HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 纳米复合材料

纳米复合材料

时间:2022-10-20 05:02:51

纳米复合材料

纳米复合材料范文1

【关键词】纳米羟基磷灰石二氧化锆生物相容性

由于创伤、感染、肿瘤以及先天性缺损等原因所致骨缺损在临床十分常见,传统修复骨缺损的方法:如自体骨移植,同种异体骨移植。自体骨取骨量有限,同时取自体骨痛苦大、后遗症多、异体骨又有排异反应。论文百事通而人工合成的骨移植材料在一定程度上可以达到自体骨和异体骨修复的效果,又可以避免疾病感染和骨源有限等弊端[1]。纳米羟基磷灰石与人体骨骼主要无机成分相似的化学组成和晶体结构,它具有良好的生物相容性,对人体无毒,又能够在植入人体后同骨表面形成很强的化学键结合,有利于骨的长入[2]。然而它的脆性大、韧性较差、容易发生断裂破坏,二氧化锆陶瓷是一种生物惰性陶瓷,具有良好的生物相容性、较高的弯曲强度、断裂韧性和较低的弹性模量。正是由于二氧化锆具有增韧补强的作用,有效的改善纳米羟基磷灰石的力学性能[3]。因此,纳米羟基磷灰石复合40%二氧化锆陶瓷材料,兼具材料生物活性、骨诱导性以及材料力学特性,成为用于承载部位骨缺损修复具有广泛前景的新兴材料。

一、实验方法

(一)致敏试验

取豚鼠30只,雌雄各半,体重300—500g,随机分为三组,实验组、阴性对照组和阳性对照组各10只。实验样品的生理盐水浸提液,5%甲醛溶液作为阳性对照,生理盐水作为阴性对照[4]。

(二)刺激试验

选用新西兰白兔,每组3只,雌雄各半随机分3组,体重2.5kg-3.0kg。HA/40%ZrO2浸提液,阴性对照:生理盐水,阳性对照为3%甲醛溶液。在脊柱左侧取一去毛区,标记5个点,常规麻醉消毒用1ml注射器试验组于5个点每点注射0.1ml的浸提液,阴性对照组每点注射0.1ml的生理盐水,阳性对照组每点注射01.ml的甲醛溶液。

(三)溶血实验

穿刺抽取人静脉血10ml加入到含有抗凝肝素钠的试管中,混合抗凝。取抗凝人血8ml,加入10ml生理盐水,稀释备用。取24支干净玻璃试管每组8支。实验组每只试管加入材料浸提液10ml,阴性对照组每只试管加入10ml生理盐水,阳性对照组每只试管加入10ml蒸馏水,将全部试管在37℃恒温箱中恒温30分钟后,每只试管分别加入0.2ml稀释抗凝人血,轻轻混匀,继续保温60分钟后,离心5分钟,吸取上清液至比色皿中,用分光光度计在545nm波长处测定吸光度。

溶血率=实验材料的吸光度—阴性对照的吸光度/阳性对照的吸光度—阴性对照的吸光度

结果评定:若材料的溶血率<5%,说明该材料符合国家标准;若>5%,则不符合生物医用材料溶血试验要求。

(四)肌肉内植入试验

选用Wister大鼠48只,雌雄各半,体重220±25g,随机分为术后第7、15、30、90天4组,每组10只。对照组8只。常规麻醉消毒,分离竖脊肌,于肌肉内植入消毒的HA/40%ZrO2材料块,缝合肌膜和皮肤。术后每日予以青霉素20万U肌注,连续3d,于术后第7、15、30、90天取材,对照组手术操作如上,但不放材料板。大体观察并制作标本切片,HE染色,光镜下观察。

