HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 变频器论文

变频器论文

时间:2022-10-31 20:11:31

变频器论文

变频器论文范文1

关键词:变频器干扰抑制

Abstract:Theapplicationoftheinvertersintheindustrialproductionisbecomingmoreand

moreuniversal,anditsinterfaceisbeingpaidmuchattention.Thesourceandspreadingrouteinthe

applicationsystemoftheinverterareintroducedinthispaper,somepracticalresolventsareputforward,andtheconcretemeasuresinthesystemdesignandinstallmentareexpounded.

Keywords:InverterInterfaceRestrain

[中图分类号]TN973[文献标识码]B文章编号1561-0330(2003)06-00

1引言

变频器调速技术是集自动控制、微电子、电力电子、通信等技术于一体的高科技技术。它以很好的调速、节能性能,在各行各业中获得了广泛的应用。由于其采用软启动,可以减少设备和电机的机械冲击,延长设备和电机的使用寿命。随着科学技术的高速发展,变频器以其具有节电、节能、可靠、高效的特性应用到了工业控制的各个领域中,如变频调速在供水、空调设备、过程控制、电梯、机床等方面的应用,保证了调节精度,减轻了工人的劳动强度,提高了经济效益,但随之也带来了一些干扰问题。现场的供电和用电设备会对变频器产生影响,变频器运行时产生的高次谐波也会干扰周围设备的运行。变频器产生的干扰主要有三种:对电子设备的干扰、对通信设备的干扰及对无线电等产生的干扰。对计算机和自动控制装置等电子设备产生的干扰主要是感应干扰;对通信设备和无线电等产生的干扰为放射干扰。如果变频器的干扰问题解决不好,不但系统无法可靠运行,还会影响其他电子、电气设备的正常工作。因此有必要对变频器应用系统中的干扰问题进行探讨,以促进其进一步的推广应用。下面主要讨论变频器的干扰及其抑制方法。

2变频调速系统的主要电磁干扰源及途径

2.1主要电磁干扰源

电磁干扰也称电磁骚扰(EMI),是以外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的。变频器的整流桥对电网来说是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。另外,变频器的逆变器大多采用PWM技术,当其工作于开关模式并作高速切换时,产生大量耦合性噪声。因此,变频器对系统内其他的电子、电气设备来说是一个电磁干扰源。另一方面,电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源,如各种整流设备、交直流互换设备、电子电压调整设备、非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其他设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。

2.2电磁干扰的途径

变频器能产生功率较大的谐波,对系统其他设备干扰性较强。其干扰途径与一般电磁干扰途径是一致的,主要分电磁辐射、传导、感应耦合。具体为:①对周围的电子、电气设备产生电磁辐射;②对直接驱动的电动机产生电磁噪声,使得电动机铁耗和铜耗增加,并传导干扰到电源,通过配电网络传导给系统其他设备;③变频器对相邻的其他线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。下面分别加以分析。

(1)电磁辐射

变频器如果不是处在一个全封闭的金属外壳内,它就可以通过空间向外辐射电磁波。其辐射场强取决于干扰源的电流强度、装置的等效辐射阻抗以及干扰源的发射频率。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对接入同一电网的其它电子、电气设备产生谐波干扰。变频器的逆变桥大多采用PWM技术,当根据给定频率和幅值指令产生预期的和重复的开关模式时,其输出的电压和电流的功率谱是离散的,并且带有与开关频率相应的高次谐波群。高载波频率和场控开关器件的高速切换(dv/dt可达1kV/μs以上)所引起的辐射干扰问题相当突出。

当变频器的金属外壳带有缝隙或孔洞,则辐射强度与干扰信号的波长有关,当孔洞的大小与电磁波的波长接近时,会形成干扰辐射源向四周辐射。而辐射场中的金属物体还可能形成二次辐射。同样,变频器外部的辐射也会干扰变频器的正常工作。

(2)传导

上述的电磁干扰除了通过与其相连的导线向外部发射,也可以通过阻抗耦合或接地回路耦合将干扰带入其它电路。与辐射干扰相比,其传播的路程可以很远。比较典型的传播途径是:接自工业低压网络的变频器所产生的干扰信号将沿着配电变压器进入中压网络,并沿着其它的配电变压器最终又进入民用低压配电网络,使接自民用配电母线的电气设备成为远程的受害者。

(3)感应耦合

感应耦合是介于辐射与传导之间的第三条传播途径。当干扰源的频率较低时,干扰的电磁波辐射能力相当有限,而该干扰源又不直接与其它导体连接,但此时的电磁干扰能量可以通过变频器的输入、输出导线与其相邻的其他导线或导体产生感应耦合,在邻近导线或导体内感应出干扰电流或电压。感应耦合可以由导体间的电容耦合的形式出现,也可以由电感耦合的形式或电容、电感混合的形式出现,这与干扰源的频率以及与相邻导体的距离等因素有关。

3抗电磁干扰的措施

据电磁性的基本原理,形成电磁干扰(EMI)须具备电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统等三个要素。为防止干扰,可采用硬件和软件的抗干扰措施。其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统对干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。

(1)隔离

所谓干扰的隔离是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。在变频调速传动系统中,通常是在电源和放大器电路之间的电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。

(2)滤波

设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源及电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器。为减少对电源的干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器,以免传导干扰。

(3)屏蔽

屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏。输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路及控制回路完全分离,不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。

(4)接地

实践证明,接地往往是抑制噪声和防止干扰的重要手段。良好的接地方式可在很大程度上抑制内部噪声的耦合,防止外部干扰的侵入,提高系统的抗干扰能力。变频器的接地方式有多点接地、一点接地及经母线接地等几种形式,要根据具体情况采用,要注意不要因为接地不良而对设备产生干扰。

单点接地指在一个电路或装置中,只有一个物理点定义为接地点。在低频下的性能好;多点接地是指装置中的各个接地点都直接接到距它最近的接地点。在高频下的性能好;混合接地是根据信号频率和接地线长度,系统采用单点接地和多点接地共用的方式。变频器本身有专用接地端子PE端,从安全和降低噪声的需要出发,必须接地。既不能将地线接在电器设备的外壳上,也不能接在零线上。可用较粗的短线一端接到接地端子PE端,另一端与接地极相连,接地电阻取值<100Ω,接地线长度在20m以内,并注意合理选择接地极的位置。当系统的抗干扰能力要求较高时,为减少对电源的干扰,在电源输入端可加装电源滤波器。为抑制变频器输入侧的谐波电流,改善功率因数,可在变频器输入端加装交流电抗器,选用与否可视电源变压器与变频器容量的匹配情况及电网允许的畸变程度而定,一般情况下采用为好。为改善变频器输出电流,减少电动机噪声,可在变频器输出端加装交流电抗器。图1为一般变频调速传动系统抗干扰所采取措施。

以上抗干扰措施可根据系统的抗干扰要求来合理选择使用。若系统中含控制单元如微机等,还须在软件上采取抗干扰措施。

(5)正确安装

由于变频器属于精密的功率电力电子产品,其现场安装工艺的好坏也影响着变频器的正常工作。正确的安装可以确保变频器安全和无故障运行。变频器对安装环境要求较高。一般变频器使用手册规定温度范围为最低温度-10℃,最高温度不超过50℃;变频器的安装海拔高度应小于1000m,超过此规定应降容使用;变频器不能安装在经常发生振动的地方,对振动冲击较大的场合,应采用加橡胶垫等防振措施;不能安装在电磁干扰源附近;不能安装在有灰尘、腐蚀性气体等空气污染的环境;不能安装在潮湿环境中,如潮湿管道下面,应尽量采用密封柜式结构,并且要确保变频器通风畅通,确保控制柜有足够的冷却风量,其典型的损耗数一般按变频器功率的3%来计算柜中允许的温升值。安装工艺要求如下:

①确保控制柜中的所有设备接地良好,应该使用短、粗的接地线(最好采用扁平导体或金属网,因其在高频时阻抗较低)连接到公共地线上。按国家标准规定,其接地电阻应小于4欧姆。另外与变频器相连的控制设备(如PLC或PID控制仪)要与其共地。

②安装布线时将电源线和控制电缆分开,例如使用独立的线槽等。如果控制电路连接线必须和电源电缆交叉,应成90°交叉布线。

③使用屏蔽导线或双绞线连接控制电路时,确保未屏蔽之处尽可能短,条件允许时应采用电缆套管。

④确保控制柜中的接触器有灭弧功能,交流接触器采用R-C抑制器,也可采用压敏电阻抑制器,如果接触器是通过变频器的继电器控制的,这一点特别重要。

⑤用屏蔽和铠装电缆作为电机接线时,要将屏蔽层双端接地。

⑥如果变频器运行在对噪声敏感的环境中,可以采用RFI滤波器减小来自变频器的传导和辐射干扰。为达到最优效果,滤波器与安装金属板之间应有良好的导电性。

4变频控制系统设计中应注意的其他问题

除了前面讨论的几点以外,在变频器控制系统设计与应用中还要注意以下几个方面的问题。

(1)在设备排列布置时,应该注意将变频器单独布置,尽量减少可能产生的电磁辐射干扰。在实际工程中,由于受到房屋面积的限制往往不可能有单独布置的位置,应尽量将容易受干扰的弱电控制设备与变频器分开,比如将动力配电柜放在变频器与控制设备之间。

(2)变频器电源输入侧可采用容量适宜的空气开关作为短路保护,但切记不可频繁操作。由于变频器内部有大电容,其放电过程较为缓慢,频繁操作将造成过电压而损坏内部元件。

(3)控制变频调速电机启/停通常由变频器自带的控制功能来实现,不要通过接触器实现启/停。否则,频繁的操作可能损坏内部元件。

(4)尽量减少变频器与控制系统不必要的连线,以避免传导干扰。除了控制系统与变频器之间必须的控制线外,其它如控制电源等应分开。由于控制系统及变频器均需要24V直流电源,而生产厂家为了节省一个直流电源,往往用一个直流电源分两路分别对两个系统供电,有时变频器会通过直流电源对控制系统产生传导干扰,所以在设计中或订货时要特别加以说明,要求用两个直流电源分别对两个系统供电。

(5)注意变频器对电网的干扰。变频器在运行时产生的高次谐波会对电网产生影响,使电网波型严重畸变,可能造成电网电压降很大、电网功率因数很低,大功率变频器应特别注意。解决的方法主要有采用无功自动补偿装置以调节功率因数,同时可以根据具体情况在变频器电源进线侧加电抗器以减少对电网产生的影响,而进线电抗器可以由变频器供应商配套提供,但在订货时要加以说明。

