象。

三、系统应用

(一)系统流程

为方便调试和编程,系统控制器采用模块化编程,主要由手动运行模块、自动运行模块和故障诊断与报警模块组成。当系统处于手动运行时,按下按钮启动或停止水泵,可根据需要分别控制1#-4#泵的启停。该方式主要供检修及变频器故障时用。自动运行模块包括系统的初始化、开机命令的检测、数据采集子程序、控制量运算子程序、置初值子程序、电机控制子程序等。

其中:数据采集子程序完成对主水管压力的数据采集。控制量运算子程序完成变频器控制量的计算和控制量的输出,控制量的计算按PID控制规律进行。

(二)系统操作

合上自动开关后,1#泵电机通电,变频器输出频率从0Hz上升,同时PID调节器接收到自压力传感器的标准信号,经运算与给定压力参数进行比较,将调节参数送给变频器,如压力不够,则频率上升到50Hz,1#泵由变频切换为工频,启2#变频,变频器逐渐上升频率至给定值,加泵依次类推;如用水量减小,从先启的泵开始减,同时根据PID调节器给的调节参数使系统平稳运行。

若有电源瞬时停电的情况,则系统停机;待电源恢复正常后,系统自动恢复运行,然后按自动运行方式启动1#泵变频,直至在给定水压值上稳定运行。同时在自动供水的过程中,PLC实时检测水池水位,若水位低于设定的报警水位时,蜂鸣器发出缺水报警信号;若水位低于设定的停机水位时,停止全部水泵工作,防止水泵干抽,并发出停机报警信号;若水池水位高于设定的水池上限水位时,自动关断水池给水管电动阀门。变频自动功能是该系统最基本的功能,系统自动完成对多台泵软起动、停止、循环变频的全部操作过程。

四、结论

与传统供水技术相比,变频调速技术具有如下优点:

1.节电,这是变频恒压供水系统最显著的优点,节能量通常在10%~40%。

2.卫生节水,根据实际用水情况设定管网压力,自动控制水泵出水系统实行闭环供水后,取消了水塔、水池、气压罐等设施,避免了用水的“二次污染”。

3.运行可靠,变频恒压供水系统实现了系统供水压力稳定而流量可在大范围内连续变化,从而可以保证用户任何时候的用水压力由变频器来实现泵的软起动,使水泵实现由工频到变频的无冲击切换,防止管道破裂。

4.控制灵活,可分段、定时供水。

5.自我保护功能完善。

6.延长设备寿命,保护电网稳定。

7.占地少,投资回收期短,一般约为两年。

参考文献:

[1]张春霞.变频调速及PLC技术在恒压供水系统中的应用[J].矿业快报,2004,(10).

[2]陈少雄,赵霞.变频器―PLC在供水控制系统的应用[J].微计算机信息,2004,20(10).

[3]变频技术在智能化系统中的应用Ⅰ[J].IB智能建筑与城市信息,2006,(5).

变频技术范文7

关键词:煤矿机电设备;变频技术;应用;分析

引言

我国是产煤大国,充足的煤矿资源被广泛应用于国民经济中的各个领域,煤矿资源的应用不仅提高了我国综合经济实力,也决定着我国的经济命脉,煤矿企业想要获取更好的发展,在激烈的竞争中取得一定的经济地位就需要利用节能效果的变频技术完成煤矿开采工作,变频技术在煤矿机电设备中的广泛应用是提高煤矿采煤数量和质量的关键措施。目前,煤矿企业机电设备的运行主要依靠机械化生产,在能耗中对煤矿的要求很高,多数煤矿企业目前无法合理使用变频技术,造成大量的资源浪费,因此借助变频技术在机械设备中的应用成为煤矿企业节省成本和提高经济效益的技术关键。

1变频技术的情况分析

(1)煤矿中的变频技术是指设备在使用过程中改变交流电的输出频率,降低机电设备在使用中的能耗从而实现对设备的有效控制;在机电设备的设计过程中,机电设备若在长时间的负荷中工作会造成能源的浪费,故在设备使用过程中融入变频技术,变频技术是一门与机电设备结合的综合技术,结合点击传动技术、电子技术及计算机技术,通过信息技术半导体元件将信号转换为其他频率,依靠逆变器进行控制调节,实现机电设备的自动调速;机电设备中的变频技术利用电流频率的增长关系,可以改变电频率控制转速,实现对机电设备的有效控制,在实际对煤矿机电设备中,变频的整流部分可以将电源化为直流电源,保证机电设备的正常运行。(2)变频技术的优势。煤矿企业设备中使用的变频技术与传统技术相比具有更好的可靠性,变频技术的功率精准度高,应用于实际操作中变频器与电机运行的实际符合相结合,实现对电机的控制,确保电流低于额定电流,达到提升电机效率的目的,这样可以大大降低电机的运转转速,减少对电机的损耗,提高使用寿命和效率;其次是变频技术的操作简单方便,依靠科技的进步,变频技术在开关环方面实现自动化,精准的自动化手段提高机电设备的使用率。

2变频技术在煤矿机电设备中的现状

目前,我国煤矿机电设备的变频技术广泛应用于各个领域,变频技术的优势是在实际操作中可将电能损耗降到最低,还能实现对煤矿资源的有效利用,对提升煤矿机电设备的运用效率有很大帮助,但煤矿企业并不是重视变频技术的应用,会造成大量的资源浪费,未使用煤矿变频技术的企业能耗高,资源利用率低,因此,这就要求煤矿企业重视变频技术的实际应用,在实际操作中,变频技术更具智能化和自动化,降低设备能耗的同时提高企业的经济效益。