二、结果

(一)致敏试验

各实验组和生理盐水对照组皮肤均无红斑、水肿或疹块发生,致敏率为0。

但甲醛对照组动物出现显著的红斑和水肿,致敏率为100%,致敏作用强

(二)刺激试验

生理盐水对照组均未见任何刺激反应,试验组3号兔的第2点24h时可见淡红色边界清晰的红斑和边缘明显高于周围皮面的轻度水肿,48h时可见淡红色边界清晰的红斑刚可查出的极轻微的水肿,72h时可见此点极轻微的红斑无水肿。所以24h的平均原发性刺激指数为0.267,48h的平均原发性刺激指数为0.2,而72h的平均原发性刺激指数为0.067,均小于0.4,则说明材料对皮肤无刺激作用,而甲醛对照组各时间点可见严重的红斑和水肿,为强刺激。

(三)溶血试验:

实验组和阴性对照组各管离心后,上层均为清亮无色液体,下层为红细胞沉淀物,该材料的溶血率为3.17%,小于国家标准5%,说明该材料符合组织工程支架溶血试验要求。

经SPSS10.0统计软件单因素方差分析和SNK-q检验:实验组与阴性对照组之间光吸收度值无统计学差异(P>0.05),实验组与阳性对照组光吸收度值有显著性差异(P<0.05)。

(四)肌肉植入试验

将各组实验动物包绕纳米羟基磷灰石-二氧化锆材料的组织切开,植入后7天,试样周围可见以嗜中性粒细胞浸润为主的炎性反应,可见吞噬细胞,无囊壁形成。

植入15天后试样周围有少量嗜中性粒细胞,淋巴细胞浸润和巨细胞反应;试样周围可见小血管与纤维母细胞增生,开始形成疏松囊壁。

植入30天后,试样周围可见少量淋巴细胞,试样周围可见纤维母细胞与胶原纤维,并已形成纤维囊腔结构。

植入90天后试样周围未见或仅见极少量淋巴细胞,纤维化囊壁致密,壁的厚度比形成初期要薄。

三、讨论

目前,生物医学材料安全性评价主要是采用医疗器械生物学评价体系,即世界标准化组织(ISO)制定的10993系列标准,国内转化为国家标准(GB/T)16886系列标准。参照以上标准,选择了(致敏试验、刺激试验、溶血试验、、肌肉植入试验),由于该生物医学材料在体内是不降解的,作为异物一定会对生物体产生作用,同时生物体也会对植入材料产生排斥反应,如果该材料最终被生物体接受,就认为该生物材料与组织之间相容,被称为具有好的生物相容性;反之,被称为生物不相容。

致敏反应属Ⅳ型变态反应,试验用完全弗氏佐剂和十二烷基硫酸钠石蜡液起到加强致敏作用的效果,又采取了最大剂量法,保证了试验结果的可靠性。况且豚鼠为T淋巴细胞敏感型动物,而结果显示试验组各注射点均无红斑和水肿,证明此材料无致敏反应。

刺激是不涉及免疫学机制的一次、多次或持续与试验组织工程支架材料接触引起的局部炎症反应。本文使用的是皮肤刺激试验。采用5点注射法,各时间点平均原发性刺激指数均小于0.4,则说明材料对皮肤无刺激作用,而甲醛对照组各时间点可见严重的红斑和水肿,为强刺激。新晨

溶血试验是检测生物医用材料对血液红细胞的溶血作用,测定红细胞溶解和血红蛋白游离的程度。本实验采用直接接触法,该材料的溶血率为3.17%,小于国家标准表明该材料不引起溶血反应。此试验对吸光度数值先用单因素方差分析,结果为p〈0.05,说明三组之间存在统计学差异,多组间均数的两两比较采用q检验,结果为试验组与阴性对照组之间p〉0.05,说明与阴性对照组之间无差别,而与阳性对照组之间p〈0.05,说明试验组与阳性对照组之间有显著差别。

体内植入实验是为了评价活体组织与试验样品材料的相互反应。所有医疗器械和材料植入体内均会不同程度地产生组织反应。目前,常采用肌肉局部组织生物学反应评价是根据炎性细胞反应和纤维囊形成进行组织反应分级,然后在根据组织反应分级情况进行结果评定。本试验植入各个时期炎症细胞浸润和纤维囊形成分级符合国家标准。

本实验体内和体外试验结果表明纳米羟基磷灰石复合40%二氧化锆陶瓷材料是一种无致敏、无刺激、无溶血,具有良好的血液和组织相容性的材料,又因其材料本身具有良好的生物活性及力学特性,有望成为修复骨缺损十分重要的生物材料。

参考文献

[1]MuruganR,pos.Sci.Technol.,2005,65(15-16):2385-2406.