(6)变频器柜内除本机专用的空气开关外,不宜安置其它操作性开关电器,以免开关噪声入侵变频器,造成误动作。

(7)应注意限制最低转速。在低转速时,电机噪声增大,电机冷却能力下降,若负载转矩较大或满载,可能烧毁电机。确需低速运转的高负荷变频电机,应考虑加大额定功率,或增加辅助的强风冷却。

(8)注意防止发生共振现象。由于定子电流中含有高次谐波成分,电机转矩中含有脉动分量,有可能造成电机的振动与机械振动产生共振,使设备出现故障。应在预先找到负载固有的共振频率后,利用变频器频率跳跃功能设置,躲开共振频率点。

5结束语

以上通过对变频器运行过程中存在的干扰问题的分析,提出了解决这些问题的实际方法。随着新技术和新理论不断在变频器上的应用,变频器应用存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器不久也会面世。

参考文献

[1]韩安荣.通用变频器及其应用(第2版)[M].北京:机械工业出版社,2000

[2]吴忠智,吴加林,变频器应用手册[Z].北京:机械工业出版社,1995

[3]王定华等.电磁兼容性原理与设计[M].四川:电子科技大学出版社,1995

[4]电磁兼容性术语(GB/T43651995)[S].北京:中国标准出版社,1996

变频器论文范文2

关键词:变频器谐波负载发热

Abstract:Thispaperanalyzedtheproblemofharmonicwave,matchingofloadand

calorificationforinvertersinrunning,andmadetherelativelythemeasure.

Keywords:inverterharmonicwaveloadingcalorification

1前言

自80年代通用变频器进入中国市场以来,在短短的十几年时间里得到了非常广泛的应用。目前,通用变频器以其智能化、数字化、网络化等优点越来越受到人们的青睐。随着通用变频器应用范围的扩大,暴露出来的问题也越来越多,主要有以下几方面:

①谐波问题

②变频器负载匹配问题

③发热问题

以上这些问题已经引起了有关管理部门和厂矿的注意并制定了相关的技术标准。如谐波问题,我国于1984年和1993年通过了“电力系统谐波管理暂行规定”及GB/T-14549-93标准,用以限制供电系统及用电设备的谐波污染。针对上述问题,本文进行了分析并提出了解决方案及对策。

2谐波问题及其对策

通用变频器的主电路形式一般由三部分组成:整流部分、逆变部分和滤波部分。整流部分为三相桥式不可控整流器,逆变器部分为IGBT三相桥式逆变器,且输出为PWM波形。对于双极性调制的变频器,其输出电压波形展开式为:

(1)

式中:n—谐波的次数n=1,3,5……;

a1—开关角,i=1,2,3……N/2;

Ed—变频器直流侧电压;

N—载波比。

由(1)式可见,各项谐波的幅值为

(2)

令n=1,则得出变频器输出电压的基波幅值为:

(3)

从(1)、(2)、(3)式可以看出,通用变频器的输出电压中确实含有除基波以外的其他谐波。较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。

如前所述,由于通用变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较为陡峻的脉冲波,其谐波分量较大。为了消除谐波,可采用以下对策:

①增加变频器供电电源内阻抗

通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。这种内阻抗就是变压器的短路阻抗。当电源容量相对变频器容量越小时,则内阻抗值相对越大,谐波含量越小;电源容量相对变频器容量越大时,则内阻抗值相对越大,谐波含量越大。对于三菱FR-F540系列变频器,当电源内阻为4%时,可以起到很好的谐波抑制作用。所以选择变频器供电电源变压器时,最好选择短路阻抗大的变压器。

②安装电抗器

安装电抗器实际上从外部增加变频器供电电源的内阻抗。在变频器的交流侧安装交流电抗器或在变频器的直流侧安装直流电抗器,或同时安装,抑制谐波电流。表一列出了三菱FR-A540变频器安装电抗器和不安装电抗器的含量对照表。

③变压器多相运行

通用变频器的整流部分是六脉波整流器,所以产生的谐波较大。如果应用变压器的多相运行,使相位角互差30°如Y-、-组合的两个变压器构成相当于12脉波的效果则可减小低次谐波电流28%,起到了很好的谐波抑制作用。

④调节变频器的载波比

从(1)、(2)、(3)式可以看出,只要载波比足够大,较低次谐波就可以被有效地抑制,特别是参考波幅值与载波幅值小于1时,13次以下的奇数谐波不再出现。

⑤专用滤波器

该专用滤波器用于检测变频器谐波电流的幅值和相位,并产生一个与谐波电流幅值相同且相位正好相反的电流,通到变频器中,从而可以非常有效地吸收谐波电流。

3负载匹配问题及其对策

生产机械的种类繁多,性能和工艺要求各异,其转矩特性是复杂的,大体分为三种类型:恒转矩负载、风机泵类负载和恒功率负载。针对不同的负载类型,应选择不同类型的变频器。

①恒转矩负载

恒转矩负载是指负载转矩与转速无关,任何转速下,转矩均保持恒定。恒转矩负载又分为摩擦类负载和位能式负载。

摩擦类负载的起动转矩一般要求额定转矩的150%左右,制动转矩一般要求额定转矩的100%左右,所以变频器应选择那些具有恒定转矩特性,并且起动和制动转矩都比较大,过载时间长和过载能力大的变频器。如三菱变频器FR-A540系列。

位能式负载一般要求大的起动转矩和能量回馈功能,能够快速实现正反转,变频器应选择具有四象限运行能力的变频器。如三菱变频器FR-A241系列。

②风机泵类负载

风机泵类负载是目前工业现场应用最多的设备,虽然泵和风机的特性多种多样,但是主要以离心泵和离心风机应用为主,通用变频器在这类负载上的应用最多。风机泵类负载是一种平方转矩负载,其转速n与流量Q,转矩T与泵的轴功率N有如下关系式:

(4)

这类负载对变频器的性能要求不高,只要求经济性和可靠性,所以选择具有U/f=const控制模式的变频器即可。如三菱变频器FR-F540(L)系列。风机负载在实际运行过程中,由于转动惯量比较大,所以变频器的加速时间和减速时间是一个非常重要的问题,可按下列公式进行计算:

(5)

(6)

式中:tACC—加速时间(s);

tDEC—减速时间(s);

GD2—折算到电机轴上的转动惯量(N·m2);

g—重力加速度,g=9.81(m/s2);

TM—电动机的电磁转矩(N.m);

TL—负载转矩(N.m);

nAS—系统加速时的初始速度(r/min);

nAE—系统加速时的终止速度(r/min);

nDS—系统减速时的初始速度(r/min);

nDE—系统减速时的终止速度(r/min)。

从上式可以看出,风机负载的系统转动惯量计算是非常重要的。变频器具体设计时,按上式计算结果,进行适当修正,在变频器起动时不发生过流跳闸和变频器减速时不发生过电压跳闸的情况下,选择最短时间。

泵类负载在实际运行过程中,容易发生喘振、憋压和水垂效应,所以变频器选型时,要选择适于泵类负载的变频器且变频器在功能设定时要针对上述问题进行单独设定:

喘振:测量易发生喘振的频率点,通过设定跳跃频率点和宽度,避免系统发生共振现象。

憋压:泵类负载在低速运行时,由于系统憋压而导致流量为零,从而造成泵烧坏。在变频器功能设定时,通过限定变频器的最低频率,而限定了泵流量的临界点处的系统最低转速,这就避免了此类现象的发生。

水垂效应:泵类负载在突然断电时,由于泵管道中的液体重力而倒流。若逆止阀不严或没有逆止阀,将导致电机反转,因电机发电而使变频器发生故障报警烧坏。在变频器系统设计时,应使变频器按减速曲线停止,在电机完全停止后再断开主电路电,或者设定“断电减速停止”功能,这样就避免了该现象的发生。

③恒功率负载

恒功率负载是指转矩大体与转速成反比的负载,如卷取机、开卷机等。利用变频器驱动恒功率负载时,应该是就一定的速度变化范围而言的,通常考虑在某个转速点以下采用恒转矩调速方式,而在高于该转速点时才采用恒功率调速方式。我们通常将该转速点称为基频,该点对应的电压为变频器输出额定电压。从理论上讲,要想实现真正意义上的恒功率控制,变频器的输出频率f和输出电压U必须遵循U2/f=const协调控制,但这在实际变频器运行过程中是不允许的,因为在基频以上,变频器的输出电压不能随着其输出频率增加,只能保持额定电压,所以只能是一种近似意义上的恒功率控制。

4发热问题及其对策

变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热,通常采用以下方法:

①采用风扇散热:变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行。

②降低安装环境温度:由于变频器是电子装置,内含电子元、电解电容等,所以温度对其寿命影响比较大。通用变频器的环境运行温度一般要求-10℃~-50℃,如果能够采取措施尽可能降低变频器运行温度,那么变频器的使用寿命就延长,性能也比较稳定。

我们采取两种方法:一种方法是建造单独的变频器低压间,内部安装空调,保持低压间温度在+15℃~+20℃之间。另一种方法是变频器的安装空间要满足变频器使用说明书的要求。

以上所谈到的变频器发热是指变频器在额定范围之内正常运行的损耗。当变频器发生非正常运行(如过流,过压,过载等)产生的损耗必须通过正常的选型来避免此类现象的发生。

对于风机泵类负载,当我们选择三菱变频器FR-F540时,其过载能为120%/60秒,其过载周期为300秒,也就是说,当变频器相对于其额定负载的120%过载时,其持续时间为60秒,并且在300秒之内不允许出现第二次过载。当变频器出现过载时,功率单元因其流过的过载电流而升温,导致变频器过热,这时必须尽快使其降温以使变频器的过热保护动作消除,这个冷却过程就是变频器的过载周期。不同的变频器,其过载倍数、过载时间和过载周期均不相同,并且其过载倍数越大,过载时间越短,请见表2所示:

对于变频器所驱动的电机,按其工作情况可分为两类:长期工作制和重复短时工作制。长期工作制的电机可以按其名牌规定的数据长期运行。针对该类负载,变频器可根据电机铭牌数据进行选型,如连续运行的油泵,若其电机功率为22kW时,可选择FR-F540-22k变频器即可。重复短时工作制电机,其特点是重复性和短时性,即电机的工作时间和停歇时间交替进行,而且都比较短,二者之和,按国家规定不得超过60秒。重复短时工作制电机允许其过载且有一定的温升。此时,若根据电机铭牌数据来选择变频器,势必造成变频器的损坏。针对该类负载,变频器在参考电机铭牌数据的情况下要根据电机负载图和变频器的过载倍数、过载时间、过载周期来选型。如重复短时运行的升降机,其电机功率为18.5kW,可选择FR-A540-22k变频器。