3变频技术在煤矿机电设备中具体应用

变频技术对我国煤矿机电设备的发展有很大的影响,节能的同时提高资源的利用率,主要表现在以下几个方面:

3.1在采掘机方面的应用

煤矿实际操作中的主要设备时采掘机,采掘机设备的是煤矿开采中消耗能源最严重的设备,采掘机的运行速度直接决定煤矿的开采效率,由于井下作业环境恶劣和很多不确定的因素,会遇到不同类型的岩层,针对坚硬或柔软的岩层采掘机所使用的功率也不相同,将变频机广泛应用于采掘设备中,可以通过采掘机的自动化切割技术,大大降低了功率损耗的问题,提升采掘机在复杂地质条件下的工作效率,弥补了传统采掘机能耗高的问题。

3.2在提升机方面的应用

煤矿中的提升机设备是煤矿开采人员在采煤过程中需要通过提升机到达工作地点,同时对材料和开采工具进行运输,是井下作业必不可少的设备,提升机在实际操作中停止和运行的较为频繁,提升机的运行速度与电机转速有很大的关系,工作时能源消耗量较大,而传统的提升机设备在实际操作中受次数的限制,提升次数过多会造成对提升机的磨损,降低设备的使用率且安全性能交叉,因此为提高提升机的安全运行,操作人员将变频技术引用到提升机中,实现不同荷载之间的运转速度,降低提升机电阻,提高设备的使用寿命和工作效率。

3.3在通风机中的应用

煤矿井下作业时,复杂多样的地质环境加上恶劣的空气质量,对煤矿的通风设计有很高的要求,通风设备主要是依靠通风机为煤矿作业人员提供安全的工作环境,煤矿工作人员在工作时必须要处于一个通风良好的环境,通风机的使用需要大量的电能,随着煤矿开采深度的不断增加,通风机的功率随着深度的增加而逐渐增大,对通风机的损耗越来越大,应用变频技术后,通风机实现软启动,能更好的延长设备的使用寿命也可以减少能耗,为深井中的作业人员解决通风问题。

3.4在皮带传送机方面的应用

皮带传送机主要是通过电机转动带动皮带运转,将皮带上的材料运输到目的地的过程,皮带机启动时需要大量的电流才能促进皮带运转,多数企业的皮带机采用液力祸合器来操作,开启时电流较大,对皮带造成老化和断裂,不利于设备的安全运行,将变频技术引入皮带机中,可以更好的实现皮带机的软启动,提高设备的稳定性和安全性,具有良好的经济效益。

4结束语

我国的煤矿开采之路还有很长一段要走,将变频技术广泛应用于煤矿机电设备中,加强对变频技术的培训,重视变频技术的实际应用,科学合理的使用机电设备,是促进企业可持续发展,降低能耗的重要保障,变频机的广泛应用不仅可以降低企业的能源消耗,还可以提高设备的利用率,促使企业的长久发展。

参考文献:

[1]王端焕.浅谈煤矿机电设备中变频技术的应用[J].中国高新技术企业,2012(07).

[2]温勇.煤矿机电设备中变频节能技术的应用分析[J].河南科技,2013(05).

变频技术范文8

【关键词】: 变频技术 煤矿生产 节能

随着电力电子技术的不断发展和世界能源紧缺客观因素的影响,变频节能技术得到了各国的高度重视。在我国,构建节约型社会的口号极大推动了变频节能技术在矿山机械设备中的发展。就煤炭企业而言,矿井各个生产系统的用电占到总用电量的70%~90%。具体来说,在未采用变频节能措施前,风机、泵等流体机械设备,平均运转效率只有20%~50%。矿井提升机、胶带输送机、给煤机、空压机等动力负荷变化较大的机电设备在启动、减速制动等运行过程,电能的浪费是非常巨大的。采用变频器不仅能达到科学用电、节能降耗的目的,而且能够提高自动化水平。良好的节能效果和优越的调节性能使变频节能技术在我国煤矿中的应用越来越多,技术也日趋成熟。

一、变频技术在流体机械设备中的应用

风机和泵等流体机械设备的负载转矩与转速的平方成正比,对过载能力要求较低,选用普通功能型通用变频器即可满足要求。

1、风机中变频技术的应用

目前,变频器在我国煤矿风机节能改造上得到了大量应用,出现了为煤矿特殊环境专门设计的变频调速装置。据了解,东沟矿风机改造中,将原来JRQ-1510-10型高压绕阻式电动机换为JS157-10型低压鼠笼式电动机,用1台变频器控制两台电动机。经过改造后,实际转速较改进前最低转速下降了70r/min,电机实际输出功率为改进前前导器半关闭时的1/3,风量和风压更加适合矿井特性,每年可节约电费约56万元。

新星矿与上海创力电器公司合作,研制了ZJT-30型隔爆兼本安型智能变频调速系统,采取IGBT散热方式,工作电压为660V,可带动28kW局部通风机,实现了载波频率调整(2~50Hz)功能风电和瓦斯闭锁功能、过流短路保护功能、超温断电功能及远程和实地控制功能,其性能达到防爆标准,为巷道掘进过程中实现节能提供了有效手段。

2、泵中变频调速的应用

变频调速在矿井主排水泵中的应用,明显降低了设备的机械冲击。中国矿业大学利用变频器和PLC控制器,设计了一套煤矿井下排水泵站的监控系统,该系统中变频器灵活的控制水泵的平滑起停适时加减速,保证了井下液位的恒定,降低了水泵空转时间和频繁起停带来的大量能耗,设备的损耗也相应降低。PLC控制器的加入,使得变频器的自动控制更加智能与灵活,从而保证了生产的安全高效运行。