[2]胡江.组织工程研究进展.2000.生物医学工程学杂志,17(1):75-79

纳米复合材料范文2

关键词 碳纳米管/铜基复合材料;制备工艺;显微组织

中图分类号:TB33 文献标识码:A 文章编号:1671-7597(2013)13-0050-02

将增强纤维、颗粒等与铜制备成铜基复合材料,可以提高其强度、耐磨性以及保持较优良的导电导热性能。SiC作为一种陶瓷颗粒,具有弹性模量高及抗氧化性能好等优良性能。由于金属具有优良的力学机械性能,使得金属基复合材料可以按机械零件的结构和性能要求,设计成合理组织和性能分布,从而工程技术人员对材料的性能进行最佳设计。由于能够根据不同的力学性能要求来选择相应的金属基体和不同的增强体,使得复合材料中的各组成材料之间既能保持各自的最佳性能特点,又可以进行性能上的相互补充,功能上的取长补短,甚至满足一定的特殊性能,所以纳米复合材料是一类具有结构和功能极佳的材料。另外,纳米复合材料由于具有特有的的纳米表面效应、特有的纳米量子尺寸效应,能够对其光学特性产生影响。按照复合材料基体的性能特点特,人们将纳米复合材料通常分三大类:纳米树脂基复合材料、纳米陶瓷基复合材料和纳米金属基复合材料。纳米金属基复合材料不仅具有强度高、韧性高的特点,纳米金属基复合材料还具有耐高温、高耐磨及高的热稳定性等性能。纳米金属基复合材料应用表明:在功能方面具有高比电阻性能、高透磁率性能,以及高磁性阻力等物理性能。本文采用球磨混料方法,通过真空热压法工艺,制备出碳纳米管增强铜基复合材料,研究铜基纳米复合材料的制备工艺,分析相应的材料性能。

1 试验材料及方法

1.1 试验材料

试验用原材料是上海九凌冶炼有限公司生产的电解铜粉,铜粉纯度是99.8%,铜粉粒度为-300目,铜粉松装密度是1.2~1.7。碳纳米管(CNTs)选用深圳纳米港有限公司产品。选用哈尔滨化工化学试剂厂的十二烷基硫酸钠(化学纯),以及该厂生产的酒精(分析纯)。

1.2 试验方法

试验采用行星式球磨机进行湿磨混合配料,选择的球磨机转速参数为300 r/min,球磨时间为2.5小时,试验球料比选择为1:1。试验的热压温度参数选择在800℃进行烧结,热压压力参数为3.9吨,烧结时间参数为3小时。使用光学显微镜分析复合材料的显微组织特点,用新鲜配制的三氯化铁盐酸酒精溶液腐蚀复合材料组织,腐蚀时间选为15 s。

2 试验结果与分析

2.1 碳纳米管/铜基复合材料显微组织

2.2 CNTs/Cu复合材料的硬度

2.3 CNTs添加量对复合材料相对密度的影响

试验结果表明,纯铜试样致密度最高,但是,随着碳纳米管含量的增加,纳米复合材料的相对密度下降。复合材料材料相对密度随着碳纳米管含量的增加而逐渐降低,原因主要是碳纳米管和铜的润湿性较差,致使强化相CNTs不能均匀分布,引起复合材料的缺陷,材料中产生孔隙,呈现出相对密度的下降的特点。

3 结论

1)采用球磨混料方法,真空热压法工艺,制备出碳纳米管增强铜基复合材料。

2)随着CNTs的增加,复合材料的硬度呈现降低的趋势,CNTs含量与硬度之间关系为曲线关系。

3)纯铜试样致相对密度最高,随着碳纳米管含量的增加,复合材料的相对密度下降。

参考文献

[1]解念锁,李春月,艾桃桃,等.SiCp尺寸对铜基复合材料抗氧化性及磨损性的影响[J].热加工工艺,2010,39(8):

74-77.