5结论

本文通过对通用变频器运行过程中存在问题的分析,提出了解决这些问题的实际对策,随着新技术和新理论不断在变频器上的应用,变频器存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器也会不久面世。

6参考文献

(1)韩安荣.通用变频器及其应用.北京:机械工业出版社,2000

变频器论文范文3

关键词:变频器多重化飞车启动完美无谐波

引言

哈尔滨九洲电气股份有限公司成立于2000年,是以“高压、大功率”电力电子技术为核心技术,以“高效节能、新型能源”为产品发展方向,从事电力电子成套设备的研发、制造、销售和服务的高科技上市公司。

本文主要对PowerSmart系列高压变频器功能、出厂测试进行介绍。

一、PowerSmartTM高压变频调速控制装置系统组成

PowerSmartTM系列高压变频调速系统主要由切分移相干式变压器柜、功率单元柜、控制单元柜、远控操作箱、旁路开关柜等部分组成。切分移相干式变压器为变频器的输入设备,一般由铁心、输入绕组、屏蔽层、输出绕组及冷却风机、过热保护等部分构成。控制单元柜主要由主控制器、温控器、风机保护器、人机界面(数码管和彩色触摸屏可选)、PLC、嵌入式微机、开关电源、EMI模块、隔离变压器、空气开关、接触器、继电器、模拟量模块、开关量模块等组成。

二、工作原理

PowerSmartTM系列高压变频器是采用单元串联多重化技术属于电压源型高-高式高压变频器。所谓多重化,就是每相由几个低压功率单元串联组成,各功率单元由一个多绕组的移相隔离变压器来独立供电。采用多重化叠加的方式,使变频器输出电压的谐波含量很小,不会引起电动机的附加谐波发热。其输出电压的dV/dt也很小,不会给电机增加明显的应力,因此可以向普通标准型交流电动机供电,而且无需降容使用。由于输出电压的谐波和dV/dt都很小,不需要附加输出滤波器,输出电缆也长度无要求。由于谐波很小,附加的转矩脉动也很小,避免了由此引起的机械共振。变频器工作时的功率因数达0.96以上,完全满足了供电系统的要求。因此不需要附加电源滤波器或功率因数补偿装置,也不会与现有的补偿电容装置发生谐振,变频器工作时不会对同一电网上运行的电气设备发生干扰,因而被人们誉为“完美无谐波的高压变频器”。

三、技术特点

采用双DSP控制,可靠性高,杜绝了变频器死机问题;采用36脉冲整流(以6KV变频器为例)及空间矢量多重化PWM技术,每相由6个功率单元串联而成,并直接驱动电动机,无需输出升压变压器。输出电平数高,dv/dt很小,输出波形接近正弦波。采用专利技术的实时光纤传送技术,对功率单元进行控制。变频器输出转矩脉冲窄,控制精度高,避免了机械共振。完善的自我诊断和故障预警机制,上电自检,运行中实时监测,检测速度高。通过双DSP系统,实现纳秒级运算并进行综合判断,分析准确,减少变频器误报警。具有PWM控制波形与逆变输出波形实时验证功能,提高了输出波形的准确性,增强了系统无故障的运行能力。具有反转启动和飞车启动功能,无论电机处于正转还是反转状态,变频器均可实现大力矩直接启动。具备来电自启动功能,避免电网短时失电对生产造成影响。变频器发生短路、接地、过流、过载、过压、欠压、过热等情况时,系统均能故障定位并且及时告警或保护,对电网波动的适应能力强。支持中心点偏移式的旁路技术。当某一个功率单元失效时,能够立即对该单元实施旁路处理,而整个变频器的输出仍能维持94%以上的电压,这保证了系统的不间断运行。

四、出厂测试

Powersmart系列高压变频器检验项目(全功率出厂测试)包括:①一般检验:包括外观、部件、元器件。②电气间隙与爬电距离检验。③安全与接地检验。④外壳防护检验。⑤保护功能检验。⑥显示功能检验。⑦效率检验。⑧功率因数检验。⑨输出电压检验。⑩频率分辨率检验。过载试验。连续运行试验。启动特性控制实验。温升试验。谐波实验。控制回路上电源切换实验。不间断后备电源实验。高压掉电短时跟踪再启动实验。飞车启动试验。

九洲电气生产的每一台PowerSmart系列高压变频器,在出厂时都经过严格测试。九洲电气组建了高压大功率变频器实验室。具体包括:电气性能试验室,负责对产品的工频耐压、电气绝缘、三防、效率、功率因数、产品的动态特性等性能进行综合测试。电磁兼容实验室,负责对产品进行快速脉冲群、静电、浪涌、电压跌落等项目试验。单元模块老化实验室,负责对每一个功率单元、控制单元板进行高温带载72小时老化实验。中高压变流试验站,是与罗克韦尔共同建造的,负责对中高压等级的变频器、软启动器、兆瓦级风力发电变流器、SVC产品进行智能化带负载性能测试。其所能测试等级为690V到10KV,最大测试功率可达到5000KW。它为高压变频器的技术发展提供了一个全方位的试验平台。

变频器论文范文4

交流变频调调速技术以其卓越的调速性能、显著的节电效果以及在国民经济领域的广泛适用性,已被公认为是一种最有前途的调速方式。在能源日益紧张的今天,变频器作为交流调速的一种主要手段,在工业生产中取得越来越广泛的应用。本文介绍的闭环恒压供水系统采用三垦SAMCO-vm05型变频器实现,详细叙述了其实现闭环控制的内藏PID功能主要参数设置及闭环调试方法。

2闭环供水系统的原理

该闭环系统应用于工厂的生产用水,其目的是向车间提供连续的水压稳定的水。图1是供水系统框图。它主要由变频控制箱、超压排流阀、液位传感控制器、压力传感器等组成。

系统中,1#泵为恒速泵,2#泵为变频调速泵。正常工作时,由1#泵抽取河水,经净化后直接供生产车间,由于1#水泵供水量总大于车间用水量,因此设置了超压排流阀,当管道水压超过设定水压时,排流阀开始工作,多余的净化水被排到水池中,当水池水位到达水位上限时,系统控制1#泵停机,同时启动2#泵,由变频器控制2#泵向车间供水,当水池水位下降到水位下限时,2#泵停止工作,1#泵启动运行,如此循环。

3变频器闭环控制

变频器用于2#泵的控制,即在抽取水池水时,根据用水管网压力的变化,通过变频器实现自动跟踪来调节水泵电机的转速,保持用水管网压力稳定。三垦通用变频器SAMCO-vm05为用户实现闭环控制提供了内藏的PID功能,它能将外部变送器输入的模拟信号(4~20mA、0~5V、0~10V)反馈输入到变频器,并取得与变频器设定频率指令之间的偏差,进行P(比例)、I(积分)、D(微分)控制,从而使负载一侧的动作跟随指令值的变化而改变。

3.1硬件原理

闭环控制的硬件原理如图2所示。压力传感变送器将管网水压信号转变成4~20mA电流信号作为反馈输入到变频器的IRF/VRF2端子,外部压力设定器将指定的压力(0~1.0Mpa)转变为0~10V电压信号输入到变频器VRF1端子。变频器根据给定值与反馈值的偏差量进行PID控制,输出频率控制电机的转速,从而使系统处于稳定的工作状态,管网水压保持恒定。

3.2闭环控制的相关功能代码与参数

变频器的功能参数很多,这里只介绍与PID闭环控制相关的参数设置,需要说明的是SAMCO-vm05型变频器内部PID控制采样周期Ts为10ms。

Cd071=3内藏PID控制模式

Cd120=5反馈信号为4~20mA电流输入

Cd002=3给定信号为0~10V电压输入

Cd122=0.00~100.00PID控制比例增益

Cd123=0.00~100.00PID控制积分增益

Cd124=0.00~100.00PID控制微分增益

Cd125=1~500反馈输入滤波时间常数

3.3设定值和反馈值的频率变换

在利用外部模拟信号作为设定值或反馈值时,输入模拟信号最小值(0V或4mA)时频率(偏置频率)和最大值(5V或10V或20mA时的频率(增益频率)须根据其F-V特性(或F-I特性)来设定。

(1)设定值的频率变换

外部压力设定器将压力0~1.0MP变换成电压信号0~10V输入到变频器VRF1端子,其F-V特性如图3。因此:

偏置频率cd054=0.0Hz

增益频率cd055=50.0Hz

(2)反馈量的频率变换

压力传感器将管网压力0~1.0MP变换成电流信号4~20mA输入到变频器IRF/VRF2端子,其F-I特性如图4。因此:偏置频率cd062=-12.5Hz

增益频率cd063=50.0Hz

3.4闭环调试步骤与方法

·首先,将变频器设在开环运行模式,检测压力传感变送器反馈信号是否正常;

·根据传感变送器的P-I特性和变频器的F-I特性求出反馈量的偏置频率cd062和增益频率cd063;

·根据外部压力设定器的P-V特性和变频器的F-V特性,求出设定值的偏置频率cd054和增益频率cd055;

·设置负载电机可驱动的最高频率cd007和最低频率cd008,本系统中设置cd007=50Hz,cd008=15Hz;

·设置cd071=3为内置PID控制模式;

·增加cd122单元的比例增益直至系统开始振荡,然后取振荡时的增益的1/2来设定;

·增加cd123单元的积分增益直至系统开始振荡,然后取振荡时的增益的1/2来设定;

·微分增益在以压力、流量为对象的控制系统中,由于滞后不大,一般设置为0;

·滤波时间常数cd125单元的值根据实际情况来调整,以消除信号传输过程中的干扰。

4故障处理

4.1变频器故障

无论是从冗余设计原则还是从系统实际应用环境考虑,在变频器发生故障时都要求不间断供水。

在本系统中,当变频器突然发生故障,变频自动运行系统自动停水并报警,然后2#泵进入工频运行,当然工频运行时,管网压力不能自动控制,只能作为短时应急工作方式。

4.2水位检测故障

水池的水位信号采用浮子式液位控制器检测,为防止液位控制器失灵,对水池低水位采用双下限两路触点控制,当第一个水位下限触点故障时,变频器系统设有正常停机,待水位达到第二个下限(比第一下限水位略低),系统发出报警信号,同时停止2#变频泵,启动1#工频泵。

5结束语

在供水系统中采用变频调速运行方式,可根据用户实际用水量的变化自动调节水泵电机的转速,保持压力稳定,实现恒压供水,并且能节约能源,延长设备使用寿命,减轻工人劳动强度。

三垦通用变频器SAMCO-vm05型及SAMCO-i型为用户提供的PID控制功能,其硬件输入端子设置灵活,适用于各种传感器。软件参数设置方便,且提供了反馈量的数字滤波功能,适合于温度、压力或流量为控制对象的闭环系统中。

目前,该系统已投入运行使用,性能稳定可靠,节能效果明显,具有一定的先进性。

参考文献

[1]张燕宾.SPWM变频调速应用技术[M].北京:机械出版社,1997.