堡子矿选煤厂在介质泵上安装变频器,通过在线调节泵的转速来调节重介旋流器的入料压力,减少了频繁开、停车,降低了因启动电流过大造成的电耗增加。生产实践表明,采用变频调速技术使该选煤厂创收效益明显。

二、变频技术在机械动力负荷设备中的应用

1、提升机中变频技术的应用

华泓矿与唐山开诚电器公司合作,选用交流四象限变频调速系统配套湖南株州力达公司生产的JKB22.5/315P型变频防爆提升机,采用无速度传感器矢量控制方式,设有过压、欠压、过流、电机缺相等保护,系统实现全数字化控制,设计有专门的控制软件,同时具有很高的兼容性,提供了完善的输入输出接口电路,能够实现远程控制。

2、胶带输送机中变频技术的应用

山凹矿采区胶带输送机采用四象限变频调速技术后,解决了采用液力耦合器装置时下行运输皮带机在启动运行制动中形成的电机失控,变频器能随时将电机在下运过程中产生的电能回馈到电网中,减少了无效发热损耗,解决了机械系统及电气系统的冲击问题,延长了设备的使用寿命,使得检修更加简便快捷,而且长期运行维护费用低,节能效果好。

3、给煤机中变频技术的应用

下交矿对洗煤厂给煤机进行了技术改造,采用变频驱动的方案取代传统的手动闸门控制方案,选择了西门子MicroMaster440全新一代模块化设计的多功能标准变频器,系统具有标准参数结构,标准调试软件。有数字量输入、模拟量输入/输出、继电器输出功能。同时采用集成RS485通讯接口,使得安装操作和控制更加灵活方便。

4、空压机中变频技术的应用

登茂通矿联合山东科技大学对空压机电控系统进行了变频节能改造,采用l台ACS800-160变频器轮换去驱动2台空气压缩机。通过检测储气罐压力,实现系统的压力闭环控制,自动调节空气压缩机的转速和空气压缩机的运转台数,实现了空压机平稳高效工作。

三、变频技术的发展空间

煤矿大小机电设备种类繁多,井下工作环境恶劣。煤矿在发展过程中对变频器的需求呈现多功能的趋势,使用变频器控制会成为矿山网络化管理的一个重要环节。我国矿山机电设备节能减排任务迫在眉睫,节能改造必然需要大量的变频器,会极大推动变频技术在矿山的发展。面前,我国变频技术仍有很大提升空间,如:瓦斯抽放泵站、刮板输送机等领域变频器的核心器件晶闸管国产化水平不高,尤其是高压防爆变频制造领域还在开发试验阶段,变频器国内工业化生产尚未普及,大部分制造商仍停在进口关键部件的组装制造水平,核心技术缺乏自主知识产权。

四、结语

变频器在煤矿机械设备中的应用,不仅体现在风机、泵等流体机械设备中,也同样运用于提升机、胶带输送机等机械动力负荷设备中。现阶段,我国煤矿设备中对变频器的使用还不够广泛,变频器具有巨大的发展前景,其通过高效地将电能进行不同形式的转换,实现了对电能的控制,对于煤矿生产有着重要的意义。随着时代的发展,相信会有更多的变频技术在煤矿企业中得到开发和应用。

参考文献:

[1]李 新.探讨我国煤矿机电设备中变频节能技术的应用[J].科技致富向导,2013

[2]于淑珍.探讨我国煤矿机电设备中变频节能技术的应用[J].黑龙江科技信息,2013(04):76.

[3]温 勇.煤矿机电设备中变频节能技术的应用分析[J].河南科技,2013(15):117-118.

变频技术范文9

近年来,随着我国煤炭科技工业的高速发展,变频节能技术因具有可靠的调速性能以及良好的节能作用,被广泛用于煤矿生产,大大提高了煤矿设备自动化水平。基于此,本文简单分析了变频节能技术的基本原理、发展与应用现状,并对变频节能技术在井下煤矿设备中的发展状况以及发展前景进行了详细的论述。通过变频节能技术的应用,可发挥节能减排作用,进而提高企业的经济效益与社会效益。

【关键词】

煤矿;机电设备;变频节能技术

前言

在目前经济与能源矛盾日益激烈的情况下,尤其是建立资源节约型社会的宣传,煤矿企业要想做好节能工作,必须选用变频技术。同时,在设备运行过程中应用变频技术,不仅能够提升操控性能,还能取得明显的节能效果。因此,必须不断增大对技术创新工作的投入,逐渐增大变频节能技术在各大煤矿中的应用,使得变频技术趋于成熟。通过应用变频技术,能促进我国煤矿企业的进一步发展,提升采煤效率,真正做好低碳与节能工作,确保工作安全。

1变频节能技术的基本原理和发展

所谓变频技术,一般指通过改变交流电频率来达到设备控制自动化要求,是一种现代化的无附加转差损耗调速形式。通过变频技术,能够以机电设备负载部位变化值为基础,在系统前段部位布设设备的参数值,改变设备运转状态,提升机电设备运转效率。n=50f/p式中:n-电动机转速;f-频率;p-电机级数。当n处于一定状态时,通过改变f,就能够对n进行一定的改变。同时,当f处于0~50Hz范围内变化时,n调节范围会很宽。变频调速就是依据此原理,并通过改变电动机电源频率的方式来达到调速要求。煤矿井下环境一般具有特殊性,且瓦斯、煤尘等作为主要的易燃易爆物品,有一定的危险性,变频技术无法较好的在井下环境中应用。近年来,随着科学技术的进一步发展,变频节能技术在机电设备中得到了越来越广泛的应用,大大提高了设备运转效率,并且还大幅节省了电能、设备维护费用支出,提升矿产企业经济效益。由此可以看出,通过变频节能技术的应用,能够有效改善煤矿机电设备自身性能。