[2]王瑾,解念锁,冯小明,等.SiCp/Cu梯度复合材料的压缩性能研究[J].热加工工艺,2011,40(8):106-107.

[3]王艳,解念锁.原位自生Sip/ZA40复合材料的组织及性能研究[J].陕西理工学院学报(自然科学版),2011,27(1):1-4.

[4]董树荣,涂江平,张孝彬.碳纳米管增强铜基复合材料的力学性能和物理性能[J].材料研究学报,2000,14(Sl):132-136.

[5]王浪云,涂江平,杨友志.多壁碳纳米管/Cu基复合材料的摩擦磨损特性[J].中国有色金属学报,2001,11(3):367-371.

纳米复合材料范文3

【关键词】 纳米羟基磷灰石 二氧化锆 生物相容性

由于创伤、感染、肿瘤以及先天性缺损等原因所致骨缺损在临床十分常见,传统修复骨缺损的方法:如自体骨移植,同种异体骨移植。自体骨取骨量有限,同时取自体骨痛苦大、后遗症多、异体骨又有排异反应。而人工合成的骨移植材料在一定程度上可以达到自体骨和异体骨修复的效果,又可以避免疾病感染和骨源有限等弊端[1]。纳米羟基磷灰石与人体骨骼主要无机成分相似的化学组成和晶体结构,它具有良好的生物相容性,对人体无毒,又能够在植入人体后同骨表面形成很强的化学键结合,有利于骨的长入[2]。然而它的脆性大、韧性较差、容易发生断裂破坏,二氧化锆陶瓷是一种生物惰性陶瓷,具有良好的生物相容性、较高的弯曲强度、断裂韧性和较低的弹性模量。正是由于二氧化锆具有增韧补强的作用,有效的改善纳米羟基磷灰石的力学性能[3]。因此,纳米羟基磷灰石复合40%二氧化锆陶瓷材料,兼具材料生物活性、骨诱导性以及材料力学特性,成为用于承载部位骨缺损修复具有广泛前景的新兴材料。

一、实验方法

(一) 致敏试验

取豚鼠30只,雌雄各半,体重300—500g,随机分为三组,实验组、阴性对照组和阳性对照组各10只。实验样品的生理盐水浸提液,5%甲醛溶液作为阳性对照,生理盐水作为阴性对照[4]。

(二)刺激试验

选用新西兰白兔,每组3只,雌雄各半随机分3组,体重2.5kg-3.0kg。HA/40% ZrO2浸提液,阴性对照:生理盐水,阳性对照为3%甲醛溶液。在脊柱左侧取一去毛区,标记5个点,常规麻醉消毒用1ml注射器试验组于5个点每点注射0.1ml的浸提液,阴性对照组每点注射0.1ml的生理盐水,阳性对照组每点注射01.ml的甲醛溶液。

(三)溶血实验

穿刺抽取人静脉血10ml加入到含有抗凝肝素钠的试管中,混合抗凝。取抗凝人血8ml,加入10ml生理盐水,稀释备用。取24支干净玻璃试管每组8支。实验组每只试管加入材料浸提液10ml,阴性对照组每只试管加入10ml生理盐水,阳性对照组每只试管加入10ml蒸馏水,将全部试管在37℃恒温箱中恒温30分钟后,每只试管分别加入0.2ml稀释抗凝人血,轻轻混匀,继续保温60分钟后,离心5分钟,吸取上清液至比色皿中,用分光光度计在545nm波长处测定吸光度。