变频器论文范文5

工业蒸汽锅炉的过程控制系统包括汽包水位控制系统和燃烧过程控制系统,两系统在锅炉运行过程中互相耦合,所以控制起来非常困难。在此,我们暂不考虑系统间的耦合,只是对蒸汽锅炉的给水系统进行变频改造。

某企业有2台20T燃煤蒸汽锅炉,如图1所示。这2台锅炉通过1个给水母管分别给各自汽包供水,用汽量小的季节,2台锅炉只运行1台,当用汽量较大时,则必须2台锅炉同时运行。由于给水泵额定功率为37kw,一般情况下,1台锅炉运行时,只开1台给水泵裕量仍较大,而2台锅炉同时运行且用汽量较大时,只开1台给水泵无法满足需要,而开2台给水泵后,相对单台锅炉运行时,裕量更大。由于2台锅炉分别由2套DCS系统控制各自的电动阀门调节各自汽包的给水量,运行中,阀门开度较小造成给水母管压力较大,不仅浪费了大量的电能,较高的水压还对管道、水泵叶轮和阀门造成损害

2变频改造方案

基于系统运行现状,本着既能节能降耗,又能控制简便、安全且投资较少的原则,我们设计了1套1台变频器拖动3台电机的方案。具体如图2所示。

在本方案中,充分利用了锅炉层有的DCS控制系统,同时增加了变频器、可编程序控制器(PLC)和控制信号转换装置。

(1)硬件控制系统

a)西门子MM430变频器

MM430变频器是西门子公司最新研制生产的一种适用于各种变速驱动应用场合的高性能变频器(调试简单、配置灵活),它具有最新的IGBT技术和高质量控制系统,完善的保护功能和较强的过载能力以及较宽的工作环境温度,安装接线方便,两路可编程的隔离数字输入、输出接口以及模拟输入、输出接口等优点,使其配置灵活多样,控制简单方便,易于操作维护。

b)西门子S7-200型PLC

西门子S7-200型PLC可靠性高、抗干扰能力强,可直接安装于工业现场而稳定可靠的工作。适应性强,应用灵活。

(2)当1台锅炉运行时

由于只开1台给水泵,就足够锅炉汽包所需用水量,故此时,系统只对运行锅炉的汽包水位进行恒液位控制即可。

将切换开关置于相应位置,通过锅炉原有DCS控制系统中的手动操作器将控制该锅炉汽包进水量的电动阀完全打开后,再通过控制信号转换装置切断该控制信号,使原有控制回路断开,电动阀保持全开状态,同时,将该锅炉汽包液位信号切入PLC,让PLC将该锅炉汽包液位信号进行PID运算处理后,再由控制信号转换装置,将PLC输出的4~20mA模拟信号传递给变频器,从而控制变频器的输出转速。

在本控制过程中,关键的问题是过程参数PID(P:比例系数I:积分系数、D:微分系数)的整定。由于工业锅炉运行过程中,用汽量的多小和蒸汽压力的大小,决定了给水流量的大小和给水压力的大小。为了保证系统的相对稳定运行,不出现大的波动,对生产造成影响,在调试过程中,应多次反复调整PID参数,直至出现最佳控制过程。

(3)当两台锅炉同进运行时

由于2台锅炉分别由两套DCS系统控制,在运行过程,虽然蒸汽并网后压力相同,但由于燃烧过程中存在不确定性,两台锅炉汽包各自的液位就必然存在差异。因此,单台锅炉运行中所用的恒液位控制方案在此就不再适合。通过给水原理图(图1)我们不难发现,要对2台锅炉汽包的液位分别控制,最理想的方案是将1个给水母管向2台锅炉给水的现状彻底改变,将给水系统分开,使每个锅炉都有自己独立的给水系统,再在此基础上加装变频控制,由1台变频器单独控制1台锅炉的给水。但此方案不仅改动较大,投资较高,且要停产改造,显然是行不通的。为了能在不改变原有系统现状的前提下,更好的利用变频装置,节能降耗,减小系统运行,维护费用,提高原有系统的自动化程度,我们针对该企业2台锅炉的运行特点,设计了一套专用于2台(或2台以上)锅炉同时运行时的控制方案,即:蒸汽压力和母管给水压力的恒压差控制方案。

当2台锅炉同时运行时,由于外供蒸汽并管,故蒸汽压力相同,又由于2锅炉由同一母管给水,故给水压力也相同。但由于蒸汽用量的变化不定和锅炉燃烧情况的不同,蒸汽压力是时刻变化的。这样,为了能保证给锅炉汽包供上水,就必须要求给水的压力始终高于蒸汽压力,由图2我们看到,由PLC采集蒸汽压力和母管给水压力,通过处理、比较后,得到二者的差值,再将此差值通过PID运算处理,输出4~20mA的模拟信号给控制信号转换装置。再由该装置将信号传输给变频器,从而控制变频器的运行速度。这样虽然可以保证给水母管压力始终高于锅炉蒸汽压力(压力差的大小可以通过PLC在一定范围内任意调节),但锅炉各自汽包的液位却无法再通过调节变频器的转速去控制。在此,我们充分利用了原有给水控制装置,即汽包各自的进水电动阀门。仍由锅炉原有DCS控制系统采集各自汽包的液位,蒸汽压力,给水压力和给水流量等信号,去相应的调整进水电动阀的开度,从而控制各汽泡液位和进水流量。

此方案由于存在阀门的调节,所以理论上不能最大限度的节能降耗,但实际应用中,由于减小了给水母管与蒸汽压力之间的压力差,使电动阀门的开度由原来的平均10%左右开大到75%左右,系统回水阀门关闭,仍大大节约了能源。且本方案充分考虑了系统运行的安全性,一旦变频器故障,系统可立即自动由变频运行状态切换至原有工频运行状态,完全恢复改造前的运行状态,保证锅炉正常运行。变频故障解除后,仍可方便的手动切换为变频状态,使变频器方便的投入运行,且不影响锅炉的运行。

3PLC

PLC是本系统的核心控制器件,它不仅辨识、处理各种运行状态,进行系统间的逻辑运算和联锁保护,还对输入的多个模拟信号进行处理、运算后,输出标准的模拟信号控制变频器的运行速度。主程序结构较复杂,其中,对液位信号进行PID运算的子程序,原理图和程序框图如图3、图4所示。

4注意事项

(1)由于变频器产生高次谐波,会对通讯产生干扰,同时由于PLC采集模拟信号,要进行A/D和D/A转换处理,在此过程中,容易受到变频器高次谐波的影响而失真。因此,必须将变频器零地分接且加装液波装置,对PLC用隔离变压器供电,最好将PLC安装于距离变频器较远的位置上。

(2)本系统所需液位、压力等模拟信号均采至锅炉原有控制系统,为了不影响原控制系统的安全性与完整性,应将原有模拟信号通过隔离分路端子分路后采用。

(3)锅炉给水是锅炉运行过程中至关重要的环节之一,其运行的稳定性与可靠性直接关系到整个锅炉系统乃至整个企业生产运行的稳定与安全。因此,一旦变频器出现故障而停车后,系统可自动切换至原有工频控制系统而不影响生产,这一联锁措施至关重要。

5结束语

(1)变频调速是电气传动系统工程,而变频器只是其中的一部分,变频器容量、类型的选择,电气保护回路和控制回路的设计关系到变频调速系统应用的可靠性、安全性和经济性。

(2)变频调速系统是基于微电子、电力电子、计算机、自动控制和电机等技术上发展而来的,有其先进性,但也有其不足和缺点,如电磁干扰,高次谐波的寄生电容,以及低速运行时的电机温升等。

(3)变频调速技术以其节能、环保、方便、工作效率高等优点,在现代企业中得到广泛应用。若将其再与计算机技术有机的结合起来,实现资源共享,统一管理,则会进一步节能降耗,提高产品质量和生产稳定性。

参考文献

变频器论文范文6

拉丝机是电线电缆行业主要加工设备之一,主要是将铜线加工成各种规格细线,一般由放线、水冷、收线及排线等部分组成,其中电气传动部份主要由放线电机和收线电机及排线电机实现。随着变频技术的不断推广,变频器正日益被用于拉丝机设备。

二、变频控制原理及实现

1、拉丝机的主要电气构成

车一般拉丝机主要由放线电机与收线电机及排线电机构成驱动部分,随着收线卷径不扩大收线电机的转速应相应的减小,以保证线速恒定,在控制中常采用张力反馈装置来调节收线电机的速度。随着变频器功能不断增强、性能不断稳定,变频器也被使用于拉丝机,其中利用变频器控制收线电机与放线电机,而排线电机由于功率较小直接由电网电压来控制。变频控制示意图如下:

2、基本控制原理:

放线电机与收线电机分别由两台变频器控制(见图1),放线变频器通过外部电位器转速,收线变频器由放线变频器的模拟AM输出信号、张力平衡反馈信号经信号经PID调节器后控制收线变频器(见图2)。随着收线筒卷径的变化张力平衡杆的反馈信号也随着变化,张力杆反馈信号(由精密变阻器构成)经信号转换电路板转换为0—10V,这个信号与放线变频器模拟AM、AM-输出信号构成PID两路输入信号,经PID调节后控制收线变频器,使丝线保持一定的线速度。