2变频节能技术原理和应用现状

2.1变频节能技术应用现状

煤矿企业在进行煤矿的开采时,安全生产工作是企业高度关注的内容,所以没有草率的对变频节能技术进行应用,但随着近年来科技、节能思想的推广,煤矿企业也已经开始在煤矿生产机电设备运行过程中运用变频节能技术,例如采煤机、皮带输送机等,大大提高了设备性能与运行效率,并且还大幅降低了设备运行所消耗的能量,实现了节能目的,同时还降低了设备维修与修理的费用支出力度,最终提高了煤矿企业的经济利润。

2.2变频节能技术原理

通过变频节能技术,能够使得煤矿生产机电设备性能得到有效的改善,相比于以前采用的交流电,存在很大的差别,其能够转换交流电的固定频率,进而使得交流电转变为可变性资源,大大提升了交流电的利用效率。基于GTRIGBT功率器件,有关科研人员现已经研发出了智能功率模块IPM,大大提高了变频功率。同时,变频节能技术打破了传统控制理论的限制,通过采用该技术,能够有效改善后压频比控制方法,此项创新主要是基于矢量控制办法,并进行转矩控制,使得变频节能技术在生产中应用的范围得到了扩大。通过人工神经网络、模糊自动优化控制等新型控制方法,使得变频技术中的集成系统得到了进一步改善、优化,在更大范围内集中集成系统。而技术也不再受到数字信息处理的限制,形成了具有更高技术的集成电路。此外,变频技术功能应用范围也不断扩大,现已成为综合性能较高的一种技术。通过变频节能技术的应用,不仅对生产机电设备进行合理的调控,还能对编程参数以及传输信息等进行有效的辨识。变频器是指通过通断电力半导体器件,将频率、电压不变的工频交流电转换为频率、电压可变的交流电的控制设备。使电动机电源频率发生改变来调解机电设备的速度即为变频调速。

3在煤矿机电设备中应用变频技术的主要原因

近年来,为了保证社会经济的持续发展,煤炭企业正在不断开采日益减少的煤矿资源,使得我国煤炭资源储量紧缺现象越来越紧张,基于此,煤炭行业的竞争也不断激烈。如果想要确保煤炭企业的持续发展,必须采用先进的技术来降低煤炭开采企业生产经营中所消耗的电能,用尽量少的成本获得最大的经济效益。由此可以看出,必须在煤矿机电设备中应用变频技术,满足节能减排要求,提高企业经济效益。同时还能少设备排放的废物,降低煤炭开采活动对生态环境的破坏和污染。对于煤炭企业,煤炭开采过程中所采用的机械设备消耗的电能很多,只有对变频技术进行合理的运用,才能增加具体的应用案例,为研究人员提供研究资料,不断创新变频技术,大幅降低机电设备运行过程中所消耗的能量,提升机电设备的可控性和节能性。由此可以看出,在煤矿机电设备中合理应用变频技术至关重要。

4煤矿机电设备中变频节能技术的应用分析

4.1提升机中变频技术的应用

在煤矿生产中,提升机具有极其重要的作用,其能够确保工作人员安全的运用机电设备。例如在电动机转子电路中运用金属电阻,虽然能具有一定的调速作用,但运行过程中还是存在许多问题,特别是安全问题。同时,电能的大量消耗问题也是一项重要的问题。现阶段所使用的变频节能技术能够对设备数字信息化进行有效的控制,其主要是将变频防爆提升机有效结合四象限变频调速系统,提升机的远程控制能够用输出和输入接口控制,这样依赖,可确保工作人员与物料输送的安全高效。

4.2在采煤机中的应用

所谓四象限运行的交流变频调速采煤技术,主要是一种水平处于世界前列的能量回馈型技术,我国生产的电牵引采煤机运行功率可达2×110kW,变频电压可达380V,并且还可以在额定转速情况下实行恒定转矩调速,同时还能进行两台变频器之间的转矩平衡和主从控制操作。此外,在四象限变频器调速电牵引采煤机实际运行过程中,当大倾角工作面在对制动力矩进行一定的调节操作时,其可调节的范围较大,但牵引速度几乎不发生变化。无下滑跑车的情况下,控制操作较简便,可靠性较强。

4.3在皮带输送机中的应用

变频技术应用于皮带输送机的原理类似于提升机,通过该技术的应用,可有效利用摩擦力的牵引作用,并通过对摩擦力与张力变形作用来带动物体,使得物体在支撑辊轮上运动,将井下的煤炭顺利的输送至地面。采用传统皮带机进行煤炭运送时,主要是利用液力耦合器来启动皮带输送机,但此种方式会加快皮带老化速度,并且还会提高皮带断裂现象发生的几率。将变频技术应用于皮带输送机,可减少电机启动时电流发生的波动,以此来降低机电内部的机械冲击与发热等情况发生的概率,发挥皮带输送机最大化运送作用,有效解决功率平均和同步问题。