溶血率 =实验材料的吸光度—阴性对照的吸光度/阳性对照的吸光度—阴性对照的吸光度

结果评定:若材料的溶血率5%,则不符合生物医用材料溶血试验要求。

(四)肌肉内植入试验

选用Wister大鼠48只,雌雄各半,体重220±25g,随机分为术后第7、15、30、90天4组, 每组10只。对照组8只。常规麻醉消毒, 分离竖脊肌,于肌肉内植入消毒的HA/40% ZrO2材料块, 缝合肌膜和皮肤。术后每日予以青霉素20 万U 肌注, 连续3 d , 于术后第7、15、30、90 天取材,对照组手术操作如上, 但不放材料板。大体观察并制作标本切片,HE染色,光镜下观察。

二、结 果

(一)致敏试验

各实验组和生理盐水对照组皮肤均无红斑、水肿或疹块发生,致敏率为0。

但甲醛对照组动物出现显著的红斑和水肿,致敏率为100%,致敏作用强

(二)刺激试验

生理盐水对照组均未见任何刺激反应,试验组3号兔的第2点24h时可见淡红色边界清晰的红斑和边缘明显高于周围皮面的轻度水肿,48h时可见淡红色边界清晰的红斑刚可查出的极轻微的水肿,72h时可见此点极轻微的红斑无水肿。所以24h的平均原发性刺激指数为0.267,48h的平均原发性刺激指数为0.2,而72h的平均原发性刺激指数为0.067,均小于0.4,则说明材料对皮肤无刺激作用,而甲醛对照组各时间点可见严重的红斑和水肿,为强刺激。

(三)溶血试验:

实验组和阴性对照组各管离心后,上层均为清亮无色液体,下层为红细胞沉淀物,该材料的溶血率为3.17%,小于国家标准5%,说明该材料符合组织工程支架溶血试验要求。

经SPSS 10.0统计软件单因素方差分析和SNK-q检验:实验组与阴性对照组之间光吸收度值无统计学差异(P>0.05),实验组与阳性对照组光吸收度值有显著性差异(P<0.05)。

(四)肌肉植入试验

将各组实验动物包绕纳米羟基磷灰石-二氧化锆材料的组织切开, 植入后7天,试样周围可见以嗜中性粒细胞浸润为主的炎性反应,可见吞噬细胞,无囊壁形成。

植入15天后试样周围有少量嗜中性粒细胞,淋巴细胞浸润和巨细胞反应;试样周围可见小血管与纤维母细胞增生,开始形成疏松囊壁。

植入30天后,试样周围可见少量淋巴细胞,试样周围可见纤维母细胞与胶原纤维,并已形成纤维囊腔结构。

植入90天后试样周围未见或仅见极少量淋巴细胞,纤维化囊壁致密,壁的厚度比形成初期要薄。

三、讨 论

目前,生物医学材料安全性评价主要是采用医疗器械生物学评价体系,即世界标准化组织(ISO)制定的10993系列标准,国内转化为国家标准(GB/T)16886系列标准。参照以上标准,选择了(致敏试验、刺激试验、溶血试验、、肌肉植入试验),由于该生物医学材料在体内是不降解的,作为异物一定会对生物体产生作用,同时生物体也会对植入材料产生排斥反应,如果该材料最终被生物体接受,就认为该生物材料与组织之间相容,被称为具有好的生物相容性;反之,被称为生物不相容。

致敏反应属Ⅳ型变态反应,试验用完全弗氏佐剂和十二烷基硫酸钠石蜡液起到加强致敏作用的效果,又采取了最大剂量法,保证了试验结果的可靠性。况且豚鼠为T淋巴细胞敏感型动物,而结果显示试验组各注射点均无红斑和水肿,证明此材料无致敏反应。

刺激是不涉及免疫学机制的一次、多次或持续与试验组织工程支架材料接触引起的局部炎症反应。本文使用的是皮肤刺激试验。采用5点注射法,各时间点平均原发性刺激指数均小于0.4,则说明材料对皮肤无刺激作用,而甲醛对照组各时间点可见严重的红斑和水肿,为强刺激。