变频器启动后由放线变频器OC输出控制信号启动排线电机,排线电机功较小直接通过两个接触器控制其正反运行,使铜线均匀地绕在收线筒上。

3、变频器参数设定

深圳康沃电气技术有限公司是一家集变频器研发、生产、销售为一体的公司,主要生产的变频器有通用型:G1/P1与G2/P2系列;高性能单相变频器S1系列;及注塑机专用变频器ZS、ZC系列(一体机)。根据拉丝机负载特性选用康沃通用恒转矩型G2系列。以CVF-G2-4T0370及CVF-G2-4T0110型为例,电机功率分别为37KW、11KW,4极。如图1

(1)放线变频器参数设定:

(2)收线变频器参数设定:

三、调试注意事项

在调试过程中主要应注意起动阶段与停车阶段应保持放线电机与收线电机同步起动。

1、启动阶段

变频器运行前将张力杆置于中间稍偏上位置,启动变频器缓慢升速,如启动时出现断线现象说明收线电机启动过快,可相应地调整收线电机的启动频率b-7、启动频率持续时间b-8及放线、收线变频器的加减速时间b-7、b-8几个相关参数。

2、停车阶段

停机时放线、收线电机由当前运行频率按减速时间减速,减速到设定频率时收线变频器的OC输出信号启动电磁刹车装置,使得放线、收线电机准确停车,这样便不会因为放线电机过快停车造成铜线拉断。如果在停机过程中出现断线可相应地调放线、收线变频器减速时间b-8,若接近停机时出现断线则可调整收线变频器的OC输出信号

变频器论文范文7

变频调速技术有机的结合了其他技术和设备的优点,在调速系统中具有无可比拟的竞争优势,同其他调速方式相比,变频器不仅体积相对较小,具有较高的精度和较轻的质量,还采用了一系列的先进工艺,具有多样的应用功能,另外,变频器操作简单易行,具有较高的可行性,在一定意义上为其广泛应用奠定了坚实的基础。所以,近年来,变频器在工业领域中得到了广泛的应用。除此以外,变频器具有较低的成本,在调速系统中的应用也将产生更加积极的意义。变频器调速系统应用一方面能够通过降低能源消耗,有效的节约机械设备的运行成本,另一方面也能创造更好的节能效果。具体而言,风机变频调速具有以下突出作用:首先,变频调速能够促进冲击电流的减小,进而有效的防止电机启停时由电流冲击造成的一系列不良影响。其次,变频调速输入端子有正负之分,大大的减少了由交替切换造成的故障问题,减轻了相关工作人员的工作负担。第三,风机以及电机等设备采用变频调节时,可以根据负荷率的实际情况及时灵活的调整自身的转速,大大的减少了相关设备的磨损,延长了维护周期和设备的使用年限,有利于保障生产的持续、正常运行,节约了维护、检修的费用。

2基于PLC的变频器调速系统总体设计

2.1系统技术要求

首先,基于PLC的变频器节能自动通风系统中,通风机能够开展软启动,灵活地切换运行方式,通风机的运行状态可以在工频以及变频之间进行调整。其次,运行状态为变频的通风机能够以管网阻力的具体实际情况为依据对自身的转速进行自动化的调节,使风机的风量始终能够满足实际的需求,另外,还能够以有害气体的浓度为依据对通风机的转速进行自动化的调整,减少或者杜绝了有害气体浓度过高造成的影响。发生异常情况时,变频器调速系统能够及时的进行报警,并采取行之有效的处理措施,对风机的状态进行适当的调整。最后,综合应用上位机控制软件以及PLC进行监控系统的设计,能够以在线控制的方式对通风机的局部运行情况进行监视、控制以及管理,并以有关的参量为依据开展实时性的监控。

2.2系统整体设计方案

基于PLC的变频器调速系统是以PLC为主控单元,以变频通风机为被控元件,以有害气体浓度为主控参数的,以模糊控制为具体的控制算法。PLC能够运用传感器及时的在内存中录入有害气体的浓度,通过模糊控制对变频器的输出进行调节,以此对风机的转速进行全面的控制,实现清新空气、环保节能的效果。一般情况下,通风系统包含了触摸屏、气体传感器、PLC、变频器以及通风机等基本的设施设备和技术,其工作方式具有自动、手动以及工频三种,其中,手动调频方式为开环控制系统,自动调频方式为闭环控制系统。在发生故障等异常情况时,工作方式能够进行自动化的调节,有利于维护生产运行的稳定性以及安全性。

2.3系统硬件选择

系统设计经过验证具有一定的可行性后,设计意图的实现必须依靠硬件的有力支撑,所以,硬件的选择相当关键。首先,PLC型号的选择要充分的考虑系统的实际需要,特别是要充分的考虑系统的稳定性、可靠性以及控制的精度。另外,PLC还要具备较快的执行速度和较为齐全的通讯功能,只有这样,才能切实的满足工厂自动化的需求,全面的提高系统的控制能力以及灵活性,保障指令具有较快的执行速度。其次,在选择变频器时,要综合全面的考虑变频器的性能、功能、运行状况以及参数设定,为系统提供更加丰富的应用功能,切实的提高控制力度和速度,实现对电路、电压以及相关设备的保护,有效的规避故障问题。在选用通风机时,要考虑其具体的配置和运行状况,尽量的选择具有较高强度、较轻重量以及较好的通风机。在选择触摸屏时,要重点考虑触摸屏的显示和保密功能、参数的修改以及设置功能,要优先选用具有较快的触键反应、较丰富的系统和用户画面的触摸屏,另外,要能够对变频器的工作状态进行实时的监控和控制。最后,由于系统监测精度同有害气体浓度息息相关、密不可分,所以,气敏传感器的选用相当关键。在选用气敏传感器时,要充分考虑工艺、材料以及敏感性,能够对有关场所和设备的气体检验提供报警、提醒等功能。

3基于PLC的变频器调速系统软件设计

系统设计质量的高低同硬件以及软件的组合有着紧密的联系,所以,系统软件设计也是一个不容忽视的环节。1)通信程序设计原则。通信系统作为通风系统中不可或缺的构成,对系统的整体性能有着深刻的影响。通信系统不仅可以以其良好的可靠性、稳定性以及较大的容量服务于通风系统,还能在故障发生时提供一定的解决措施,有利于维护系统的正常稳定运行。一般情况下,通信设计的原则包含开放性、标准性、可行性以及经济性等,本文在此就不进行深入的研究了。2)系统主程序设计。系统控制程序主要包含五个部分。其中,主控制程序主要是对工频、手动以及自动等运行方式进行控制,调用程序以及设置时间,当有害气体浓度超过一定的范围时及时的进行报警,当发生异常情况或者有关的设备发生故障时,进行报警并提供相应的解决措施,能够充分的保障系统的正常运行。子程序0可以初始化有关的参数,执行完控制程序后,当风机运行是以自动变频的方式时,子程序0就会得到应用。当有害气体浓度极限值超出了有关的范围时,在子程序调用前,还应对拓展模块的存在性进行仔细的检验,对电源的实际状况进行检查,一旦发生异常情况时,就要及时的关闭主程序;当一切正常后接下来就调用子程序2,子程序2的主要功能在于对有害气体的浓度进行采集,并计算有关数值的平均值。当有害气体浓度值超过一定范围时,中断程序就要进行断电标志的设置,否则,就进行寄存器的录入,将电压值转化为数字量,并通过模拟控制器对通风机变频方式进行调节。在主程序中,中断程序的执行次数是以设置的中断控制时间为依据的。

4结语

变频器论文范文8

在工农业行产各人们的日常生活中,经常需要对一些物理量进行控制,如空调系统的温度、供水系统的水压、通风系统的风量等,这些系统绝大多数是用交流电机驱动的。以前由于电机的转速无法方便调节,为了达到对上述物理量的控制,人们只好采用一些简单的方法,如用档板调节风量,用阀门来调节流量压力等,致使这些系统不仅达不到很好的调节效果,而且大量的电能被档板和阀门白白浪费。据统计,我国目前使用的风机、水泵大约有25%的能量是无谓消耗。因此,国家经贸委于1994年下发了763号文件《关于加强风机、水泵节能改造的意见》,鼓励支持变频节能技术在各行各业推广使用。另外,根据交流电机的特性,要实现连续平滑的速度调节,最佳的方法就是采用变频调速器,变频器是将标准的交流电转成频率、电压可变的交流电,供给电机并能对电机转速成进行调节的装置。采用变频器进行风机、水泵的节能改造,不仅避免了由于采用挡板或阀门造成的电能浪费,而且还会极大提高控制和调节的精度,我们可以真正方便地实现恒温空凋系统和恒压供水系统。

2中央空调系统

大、中型中央空调由3部分组成:

(1)制冷、制热站

(2)空调水管网系统

(3)空调末端装置(空调机组,风机盘管和新风机组等)

大、中型中央空调系统框图如图1所示。

工作原理:采用设备中的风扇使室内空气循环,并通过设备中的冷、温水盘管来冷却和加热,以达到空调的目的。盘管中的冷、温水由机房中的制冷设备和锅炉提供。

该系统的缺点是:设备配置较大,风机噪音大。当环境温度变化或冷、热负荷变化时,只能通过增减冷、温水循环泵数量或使用挡风板的方法来调节室内温度,既耗费能源又造成环境温度波动。

3负载与节能关系

(1)负载类型与节能关系,生产机械各式各样,种类繁多,但负载类型主要分3类,它们与节能的关系见表1

(2)几种典型负载与节能关系

由于中央空调系统中都是各种风机、泵类负载,根据流体学原理可知,P}n3,故应用变频器后,节能效果显著。表2列出风机、泵类负载应用变频器后,在不同流量Q、转速n、由功率P(额定值的相对百分数)在某频率值时的节能率。

4中央空调变频调速系统的控制依据

中央空调系统的外部热交换由2个循环水系统来完成。循环水系统的回水与进(出)水温度之差,反映了需要进行热交换的热量。因此,根据回水与进(出)水温度之差来控制循环水的流动速度,从而控制了热交换的速度,是比较合理的控制方法。

(1)冷冻水循环系统的控制

由于冷冻水的出水温度是冷冻机组“冷冻”的结果,常常是比较稳定的。因此,单是回水温度的高低就足以反映房间内的温度。所以,冷冻泵变频调速系统,可以简单地根据回水温度进行如下控制:回水温度高,说明房间温度高,应提高冷冻泵的循环速度,以节约能源。反之则反。总之,对于冷冻水循环系统,控制依据是回水温度,即通过变频调速,实现回水的恒温控制。原理图见图2。