4.4在流体负荷设施中的应用

将变频技术应用于流体负荷设施,可对泵和风机进行变频调速。近年来,随着变频调速技术在风机中应用的越来越广泛,科研人员现已研发出了适用于煤矿开采特殊环境的变频调速设备。在完成了风机的改造之后,其运行转速明显要小于改造之前。同时,风机改造之前的导器半关闭的风压、风量是改造之后实际输出的功率的3倍,此性能更适用于煤矿开采,进而节约电能。此外,将变频节能技术应用于液用泵、矿区之后,能够对该设备进行良好的变频调速,增大了生产工艺系统的控制力度,提高了控制的灵活性与产品质量。通过应用变频节能技术,大大提高了抽水泵控制的灵活度,使抽水泵能够实时加减速、平滑起停,且使井下液位保持固定值,缩短了泵空转时间,减少了因抽水泵频繁启停时消耗的电能,降低了机械设施损耗,有效提高了生产效率。

5变频节能技术的发展要求

随着煤炭企业现代化矿井建设的发展,变频技术等一系列先进技术在煤矿行业中的应用充分发挥了其重要的作用。由此可以看出,以变频技术来节约能源是现代化社会的一个必然趋势。但因煤矿生产的特殊环境和对安全的特殊要求,变频技术在井下工作中的应用时间较晚。近年来,随着市场经济的快速发展,煤炭企业的节能降耗增产增效以及绿色低碳开发受到了人们的高度关注,设备的改造、更新是必然的趋势。此外,煤矿井下开采环境恶劣,空气中还存在大量的瓦斯、粉尘等易燃易爆成分,所以市场上符合煤矿安全要求的隔爆型变频器并不多,因此需要广大工程科技人员和相关企事业科研院所大力协作研发更多符合井下要求的该类型产品。

6总结

总而言之,要想实现煤炭企业的持续发展,必须积极采取相关对策,对煤矿机电设备事故的发生进行有效的预防,主要包括不断提高员工安全意识,并对机电设备进行合理的利用等,真正预防机电事故的发生,推动煤矿企业的可持续发展。现代社会中,技术是确保企业告诉发展的重要基础。对于煤炭企业,必须在煤矿机电设备中广泛的应用变频节能技术,提升煤矿机电设备运行速度,简化煤矿机电设备操作流程,降低煤炭企业能源消耗,延长煤矿机电设备使用寿命,提高煤炭企业的竞争能力。

作者:蓝红日 单位:广西右江矿务局有限公司机电处

参考文献

[1]张正斌.试论煤矿机电设备中变频技术的运用[J].中国石油和化工标准与质量,2012,12(17):111~112.

变频技术范文10

【关键词】煤矿机电设备;变频技术应用

机电设备是煤矿生产不可或缺的重要组成部分,随着我国煤矿生产技术的不断发展进步,井下生产设备机械化水平越来越高的背景下,为了确保生产的安全和经济效益的提升,变频技术在井下机电设备中的应用越来越广泛。下面就对煤矿机电设备变频技术的合理应用展开深入探讨。

1、变频技术的概念及作用

变频就是改变供电频率,变频技术的核心是变频器,它通过对供电频率的转换来实现电动机运转速度率的自动调节,如将50Hz的固定电网频改为30~130Hz的变化频率。同时,还能使电源电压的适应范围达到142~270V,从而解决了由于电网电压不稳定等原因而对用电设备产生不良影响的难题。通过改变交流电频的方式实现交流电控制的技术就叫变频技术。

目前,变频技术的应用已越来越广泛,通过变频器进行变频可以实现如下目的:①调速。普通的三相异步电动机,加装变频后可以实现调速功能。即任意地改变电动机的转速;②节能。变频器调速比传统的电磁调速可以节电25%~80%。当然,具体的切能效率如何会因具体用电设备的不同而有所差异;③软启动。硬启动可能会对机电设备产生一定的危害,而采用变频技术,能最大限度地对减少启动对机电设备的危害。

2、变频技术在煤矿机电设备上的合理应用

变频技术能够有效提高煤矿机电设备的运行效率,所以在煤矿机电设备上应用十分广泛,已成为煤矿井下生产中的重要的设备。变频技术在煤矿机电设备上的应用主要有:

2.1变频技术在通风机中的应用

煤矿生产主要设备中主通风机具有重要的地位。作为矿井主要通风设备,运转时间长,被称为是煤矿的“呼吸系统”。随着开采和挖掘不断深入,井下的风压不断增加,通风机需要的功率也在不断增大。但通风机功率常常会成为限制井下开采效益的重要问题。通风机设备采用变频调速,可以根据巷道的风量需求情况进行调速,避免了电能消耗,应用效果十分显著。由于通风机通过变频器的改造之后还能实现变频软启动,能有效防止了启动电流冲击,这既能避免对电网设备的冲击,又能随意启停。在大部分时间里面,通风机都是在较低的速度下面运行,所以大大降低了通风机工作强度,能使得通风机的使用寿命得到延长,避免不必要的维修。

2.2变频技术在皮带机中的应用

皮带输送机是煤矿用的最多的运输设备。它一般采用交流电动机工频拖动的方式,通过液力耦合器传动,因此存在着传动效率低、启动电流冲击大等缺点,使皮带和液力耦合器磨损严重,因此维护及维修成本比较高。而利用变频器的软启动功能,就可以实现皮带输送机系统的软启动,就能减少皮带在启动过程中产生的张力,减少对皮带的伤害。也可以根据输送量的大小实时调整运输的速度,从而达到节约能源的目的。变频器完善的保护功能包括过压保护、过流保护、欠压保护、短路保护、过载保护等,并可与皮带输送机的综合保护装置如烟雾保护、打滑保护、跑偏保护、煤位保护、瓦斯保护、纵向撕裂保护、急停保护等对接,并完成各项安全保护性能。尤其在下运式皮带输送的使用中,可进行发电制动回馈电网,节能效果更加明显。