溶血试验是检测生物医用材料对血液红细胞的溶血作用,测定红细胞溶解和血红蛋白游离的程度。本实验采用直接接触法,该材料的溶血率为3.17%,小于国家标准表明该材料不引起溶血反应。此试验对吸光度数值先用单因素方差分析,结果为p〈0.05,说明三组之间存在统计学差异,多组间均数的两两比较采用q检验,结果为试验组与阴性对照组之间p〉0.05,说明与阴性对照组之间无差别,而与阳性对照组之间p〈0.05,说明试验组与阳性对照组之间有显著差别。

体内植入实验是为了评价活体组织与试验样品材料的相互反应。所有医疗器械和材料植入体内均会不同程度地产生组织反应。目前,常采用肌肉局部组织生物学反应评价是根据炎性细胞反应和纤维囊形成进行组织反应分级,然后在根据组织反应分级情况进行结果评定。本试验植入各个时期炎症细胞浸润和纤维囊形成分级符合国家标准。

本实验体内和体外试验结果表明纳米羟基磷灰石复合40%二氧化锆陶瓷材料是一种无致敏、无刺激、无溶血,具有良好的血液和组织相容性的材料,又因其材料本身具有良好的生物活性及力学特性,有望成为修复骨缺损十分重要的生物材料。

参 考 文 献

[1] MuruganR,RamakrishnaS.Development of nanocomposites for bonegrafting.Compos.Sci.Technol.,2005,65(15-16):2385-2406.

[2] 胡江.组织工程研究进展.2000.生物医学工程学杂志,17(1):75-79

纳米复合材料范文4

关键词 锂硫电池; V2O5纳米管; 复合材料

中图分类号TG15 文献标识码A 文章编号 1674-6708(2013)96-0119-02

硫与碳材料复合,可以提高硫电极的充放电容量,改善其循环性能,但由于碳材料等非活性物质在电极中占了很大的比例,所以这不利于整体复合材料能量密度的提高。因此,将单质硫与高比表面积的电极活性材料复合是一种最佳的选择。而V2O5是一种高容量的锂离子电池正极材料,V2O5纳米管则具有高的比表面积.本文据此合成出V2O5纳米管,并将单质硫通过热处理方法与之复合,制备了硫负载量为36%和70%的硫-V2O5纳米管复合材料.研究了不同硫负载量的硫-V2O5纳米管复合材料的电化学性能.

1 实验

1.1 V2O5纳米管和硫-V2O5纳米管复合材料的制备与表征

V2O5纳米管以及通过热处理方法制备的硫含量分别为36%和70%的硫-V2O5纳米管复合材料,V2O5纳米管在2.4V和2.2V处出现两个倾斜的放电平台,并在2.2V和2.5V处有两个倾斜的充电平台. V2O5纳米管在负载了36%的单质硫后,其放电电位平台降低到2.3V和1.8V,其放电容量迅速增大到530mAh/g. 与之相比,硫含量增加到70%后,虽然该复合材料在2.2V处存在一个倾斜的电位平台,但其放电容量迅速衰减130mAh/g,甚至远远低于硫电极的放电容量. 同时,其充电容量几乎为零.以上结果表明,少量的硫可以填充到V2O5纳米管内,增大了硫与V2O5纳米管的接触面积,从而有效提高了单质硫的利用率。但是,继续增加硫的含量,单质硫将V2O5纳米管填满后将继续附着在V2O5纳米管的表面,进而将V2O5纳米管包埋,因此,V2O5纳米管不再起作用,硫的利用率无法得到提高,其放电容量迅速衰减,并造成充电容量几乎为零。

3 结论

由热处理法,制备的硫负载量为36 %的硫- V2O5纳米管复合材料表现出良好的电化学性能,其初始放电容量达到了530mAh/g,虽然其循环性能与V2O5纳米管相比有所改善,但仍需提高。

参考文献

纳米复合材料范文5

【关键词】 磁性纳米多孔复合材料;致突变试验

DOI:10.14163/ki.11-5547/r.2015.17.017

Research of mutagenicity test for magnetic nanometer perforated composite materials HUANG Yi-hong, ZHU Wei-min, WANG Da-ping. Department of Rheumatology, Shenzhen City the Second People’s Hospital, Shenzhen 518035, China