(2)冷却水循环系统的控制

由于冷却塔的水温是随环境温度而变的,其单测水温不能准确地反映冷冻机组内产生热量的多少。所以,对于冷却泵,以进水和回水间的温差作为控制依据,实现进水和回水间的恒温差控制是比较合理的。温差大,说明冷冻机组产生的热量大,应提高冷却泵的转速,增大冷却水的循环速度;温差小,说明冷冻机组产生的热量小,可以降低冷却泵的转速,减缓冷却水的循环速度,以节约能源。冷却水循环系统的控制原理图见图3。

5中央空调末端送风机的变频控制

随着生活水平的提高,人们已开始关注生活与工作环境的舒适性。大型公共建筑(如商场、宾馆、影剧院等)均设置有中央空调系统,而大多数中央空调的运行,绝大部分末端机采用开/关控制方式,难以满足人们对舒适感的要求。变频技术的飞速发展,成本进一步下降,使得这一要求成为现实。

5.1调节风量

在中央空调系统中,冷、暖的输送介质通常是水,在末端将与热交换器充分接触的清洁空气由风机直接送入室内,从而达到调节室温的目的。

在输送介质(水)温度恒定的情况下,改变送风量可以改变带入室内的制冷(热)量,从而较方便地调节室内温度。这样,便可以根据自己的要求来设定需要的室温。

调整风机的转速可以控制送风量。使用变频器对风机实现无级变速,在变频的同时,输出端的电压亦随之改变,从而节约了能源,降低了系统噪音,其经济性和舒适性是不言而喻的。

5.2控制方式的确立

(1)在室内适当的位置,安装手动调节控制终端,如图4所示,调速电位器VR和运行开关KK置于控制终端盒内,变频器的集中供电由空气开关控制,需要送电时在配电控制室直接操作。

调整频率设定电位器VR,可以改变变频器的输出频率,从而控制风机的送风量,关闭时断开KK即可,此方式成本低廉,随意性强。

(2)当室外温度变化,或者冷/暖输送介质温度发生改变时,将可能造成室温随之改变,对环境舒适要求较高的消费群体,则可以采用自动恒温运行方式,如图5所示。

选择内置PID软件模块的变频器。控制终端的方式同手动方式。电位器用来设定温度(而不是调整频率)。变频器通过采集来自反馈端VPF/IPF的温度测量值,与给定值作比较,送入PID模块运算事自动改变U、V、W端子的输出频率,调整送风量,达到自动恒温运行。

(3)送风机的分布可能不是均匀的,对于稍大的室内空间,则可以采用“区域温度平均法”策略调节送风量,以满足特殊需要量场所。

(4)为降低成本,个别的变频器可能没有内置PID软件模块,选用外加PID调节器即可。

5.3应用方案的系统考虑

(1)共振(动):选择末端送风机时,应考虑测试其在全转速范围的共振转速点,应避免电机工作于这样的转速区,通过设定变频器的回避频率及其宽度值,则可以避免电机运行于该转速区域。

(2)节能:风机属于平方转矩负载,应用时,选择风机、泵类专用变频器(亦称为节能型变频器)较好,并将其转矩曲线(V/F)设定为“平方转矩”,这样可以达到较好的节能效果。

(3)安装:变频器应装于末端机的“隔离室”内,除保证良好的散热外,还应让其不置身于潮湿环境下。亦需考虑中央空调在制冷或制热时末端机自身的温度影响。

(4)频率限制:电机转速较低时,散热效果较差:转速过大,则会引起因风速过高而造成的不适当状态,如制冷时,可能因风速过大,致辞使冷凝水不能被吸水盘完全接收,造成外漏。应选择适宜的上、下限频率,下限频率以不小于15Hz为宜,上限频率不要超过60Hz,根据最大风速确定。

(5)载波频率:将变频器的载波频率适当提高,则可以降低电机运行噪音,提高环境质量。

(6)多机并联运行时,若电机距离变频器较远,则需调整载波频率,以避免引起电机电流振荡。

6机组台数控制

(1)某大厦基本工况:3台机组,一用两备,根据大厦的热负荷量自动控制机组运行台数,自动保持各机组运行时间基本一致,达到最低能耗,达到最低的主机折旧。

(2)解决方案

基本思路:根据回流量,供/回水温度来调节机组运行台数,负荷计算根据:Q=C×m×|T1-T2|∣

注:C常数;m回水流量;T1回水温度;T2供水温度

当负荷大于单台机组80%,则第2台机组备份;当负荷大于前2台机组的负荷总量的80%,则第3台机组运行(80%该数值可调)。

采用PLC作为主控制器,采用摸拟量模块进行数据采集。原理图如图6所示。

变频器论文范文9

关键词:VVVF,变频控制,自动扶梯,节能

 

一、扶梯控制的三种主要方式

1、自动运行:在扶梯上下口处安装传感器(传感器可用光电、压力等),当传感器检测有乘客进入(距梳齿板1.3米左右),扶梯启动运行,如乘客继续进入,一直以额定速度正常运行。如在预先设定的时间内没再检测到有乘客进入或扶梯出口侧传感器检测到最后一个乘客离开扶梯后,扶梯将自动停。待有乘客进入时,扶梯再投入运行。,节能。。

2、Y-Δ运行(E C O方式):利用Y-Δ启动装置,扶梯投入运行后,如处于空载或轻载时,控制系统将驱动电机从Δ型自动切换到Y型运行以节约能耗。当扶梯负载增加后,再自动转成Δ型运行。

3、变频运行(V V V F方式):在扶梯出入口踏板下安装传感器与变频器。扶梯通过启动变频器开始运行,当达到1 0 0%(0.5m/s)额定速度运行后,如无乘客,扶梯由100%额定速度自动降为20%(0.1m/s)速度爬行(可自行设定扶梯在20%速度下运行一段时间仍无人乘梯,扶梯自动平缓地停梯)。如扶梯入口处传感器检测到有乘客,就给变频器一个信号,扶梯平缓地升至100%额定速度运行,如乘客继续进入,扶梯一直以额定速度正常运行。如在预先设定的时间内传感器没再检测到有乘客,传感器就不再给变频器信号,扶梯将自动转至节能的爬行速度运行,从而达到节能的目的。

比较3种节能运行方式,自动运行节能效果突出,控制方式简单可靠,但扶梯频繁启停,严重影响寿命;Y-Δ运行有节能效果(理论上可节电30%左右),但扶梯启动后,一直以额定速度连续运行,增加了扶梯的耗损;V V V F运行节电效果明显(理论上可节电60%左右,尖峰电流比无变频器扶梯减小可达8 0%左右),与自动运行相比没有频繁启动问题,扶梯磨损小,并且爬行速度运行时可提示乘梯方向。下面是两台同型号自动扶梯(H=4.5m;V=0.5m/s;θ=30°;W=1000mm),分别采用Y-Δ和V V V F运行方式的对比情况。

Y型空载额定速度运行,功率为:1.95Kw+1.61Kw+1.88Kw=5.44Kw

全年的耗电量(kwh)为:5.44Kw×3.2min/6min×20hr×365day=21180(kwh)

V V V F型空载2 0%额定速度运行,功率为:0.35Kw+0.5Kw+0.3Kw=1.15Kw

全年的耗电量(kwh)为:1.15Kw×3.2min/6min×20hr×365day=4477(kwh)

如上述V V V F与Y-Δ运行相比,节能效果十分明显,理论上一年节能:21180-4477=16703(kwh),一年节约电费:16703(kwh)×0.52元/(kwh)=8686元(以0.5 2元/k w h计算),所以自动扶梯采用变频控制运行,具有良好的节能和经济效益。

综上述,变频运行因用变频启动,避免了Y-Δ启动产生很大的启动电流,保证扶梯启动的平滑、舒适。而且无人乘梯扶梯以爬行速度运行时,即节约电能,减小扶梯损耗;也为即将进入扶梯的乘客提示运行方向,对客流早晚高峰和低峰变化较为明显,且长时间连续使用扶梯的场合较为适用。自动运行因控制方式简单,需增设软启动装置,适合老扶梯的节能改造。

二、V V V F型电梯基本控制原理

随着经济的发展,变频调速器以其优越的性能被应用于众多领域,特别是节能效果越来越被人们重视。V V V F型电梯因具有变频调速控制运行性能已开始取代继电器控制、交流调速电梯。V V V F型电梯基本控制原理如下:

根据电机学理论,交流电动机的转速公式为:n=60×f×(1-s)/p(式中:f为定子的电源频率;p为极对数;s为转差率;n为转速)。交流双速梯的调速方法是改变p以改变电机转速;交流调速梯的调速方法是调定子绕组电压大小以改变s;改变定子电源频率f也可达到调速目的,但f最大不能超过电机额定频率,电梯作为恒转距负载,调速时为保持最大转距不变,根据转距公式:M=C mφI c o sφ(式中:C m为电机常数;I为转子电流;φ为电机气隙磁通;c o sφ为转子功率因数),必须保持φ恒定。又根据电压公式:U=4.4 4f Wkφ(式中:U为定子电压;f为定子电压频率;W为定子绕组匝数;k为电机常数),必须保持U/f为常数,即:变频器必须兼备变压、变频两种功能,简称为VVVF(Vary Voltage Vary Frequency)型变频器。,节能。。,节能。。

三、扶梯的应用和发展

当今扶梯进一步向着高科技、节能、智能化的方向发展,变频器在扶梯领域的应用更广泛。以迅达公司自动扶梯为例,自动变速驱动有如下三种方式。

相控调速:具有软启动、正常运行和检修运行速度(以50%额定速度运行)功能。,节能。。但检修运行速度使用有一定限制(每运行5分钟,须停1 0分钟)。

标准变频器:仅在扶梯负载60%额定功率以下时工作,具有相控调速功能、爬行运行(2 0%额定速度运行)、检修运行速度功能,检修运行无限制。

变频器加:扶梯开始运行,该装置一直工作,具有标准变频器功能和附加运行速度(高峰时,扶梯以最大速度运行)功能,但需附加控制屏。

多数情况下,扶梯运行于2/3额定载客量以下,如以1 0 0%电机功率配置变频器,当扶梯100%负载运行时,变频器处于短路状态不起作用。此时可将变频电路设计成旁路变频,按6 0%电机额定功率配置变频器。如电机额定功率为1 1 K w,则变频器的功率为7.5 K w。当扶梯运行于负载的6 0%额定功率以下时,电机通过变频器工作;当负载增加至100%时,控制系统就将电机切换至工频电网供电。可大大降低变频器的初期投资成本,而且具有较好的性能价格比。