2.3变频技术在采煤机中的应用

采煤机具有频繁的启停、调速要求,对于变频器而言,就要求可以进行四象限工作。整流电路借助于四象限变频器调整全波整流桥为可控整流桥(主要构成为智能功率模块),在电机介于具体的电动状态之下的时候,四象限变频器和两象限变频器在具体的工作之上,没有任何的差异,在电机表现为发电状态的时候,原本四象限变频器里面的逆变电路就会演变为整流电路进行具体的工作,原本的整流电路就会以逆变电路的具体形式开始工作,这样的话,有利于由电机生产的电量被很好的反馈给电网。

目前,采煤机的实际变频调速系统,在有效达到额定转速之下,针对恒定转矩予以调速,针对额定转速之上,就恒定功率进行的调速来说,还要针对两台变频器进行转矩平衡以及实施主从控制。

在采煤机中合理运用四象限变频器调速,采煤机可以在较大的范围之内对倾角工作面予以调节,能够将牵引速度维持在一个基本不变的水平,机器也不会出现下滑跑车这种具体的现象,且易于操作,结构总的来说也不是很复杂。

3、煤矿机电设备应用变频技术中还应注意的问题

3.1变频技术应用要结合机电设备的实际使用条件

变频器虽然具有节能、可靠、安全、高效等很多优势,但也存在高次谐波、噪声和振动大、容易发热、价格相对昂贵等问题,在具体应用于机电设备中时要结合实际运行状况选择,是否有必要采用变频控制,以及变频器的工作电压、容量、频率限制、加减速时间等技术参数。

3.2合理进行负载匹配

根据负载特性的不同是选择变频器类型和电动机的前提,比如:一般恒转矩负载应选择具有恒定转矩特性、而且启动和制动转矩都比较大、过载时间和过载能力大的变频器; 风机泵类负载重点要求经济性和可靠性,应选择具有控制模式的变频器;恒功率负载要求输出为定值控制,变频器需要专门设计。

3.3正确安装和使用

变频器对安装质量要求较高。一般变频器使用温度范围为-10℃ ~50℃;海拔高度应小于1000m,超过此规定应降容使用;不能安装在经常发生振动的地点,否则应采用防震措施;不能安装在电磁干扰源附近;不能安装在有灰尘、潮湿、腐蚀性气体等空气污染的环境;变频器要通风畅通,确保控制柜有足够的冷却风量;变频器与弱电控制设备分开布置;使用中还要注意限制最低转速,并尽量避免频繁操作等等。

结语

变频技术应用于煤矿机电设备上是采矿技术发展的必然结果,更是机电设备性能优化的必然选择。目前,深入研究变频技术在煤矿机电设备中的合理应用,以切实提升设备的应用效率值得重视,这不仅可以促进变频技术的发展,还能为进一步推动煤矿机电设备改进奠定必须的技术基础。

参考文献

[1]王践伟.《浅析变频技术在煤矿机电设备中的应用》[J].山东煤炭科技,2012(5)

变频技术范文11

【关键词】PLC自动控制技术 变频器 特点 实现措施

1 引言

PLC控制技术实际上是一种可编程的逻辑控制器,其在电气控制领域中有着广泛的运用前景,而目前我国的变频技术在新时期也取得很大的进步,变频器技术是变频技术中的核心部分,有可能在将来可以完全取代传统的直流调速技术。变频技术中的变频器在实际应用中过于依赖人工操作,而人机互动的功能却无法满足其发展需求,而PLC自动控制技术应用到变频器中可以将这一问题有效解决,其在实际应用中可以完全弥补变频器数据分析处理能力的不足,同时也可以确保人机互动功能可以满足其应用需求,因此,我国需要将PLC自动控制技术与变频技术相结合,这样才能使其更好地为促进国民经济发展而服务。

2 PLC自动控制系统的特点简介

PLC(Programmable Logic Controller)自动控制技术被称为可编程逻辑控制器,其主要是运用可编程逻辑控制器来代替传统继电器来执行逻辑控制的功能,而根据PLC的特点可以将其定义为一种微型计算机,而这种微型计算机主要的控制功能是应用于工业生产制造领域,对提高现代工业制造领域的生产效率与质量有着重要作用。PLC自动控制技术的编程相对较为简单,操作人员只要经过短期培训便可以充分掌握,而且PLC自动控制系统在应用中具有稳定性强、准确性高、抗干扰能力较好等特点,与目前工业制造领域中所使用的其他控制系统相比,PLC自动控制系统的使用寿命相对较长且运行稳定性好,PLC控制系统的结构设计使其具有很强的通用性,其连接方式灵活、功能丰富以及体积小等,这都是PLC自动控制系统的特点。在实际应用中,PLC控制系统的控制对象如果只是1台电机,那么只需要1台PLC控制系统就可以达到所需要的控制效果,但是这种情况下要求PLC控制系统的质量、性能等方面相对较高,PLC控制系统主要通过收集、分析和综合来自变频器的全部信息来做出相应指令,并将这些指令传递给报警装置和变频器。PLC控制系统的主要工作原理是系统输出的信号来控制变频器,以此来实现系统对电子转速的自动控制,同时传感器和变频器的运行情况也被反馈到PLC控制系统中,系统并对这些数据信息进行自动分析,从而在运行出现故障或发生事故时,PLC控制系统会及时发出声光警报。