【Abstract】 Objective To understand and evaluate the biocompatibility of magnetic nanometer perforated composite materials (Nano-HA/PLLA/Fe2O3) by genetic toxicology, in order to provide reference for its clinical application in tendon transplantion fixation. Methods Suspension was made by Nano-HA/PLLA/Fe2O3 magnetic nanometer composite interface fixation material for Ames mutagenicity test, in order to detect its mutagenicity ratio (number of revertant bacterial colony in research group/number of revertant bacterial colony in negative control group) for salmonella typhimurium. Results All the 4 strains in different tested concentrations with or without S9 had mutagenicity ratio as number of revertant bacterial colony in experimental group/number of revertant bacterial colony in control group (Rt/Rc) 2.0. Conclusion Nano-HA/PLLA/Fe2O3 magnetic nanometer composite interface fixation material will not induce increasing number of revertant mutation, which suggests this material contains no mutagenicity.

【Key words】 Magnetic nanometer perforated composite material; Mutagenicity test

本研究通过低温快速成型仪将Nano-HA、PLLA、Fe2O3这三种材料复合制备得到Nano-HA/PLLA/Fe2O3支架材料, 并参照国内外对生物材料评价方面的有关标准, 拟通过Ames 试验从遗传毒理性方面来评价此Nano-HA/PLLA/Fe2O3磁性纳米复合界面固定材料的生物相容性, 从而为其运用于前交叉韧带重建术中移植肌腱界面固定的临床应用提供安全性依据。现报告如下。

1 材料与方法

1. 1 材料 本实验所用的Nano-HA/PLLA/Fe2O3磁性纳米复合界面固定材料由深圳市第二人民医院组织工程重点实验室与中国科学院深圳先进技术研究院联合研制, 立方体(25 mm× 25 mm×25 mm)。Nano-HA/PLLA/Fe2O3材料先用紫外线照射30 min, 经磷酸盐缓冲液(PBS液)浸泡、清洗, 75%乙醇浸泡消毒后干燥备用。

1. 2 实验方法 取Nano-HA/PLLA/Fe2O3磁性纳米复合界面固定材料, 按重量比以2.5%羟甲基纤维素钠溶液配成5 mg/ml, 0.5 mg/ml及0.01 mg/ml三种不同浓度的混悬液受试。菌种采用由美国Ames实验室提供并由湖南省疾病控制中心繁殖保存的鼠伤寒沙门菌组氨酸缺陷型菌株(TA-97、TA-98、TA-100和TA-102), 经性状鉴定合格后进行实验。由于Nano-HA/PLLA/Fe2O3磁性纳米复合界面固定材料是用于人体内植入的, 植入人体后肝细胞微粒体酶系(S9)就有可能诱变HA(假如HA有诱变作用), 而细胞体内无此酶, 为了使实验条件更接近体内环境, 将培养板分为活化实验组(加S9溶液)和非活化实验组(不加S9溶液)。大鼠肝脏微粒体酶系(S9)由多氨联苯诱导, 制成肝匀浆后-80℃冰箱内保存, 使用时用2-氨基芴测定其活力。实验用柔毛霉素(浓度为25 μg/0.1 ml)作为菌株培养时的直接致突变活性指示(不加S9), 2-氨基芴(50 μg/0.1 ml)作为菌株的间接致突变活性指示(加S9);以叠氮化钠(5 μg/0.1 ml)作为阳性对照, 以同样体积生理盐水作为阴性对照。每个菌种的各个剂量组均各设3个平行皿。

通过平板渗入法将不同浓度组混悬液与菌株在最低营养板上混合培养, 经37℃培养48 h后, 分别进行观察回变菌落数结果。每组取其3个平行培养皿的平均回变菌落数, 依据出现的致突变比值(如下式计算)检测Nano-HA材料制品中是否存在诱变物质。