自动扶梯安装标准G F U变频系统后的工作原理如下:扶梯开启后,在变频器驱动下平缓启动加速到额定运行速度0.5m/s。当乘客不断增加达到负载的6 0%额定功率时,扶梯切入至电网直接供电,以额定速度运行,当扶梯负载下降至负载的6 0%额定功率以下时,则扶梯切换到变频器供电。如在预先设定时间内扶梯入口处的扫描传感器未检测到有乘客进入,则扶梯平缓地转入爬行速度0.1 m/s运行。当检测有乘客进入时,扶梯加速到0.5m/s运行,扶梯处于上行状态,随着乘客不断增加致负载达到60%额定功率时,驱动电机切入至电网直接供电,此时电机不受变频器驱动;扶梯处于下行状态随着乘客不断增加,负载增加到一定程度时,电机进入发电状态被连接到电网电源,此时电机不受变频器控制。如乘客继续进入,则扶梯将以0.5 m/s的速度稳定运行且始终不受变频器控制。如在预先设定的时间段内没再检测有乘客,那么扶梯转到变频器驱动,减速到爬行速度运行。,节能。。

四、结束语

本文通过对自动扶梯几种运行方式比较,介绍了变频调速控制运行方式的工作原理及实际应用和发展。自动扶梯采用变频调速方式控制运行,具有启动平稳、节能和检修运行功能。,节能。。扶梯启动时,避免产生很大的启动电流;无人乘梯时,由额定速度转为低速运行,即节约能源、减小机械磨损,也为乘客提示运行方向;扶梯检修时,检修运行功能保证了扶梯检修精度。

参考文献:

1、OTIS、506型扶梯参考质料.

2、王延才、王伟《变频器原理及应用》机械工业出版社.

变频器论文范文10

(贵州广播电视大学遵义分校,贵州 遵义 563000)

【摘 要】从设计指标出发,应用ADS及HFSS软件研究并设计IQ混频器。根据微波混频器设计理论,在分析微波混频器原理的基础上,完成对IQ混频器中180°混合环、功分器、中频低通滤波器、中频电桥以及混频器模块的设计,仿真结果满足要求。

关键词 IQ混频器;180°混合环;变频损耗;镜像抑制;ADS;HFSS

正交混频器广泛用于宽带电子对抗和雷达系统中,它能把输入的射频信号变换成两路幅度相等、相位正交的中频信号。由于内部电路设计成对称形式,即使本振通道和射频通道交换,同样也能获得正交的中频信号。正交混频器的重要特性是,当射频频率从高于本振频率到低于本振频率变化时,两路中频输出信号之间的正交相位关系也相应地从超前到滞后进行改变。利用该特性可以设计实现镜像抑制混频器,还可以作为单边带调制器使用,输出新的射频信号。

在本文中,笔者用ADS以及HFSS等仿真软件设计二极管双平衡IQ混频器,具有开发成本低、性能优良、设计周期短等特点。设计指标:RF频率范围:2-4GHz;LO频率范围:2-4GHz;IF频率范围:DC-1GHz;变频损耗:<12dB;镜像抑制:>18dB。

1 镜像抑制混频器理论分析

两个性质截然不同的RF输入信号在频率ωRF=ωLO-ωIF处与混频时,将下降到同样的IF频率。这两个频率是双边带信号的上边带和下边带,所需要的响应可任意选择为LSB或HSB,假定去正IF频率,镜像抑制混频器能用来隔离这两个响应,将他们分开为独立的输出信号。我们利用小信号近似分析,设RF输入信号为:

其中,VU和VL分别代表高边带和底边带振幅。利用90°混合结的散射矩阵

从上面的结果可以看出,两个边带之间存在900相移,除了惟一的抑制混频器的通常变频损耗外,镜像抑制混频器不产生任何附加的损耗。

2 IQ混频器设计

2.1 混频器设计综合

根据混频器的设计指标,采用如图1设计框架,基本组成部分包括180°混合网络,功分器,混频器,滤波器以及IF电桥。

2.1.1 180°混合环设计

180°混合环也叫环形耦合器。如图2仿真模型,整个环的周长为1.5λg,四个分支线并联在环上,将环分为4段,λg为混合环波长。混合环有两个端口相互隔离,另外两个端口平分输入功率的特性,因此可以看作是一个3dB定向耦合器。

从上图3中可以看出,S11=-40.47dB表明端口一匹配良好,S12=-3.0091dB S13=-3.1691dB说明端口一将功率等分至二三端口,S14=-37.3292dB说明一口与四口之间有良好的隔离。

2.1.2 功分器设计

功分器采用3dB等分威尔金森功分器设计将信号等幅同相的从两个输出端口输出;模型如图4。

图5可知,在中心频率3GHz附近,S12=-3.0827dB说明一端口到二三端口之间几乎做到了功率分,S11=-21.6948dB表明一端口匹配良S23=-25.7215dB说明二三端口之间隔离良好。

2.1.3 滤波器设计

滤波器为IQ混频器的关键组成部分,其对本振信号和射频信号的抑制作用,防止它们泄露到中频端口降低端口隔离度,增大变频损耗,对整个混频模块性能影响显著,较好的中频滤波是IQ混频器优异性能的关键。应用ADS仿真,如图6所示:

从图7-a可知,滤波器通带从DC到1GHz回波损耗优于24.8dB。从图7-b知,滤波器通带从DC到1GHz插入损耗优于0.5dB,带外抑制从2~4GHz优于31dB。

2.1.4 IF电桥设计

正交混合网络是3dB定向耦合器,其直通和耦合臂的输出之间有90度的相位差.这种类型的混合网络通常做成微带线或带状线的形式。

仿真结果如图9-图11:1、2、3、4端口在500MHz反射系数为-30.784dB;在500MHz处输出端口3和4的相位差为90.184°,且3口和4口幅度比为0.9,基本满足要求。

2.1.5 混频器设计

二极管是混频器的核心部分,其选取很重要,一般要求二极管的截止频率fc至少比工作频率大20倍以上,Cj和Rs尽可能小,并且要求管子特性参数的一致性好,设计采用Avago公司HSCH-5314。

本次设计的IQ混频器中混频核心为两个同样的反相型平衡混频器,ADS建立原理图模型如图12示。

仿真中信号频率取为3.5GHz,功率取为-10dBm。本振频率为3GHz,功率从1dBm至10dBm以1dBm的步长扫描。所得部分结果如下图13、图14所示。

从上图13、图14中可以看出混频后,本振功率为1dBm时中频输出功率为-22.338dBm,相同情况下二次谐波功率为-48.813dBm,其余各次谐波中本振为9dBm时功率最大的七次谐波功率为-37.448dBm,与中频输出相差较大。说明中频滤波器对中频带外谐波起到抑制作用。单个单元混频器的变频损耗受本振功率影响,本振功率越低则变频损耗相应更大,本振为9dBm时变频损耗为-7.324dB,本振功率继续上升,变频损耗进一步减小,减小的幅度有所下降。本振功率为2dBm时变频损耗为-10.835dB,本振功率继续下降,变频损耗增加速度变大。

2.2 IQ混频器的实现

为最终输出两路正交的中频信号,从原理图框图出发,对本次设计进行ADS联合仿真。整体仿真中,将各个模块封装成子电路并对其进行仿真,如图15所示。

图16为其中下边带变频损耗,本振输入为10dBm时,下边带的变频损耗为8.68dB,达到预期目标。

3 结论

本文从设计指标出发,采用双平衡二极管结构对IQ混频器进行优化设计。本论文目的在于通过设计优化IQ混频器电路,掌握射频电路的设计方法,同时对混频器的设计有个深入了解,并对设计电路的性能进行优化分析。

参考文献

[1]黄存根.6~18GHz宽带正交混频器[J].电子信息对抗技术,2008,23(2):66-69.

[2]韩振华,尹秋艳.无源正交混频器HMC620LC4的原理与应用[J].信息技术,2008(11):107-111.

[3]章秋红,徐金平,丁德志.K波段正交混频器设计[C]//2011年全国微波毫米波会议论文集(上册).2011.

[4]David M.Pozar.微波工程[M].3版.北京:电子工业出版社,2006:528-540.

[5]Reinhold Ludwig, PavelBretchko.射频电路设计-理论与应用[M].北京:电子工业出版社,2005.

[6]徐兴福.ADS2008射频电路设计与仿真实例[M].2版.北京:电子工业出版社,2013.

[7]李明洋.HFSS电磁仿真设计从入门到精通[M].人民邮电出版社,2013.

[8]InderBahl and PrakashBhartia.微波固态电路设计(第二版)[M].北京:电子工业出版社,2006.

[9]蔡钟斌.基于阶梯阻抗发夹谐振器的小型低通滤波器[J].信息与电子工程,2007.

[10]刘长军,等.射频通信电路设计[M].北京:科学出版社,2005.

变频器论文范文11

关键词:G5X 风力发电 变频器 散热功率 计算方法

中图分类号: TN773 文献标识码: A

一、概述

G5X风力发电机组(简称机组)是我国从西班牙Gamesa公司引进的双馈型变桨距机组(如图1),该型机组单台功率为850kW,根据叶片长度的不同,分为G52和G58两种。

图1 某风电场的G5X机组

G5X在国内安装数量庞大,早期引进的机组所装变频器主要为Ingerteam变频器。G5X机组在运行初期,性能比较稳定,故障相对较少,但是随着运行时间的累积,一些机组开始出现环境适应性的问题。例如,会出现零部件腐蚀严重、受风沙侵蚀严重等现象,变频器还出现散热等方面的问题。由于变频器对整个机组的发电性能控制起着极其重要的作用,如果变频器在运行过程中出现过热会直接导致整个机组停机,国内不少风电场已经开始着手对变频器的散热系统进行改造。在变频器改造过程中,首要问题是需要知道变频器的发热量,计算变频器发热量需要详细了解变频器各个方面的参数,对于现场工程师来说比较困难。本文运用经验和理论计算相结合的方法,计算出了G5X机组变频器在运行过程中的总发热量,可以为现场的改造提供依据。

二、计算方法

Ingerteam变频器采用AC-DC-AC(交-直-交)背靠背结构,其IGBT型号有三种为:Infineon公司的BSM300GB120DLC、FF400R12KE3和Semikron公司的 SKM400GB124D。三种型号都可以替代使用,现场使用较多的是BSM300GB120DLC,下面依据该型号进行计算,其它两种型号雷同。单个模块含有2个IGBT和2个反并联二极管,如下图所示,为一个BSM300GB120DLC模块的内部电路:

图2 BSM300GB120DLC模块内部电路

每台变频器上使用12个IGBT模块,网侧6个,电机侧6个,因此网侧、电机侧各有12个IGBT和12个反并联二极管,2个IGBT模块并联组成一个桥臂(即一相)。

变频器网侧输入电压为50Hz 480V交流。变频器的发热包括以下部分:IGBT的发热、反并联二极管的发热。

首先,变频器功率为

(1)

注:双馈机组的变频器功率为机组额定功率的,这里按较大值进行计算。

输入侧额定电压为。由此可以计算变频器的网侧相电流峰值为:

340.797A (2)

IGBT在导通状态下都有1V左右的压降,随着IGBT容量的增加,压降也会增加。因此,IGBT在工作过程中流过电流时,自身会存在损耗,这个损耗就是通态功耗。单个IGBT的通态功耗PSS为

(3)

其中,—变频器的输出电流峰值,—、集电极电流等于时,IGBT的饱和压降,—PWM波形占空比(调制深度),—输出功率因数。

IGBT作为开关器件,主要靠其告诉的开关过程来控制电压和电流,从而达到对电压和电流的调制的目的,实现电压电流的各种变化。IGBT的开关的过程分为导通和关断两个状态:在导通瞬间,IGBT的集电极-发射极电压逐渐降低,电流逐渐上升,这个过程中,IGBT产生的损耗叫导通损耗;在关断瞬间,IGBT的集电极-发射极电压逐渐上升,电流逐渐下降,这个过程中,IGBT产生的损耗叫关断损耗。导通损耗和关断损耗之和即为IGBT的开关功耗。单个IGBT的开关功耗PSW为

(4)

其中,为、集电极电流等于时,每脉冲对应的IGBT开通能量;为、集电极电流等于时,每脉冲对应的IGBT关断能量;为变频器的PWM开关频率。

一般IGBT大多带有反并联二极管,用于IGBT关断时的续流,又叫续流二极管。单个反并联续流二极管的通态功耗PD为:

(5)

—情况下,续流二极管的正向压降

另外,续流二极管的开关功耗包含在IGBT的中,因此,根据(3)~(5)式,每个桥臂(2个IGBT模块)的功耗便PAV1可以计算出来:

(6)

由于变频器有三个桥臂,那么整个变频器的散热PAV:

(7)

根据现场实际情况选取各参数合适的取值,是保证计算精度的关键。对于(7)式,下面分别讨论各个参数的取值情况:

为变频器的PWM开关频率,按照300kW功率等级的变频器的开关频率一般在5kHz左右,因此取;

为变频器的输出电流峰值,考虑到2个IGBT模块并联,各分一半的电流,那么有

为IGBT结温、集电极电流等于时,IGBT的饱和压降,根据BSM300GB120DLC的资料可以查询得2.4~2.9V,此处取较高值2.9V;

为PWM波形占空比(调制深度),取D=1;

为输出功率因数,取网侧取=1,电机侧取=0.8;

为、集电极电流等于时,每脉冲对应的IGBT开通能量,根据BSM300GB120DLC的资料可以查询得=35.0mJ;

为、集电极电流等于时,每脉冲对应的IGBT关断能量, 根据BSM300GB120DLC的资料可以查询得=36.0mJ;

为情况下,续流二极管的正向压降,根据BSM300GB120DLC的资料可以查询得=1.7V;

那么整个变频器功率模块的发热功率为:

变频器论文范文12

关键字:煤矿; 机电设备 ;变频器

煤矿开采不仅满足了社会对能源的需求,同时也促进我国现代市场经济的快速发展。在科学技术推动下,煤矿企业开采生产的模式逐渐趋于自动化。变频器是煤矿生产的电力控制的主要设备,变频器的良好安装有助于煤矿生产的持续运行。

1.变频器安置难点

变频器是煤矿机电设备调控的重要设备,经研究发现,电网中的各种外来信号对变频信号的电磁干扰十分严重。从而使控制系统设备无法正常接收变频信号,实际操控过程中存在信号中断、减弱、消失等异常现象,对系统及运行设备造成损坏。变频器的主要干扰源包括:

(1)整流桥。整流桥有分为全桥、半桥整流,均是经过改造二极管来建立成整流电路,在高压状态下可维持线路电流的稳定传输。而变频器的整流桥可看作是一种非线性负载,非线性负载在电网中会产生谐波,对控制系统内电气设备产生电磁干扰,如:信号无法正常接收等,影响操控指令的执行。

(2)谐波。谐波是在电力控制系统难点,其可以破坏整个电网线路的正常运行,造成线路信号传递受阻。变频器因谐波产生的干扰,主要来源于脉冲宽度调制技术在电网中的应用,该工作模式会遇到状态的高速切换。当谐波超过标准范围后,对变频器的调频信号产生不可修复的干扰。

(3)电网噪声。电网自身的噪声也会对变频器产生干扰。从一定程度上讲,电网噪声同样是由于谐波引起。电网控制系统连接了各式电力设备,如:整流设备、交直流互换设备、电子电压调整设备等,这类设备超负荷运行时,易使得其电压、电流突变,对电网设备的稳定性带来干扰,破坏了变频器的信号传输。

4)供电电源。供电电源是变频器日常运作的基本要素,若电源部分受到外在原因干扰也会带来电磁干扰现象。如:供电装置在持续供电时遇到交流电网,经过30s左右的时间则会有电磁干扰出现。另外,若供电电源的过压、欠压、断电等原因也是变频器干扰的来源之一,对变频器的变频操纵造成不便。

2.变频器抗干扰策略

电力企业在电网建设里应用变频器后,一定要对电磁干扰问题做到准时的处理,以保证工业企业自动化生产的顺利运行。联合变频器电磁干扰的主要来源及干扰方法,电网改造中采取的抗电磁干扰对策要针对谐波、噪声、电源等问题展开。主要在以下几点抗电磁干扰的策略中获得突破:

(1)滤波。变频器是应用调整电机工作电源频率对交流电动机进行控制的设备,在电源频率传输阶段会出现谐波。对变频信号传输过程添加过滤环节可提前检测异常,避免变频器受到电磁干扰、。如:将滤波器安装在变频器合理位置,对噪声等的准时检测可防止传导干扰。

(2)隔离。隔离是将变频器与别的线路隔离,以免对正常电力设备造成影响。通常,可在电路上完成对变频器的干扰隔离处理。如:利用电子仪器检测,当发现异常后,电路准时调整,将干扰源剥离。干扰隔离的主要方法:a.电源隔离;b.噪声隔。

(3)屏蔽。对电磁干扰来源进行屏蔽处理。从变频器的结构形式研究,屏蔽电磁干扰的主要是在于调整信号线路。普遍变频器产品结构里对铁壳进行了屏蔽,但在线路上仍存在不足。如:相比输出线路的干扰屏蔽,应减小信号线路的长度,同时信号线应采用双芯屏蔽,从而增强控制系统设备的抗干扰性能。

(4)接地。接地常用于噪声原因引起的电磁干扰,对电网在早期接地线路的调整即可发挥这一作用。变频器的接地普遍采用单点接地、多点接地、母线接地等方式。电力人员在选择接地方式时要根据控制系统的实际要求,应用良好的接地来控制噪声的耦合,经过改造之后,可明显改善变频器的抗干扰性能。

(5)安装。安装工艺对变频器性能发挥有较大的影响,若安装环节出现错误会直接使变频器的精密度受损,减弱变频器的传输强度信号。变频器安装需控制两点:1.温度方面,变频器安置的温度范围在-10℃至50℃,这是技术人员要严格掌握的;

2.高度方面,变频器安置高度在1000mm。

3.机电设备控制系统的设计规划

控制系统的设计是变频器运行环境的规划,经过设计稳定、安全、可靠的控制策略来来改善变频器的运行效果,从而实现电力系统自动化控制水平的提升。在今天,随着社会电网改造活动的全面开展,电网规划改造时对变频器的操控性能极为重视,而变频控制系统设计仍需解决以下几个问题:

(1)部署难题。变频器工作电压值较大,为更好地避免对别的设备造成干扰,变频器应采用单独地部署方式。例如:在对电网所有设备规划排列时,需把变频器单独部署开来。这样可以防止其造成的电磁干扰,破坏其他设备之间信号的传递,还需将弱电设备与变频器相隔离,避免其造成电磁干扰。

(2)连线难题。设计变频器控制系统时应尽量减少线路的连接,以减少线路交错复杂而造成的干扰。根据系统设计原则,相比不必要的线路连策应尽可能去除,让系统接线更加简化。如:除了控制系统与变频器的线路连接,别的线路可根据情况去除或隔离,为供电系统传输电流创造稳定的条件。

(3)干扰难题。无论是高压或低压变频器,其控制系统设计均要考虑变频器运行后造成的干扰强度,不然会影响到电网的指标性能。变频器产生的谐波对电网是一种巨大的干扰,易造成电网波型畸变,电压减小、功率过低等。设计时可将电抗器加在变频器电源进线侧,避免对电网造成过大的损坏。

(4)转速难题。电机是控制系统连接的主要设备,而电机转速大小是产生噪声干扰的一大因素。设计时要选择合适的电机型号,特别要考虑电机的功率、转速。若电机型号不正确,运行后会造成变频器负载大幅度增加。另外,为了防止高转速引起电机温度上升,可设计冷风装置达到降温效果。

4.结论

本文对变频器的安置难点与在安置过程中需注意的问题进行了详细的分析,并针对变频器抗干扰策略进行了介绍,同时,论述了变频器在机电设备控制系统设计过程中应注意的难点。变频器是煤矿生产电力系统的主要控制设备,其在安置、应用期间要采取抗干扰办理对策,从而提升机电设备运行效率。

参考文献:

[1] 刘顺业. 关于煤矿机电设备安装[J]. 科技传播.2011.16(88-91).

[2] 李保钢,李智庆,栾志军,寇泰山,夏恒报. 浅论煤矿机电系统管理[J]. 能源技术与管理.2011.4(56-59).

[3] 兰水. 浅谈煤矿变频器[J]. 科技创新导报.2010.3(106-110).

[4] 陈丽华. 变频器安装使用和日常故障判断[J]. 电气时代.2011.5(186-189).

[5] 华盟. 浅谈变频器的安装及参数设置问题[J]. 工业设计.2011.7(46-50).