3 变频器和PLC模块的型号选择

现阶段市场上有很多不同种类的变频器,一般性能较高的变频器其价格也相对较高,因此,在选择变频器过程中应该将对工艺要求的适应度作为主要选择标准,并不是过于追求高性能种类的变频器,同时,不同电机所带动的负荷也是有差异的,这便要求在变频器选择过程中要考虑电机负荷的实际需求,并且机械种类不同,变频器模块的选型也要满足不同种类的机械运行需求。变频器选择过程中其使用中的可靠性也是一个主要的选择标准,这是生产机械配置变频器的主要目的是提高生产效率,如果变频器在使用过程中的稳定性较差,这便使其难以满足工业生产需求。PLC控制系统在选择过程中主要针对机型、I/O模块、容量、电源模块、特殊功能模块以及通信联网能力等几个方面进行综合考虑,PLC模块型号选择过程中要注意输入信号的类型、电压等级以及输入接线的连接方式等。

4 实现变频器与PLC自动控制技术相结合的措施

4.1 利用通信协议实现的措施

通信协议根据其特点可以分为通用和专用两种,同时也可以将其划分为自由口通信协议和MODBUS通信协议,使用专用通信协议是指变频器和PLC之间预定指令的通信协议,这样才能实现PLC系统在运行过程中对变频器的有效控制。自由口模式下,通过自由口通信协议不仅可以有效实现PLC系统对通信自由程序的控制,同时也可以实现不同型号变频器相互之间的通信,因此,在完成通讯调试与程序编写的前提下,可以采用自由口通信模式来保证PLC系统与变频器之间通信的可靠性、稳定性以及安全性。Modicon公司于1979年提出MODBUS通信协议,MODBUS通信协议自出现起便一直被作为网络通信行业的主要标准,通过分析其特点我们可以了解到,MODBUS通信协议在本质上属于串行通信协议,并且其在实际应用中可以支持CRC与LPC的校验。

4.2 利用变频器端子与PLC连接实现的措施

为了有效实现变频器与PLC控制系统的有效结合,可以通过变频器I/O端子与PLC控制系统进行连接,而这种方法在实际应用中可以分为2个方向,其主要有PLC与模拟量端子连接,PLC与数字输入端连接等。采用PLC与模拟量端子连接过程中,是在PLC自身并不携带模拟端子时可以采用这种方法,通过将PLC扩展模块与变频器模拟量端子进行连接,这样便可以有效实现PLC控制变频器的目的。PLC与变频器可以采用数字输入端与PLC连接的方式,这是因为PLC系统自身带有若干个I/O端子,而我们便可以使用导线将变频器的输入端子与PLC中的I/O端子相连接,通过这种连接方法也可以有效实现PLC系统对变频器的控制,这两种连接方式可以根据变频器、PLC系统的型号特点进行选择,第二种连接方式不仅可以有效控制变频器的停止或启动,同时也可以根据实际需求来改变变频器预先设定的频率,如果变频器上有较多的数字量输入端子,那么变频器在连接后将会获得更多的预定频率。

5 结语

PLC自动控制技术与变频技术的有效结合,可以在最大程度上弥补变频器在监控技术和操作控制等方面的不足,而PLC和变频器进行结合可以有效发挥出相辅相成的效果,从而有效拓展了变频器在工业生产领域中的应用范围,这样才能使PLC自动控制技术可以更好地促进我国社会经济发展。

参考文献

[1]宋飞.PLC自动控制技术在变频器中的应用研究[J].工艺与技术,2013.

[2]李晓臣.PLC自动控制技术变频器的特点[J].工程技术,2014.

[3]梁锋.关于PLC变频技术的特点及实现的分析研究[J].中国石油,2012.

变频技术范文12

关键词:变频器,控制技术,应用

 

电力电子技术诞生至今已近50年,他对人类的文明起了巨大的作用.近10年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。交流电机变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其有益的

调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。

1.变频调速技术的现状

电气传动控制系统通常由电动机、控制装置和信息装置三部分组成。电气传动可分为调速和不调速两大类,调速又分为交流调速和直流调速两种方式。不调速电动机直接由电网供电。但是,随着电力电子技术的发展,原本不调速的机械越来越多地改用调速传动以节约电能,改善产品质量,提高产量。以我国为例,60%的发电量是通过电动机消耗的。因此,调速传动有着巨大的节能潜力,变频调速是交流调速的基础和主干内容,变频调速技术的出现使频率变为可以充分利用的资源。近年来。变频调速技术已成为交流调速中最活跃、发展最快的技术。

1.1国外现状

采用变频的方法,实现对电机转速的控制,大约已有40年的历史,但变频调速技术的高速发展,则是近十年的事情,主要是由下面几个因素决定:

1.1.1市场有大量需求

随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。

1.1.2功率器件发展迅速

变频调速技术是建立在电力电子技术基础之上的。近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM(Intelligent Power Module)等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。在大功率交—交变频(循环交流器)调速技术方面,法国阿尔斯通已能提供单机容量达30000kW的电器传动设备用于船舶推进系统。在大功率无换向器电机变频调速技术方面,意大利ABB公司提供了单机容量为60000kW的设备用于抽水蓄能电站;在中功率变频调速技术方面,德国西门子公司Simovert A电流型晶闸管变频调速设备单机容量为10-2600kVA和Simovert PGTOPWM变频调速设备单机容量为100-900kVA,其控制系统已实现全数字化,用于电机风车,风机,水泵传动;在小功率变频调速技术方面,日本富士BJT变频器最大单机容量可达700kVA,IGBT变频器已形成系列产品,其控制系统也已实现全数字化。

IPM投入应用比IGBT约晚二年,由于IPM包含了1GBT芯片及的驱动和保护电路,有的甚至还把光耦也集成于一体,是一种更为适用的集成型功率器件。目前,在模块额定电流10-600A范围内,通用变频器均有采用IPM的趋向。IPM除了在工业变频器中被大量采用之外,经济型的IPM在近年内也开始在一些民用品,如家用空调变频器,冰箱变频器,洗衣机变频器中得到应用。IPM也在向更高的水平发展,日本三菱电机最近开发的专用智能模块ASIPM将不需要外接光耦,通过内部自举电路可单电源供电,并采用了低电感的封装技术,在实现系统小型化、专用化、高性能、低成本方面又推近了一步。

1.1.3控制理论和微电子技术的支持

在现代自动化控制领域中,以现代控制论为基础,融入模糊控制、专家控制、神经控制等新的控制理论,为高性能变频调速提供了理论基础;16位、32位高速微处理器以及信号处理器(DSP)和专用集成电路(ASIC)技术的快速发展,则为实现变频调速的高精度、多功能提供了硬件手段。

1.2国内现状

从整体上看我国电气传动系统制造技术水平较国际先进水平差距10-15年。在大功率交-交,无换向器电动机等变频技术方面,国内只有少数科研单位有能力制造,但在数字化及系统可靠性方面与国外还有相当差距。而这方面产品在诸如抽水蓄能电站机组启动及运行、大容量风机、压缩机和轧机传动、矿井卷扬机方面有很大需求。在中小频率技术方面,国内学者做了大量变频理论的基础研究。早在80年代,已成功引入矢量控制的理论,针对交流电机具有多变量、强耦合、非线性的特点,采用了线性解耦和非线性解耦的方法,探讨交流电机变频调速的控制策略。进入90年代,随着高性能单片机和数字信号处理的使用,国内学者紧跟国外最新控制策略,针对交流电机感应特点,采用高次谐波注入SPWM和空间磁通矢量PWM等方法,控制算法采用模糊控制,神经网络理论对感应电机转子电阻、磁链和转矩进行在线观测,在实现无速度传感器交流变频调速系统的研究上作了有益的基础研究。在新型电力电子器件应用方面,由于GTR,GTO,IGBT,IPM等全控制器件的使用,使得中小功率的变流主电路大大简化,大功率SCR,GTO,IG-BT,IGCT等器件的并联、串联技术应用,使高电压、大电流变频器产品的生产及应用成为现实。在控制器件方面,实现了从16位单片机到32位DSP的应用。国内学者一直致力于变频调速新型控制策略的研究,但由于半导体功率器件和DSP等器件依赖进口,使得变频器的制造成本较高,无法形成产业化,与国外的知名品牌相抗衡。国内几乎所有的产品都是普通的V/f控制,仅有少量的样机采用矢量控制,品种与质量还不能满足市场需要,每年需大量进口高性能的变频器。

因此,国内交流变频调速技术产业状况表现如下:(1)变频器控制策略的基础研究与国外差距不大。(2)变频器的整机技术落后,国内虽有很多单位投入了一定的人力、物力,但由于力量分散,并没形成一定的技术和生产规模。(3)变频器产品所用半导体功率器件的制造业几乎是空白。(4)相关配套产业及行业落后。(5)产销量少,可靠性及工艺水平不高。

2.变频调速技术未来发展的方向

变频调速技术主要向着两个方向发展:一是实现高功率因数、高效率、无谐波干扰,研制具有良好电磁兼容性能的“绿色电器”;二是向变频器应用的深度和广度发展。随着变流器应用领域深度和广度的不断开拓,变频调速技术将越来越清楚地展示它在一个国家国民经济中的重要性。可以预料,现代控制理论和人工智能技术在变频调速技术的应用和推广,将赋予它更强的生命力和更高的技术含量。其发展方向具有如下几项:(1)实现高水平的控制;(2)开发清洁电能的变流器;(3)缩小装置的尺寸;(4)高速度的数字控制;(5)模拟与计算机辅助设计(CAD)技术。。

3变频调速技术的应用

纵观我国变频调速技术的应用,总的说来走的是一个由试验到实用,由零星到大范围,由辅助系统到生产装置,由单纯考虑节能到全面改善工艺水平,由手动控制到自动控制,由低压中小容量到高压大容量,一句话,由低级到高级的过程。。我国是一个能耗大国,60%的发电量被电动机消耗掉,据有关资料统计,我国大约有风机、水泵、空气压缩机4200万台,装机容量约1.1亿万千瓦,然而实际工作效率只有40%-60%,损耗电能占总发电量的40%,已有经验表明,应用变频调速技术,节电率一般可达10%-30%,有的甚至高达40%,节能潜力巨大。

有关资料表明,我国火力发电厂有八种泵与风机配套电动机的总容量为12829MW,年总用电量为450。2亿千瓦小时。还有总容量约为3913MW的泵与风机需要进行节能改造,完成改造后,估计年节电量可达25。。69亿千瓦小时;冶金企业也是我国的能耗大户,单位产品能耗高出日本3倍,法国4。9倍,印度1。9倍,冶金企业使用的风机泵类非常多,实施变频改造,不仅可以大幅度节约电能,还可改善产品质量。

参考文献

[1]何庆华,陈道兵. 变频器常见故障的处理及日常维护[J]. 变频器世界, 2009, (04) .

[2]龙卓珉,罗雪莲. 矩阵式变频调速系统抗干扰设计[J]. 变频器世界, 2009, (04) .