致突变比值(MR)= 实验组回变菌落数(Rt)/ 阴性对照组回变菌落数(Rc)

2 结果

4个菌株在各个受试浓度待测液在加S9与不加S9的情况下, 致突变比值即实验组回变菌落数与阴性对照组回变菌落数的比值(Rt/Rc)均2.0, 据此可以认为Nano-HA/PLLA/Fe2O3磁性纳米复合界面固定材料在Ames试验中无致突变性。

3 讨论

生物相容性是指材料与人体之间相互作用产生各种复杂的生物、物理、化学反应, 以及人体对这些反应的忍受程度[1, 2]。根据ISO10993标准的要求, 生物医学材料长期接触人体或植入人体内组织、血液应进行潜在的遗传毒性方面的生物学评价试验。Ames试验是由美国的B.N.Ames在1975年建立的鼠伤寒沙门菌回复突变试验, 是一种已被公认并广泛开展的致突变鉴定方法。此方法能够在短期内检测医用材料有无致突变性。

本实验将Nano-HA/PLLA/Fe2O3磁性纳米复合界面固定材料浸提液与各标准菌液混合后在最低营养板上培养, 依据出现的回变菌落数及致突变比值来判断复合人工骨是否存在诱变物质。考虑到材料是用于植入人体的, 为使实验条件更接近体内环境, 以排除人体肝细胞微粒体酶系(S9)可能造成的激活诱变作用(间接诱变), 使得实验更具可信度, 作者在实验中对把材料浸提液的检测分为S9(+)组和S9(-)组, 观察用S9诱发后回变菌落数有无增加。另外, 在操作及观察结果过程中注意严格无菌操作以排除杂菌污染, 进而保证本试验结果的可靠性。

本试验结果显示, 各菌株在各浓度待测液组中回变菌落平均数均未超过其相应阴性对照组回变菌落平均数的2倍(MR2), 证实鼠伤寒沙门菌的组氨酸营养缺陷型突变菌株对受试物的检测有效。本实验说明此Nano-HA人工骨材料无遗传毒性作用, 其用于体内植入是安全的, 这为进一步动物实验及临床应用提供了依据。

参考文献

[1] 郝和平. 医疗器械生物学评价标准实施指南. 北京:中国标准出版社, 2002:81-135.

纳米复合材料范文6

关键词 碳纳米管 钡铁氧体 溶胶-凝胶法 吸波性能

中图分类号:TB33 文献标识码:A DOI:10.16400/ki.kjdks.2016.08.032

Abstract The using carbon nanotubes as the matrix, on the surface of carbon nanotubes coated barium ferrite by a sol gel method measured the static magnetic properties and electromagnetic parameters, and the reflection of characteristics of samples is analyzed. The results showed that the preparation of carbon nanotubes based barium ferrite composite has good static magnetic and microwave absorbing properties.

Key words Carbon nanotubes; Barium ferrite; Sol gel method; wave absorbing performance

0引言

传统方法制备的吸波材料在吸波效率上,总难有重大突破,不能同时满足薄、轻、宽、强的要求。六角晶系钡铁氧体是目前广泛使用的磁损耗型微波吸收剂材料,具有吸收强、应用方便等特点,以其优良的频响特性成为近年来研究的重点,但其缺点是密度大,高温特性差等。

本文采用纳米材料制备技术对六角晶系钡铁氧体的性能进行改进,并将它与具有良好吸波性能的碳纳米管进行复合,利用溶胶-凝胶工艺合成碳纳米管基钡铁氧体纳米复合材料,充分发挥它们的长处,实现良好的吸波性能。

1实验

本实验所用的多壁碳纳米管(外径>50nm,长度为10~20%em)是由中国科学院成都有机化学有限公司中科时代纳米材料中心通过天然气催化裂解法制备得到。实验首先采用浓硝酸冷凝回流和混酸(浓硝酸、浓硫酸)超声处理相结合的方法来对原始碳纳米管进行纯化处理,然后利用溶胶-凝胶工艺合成碳纳米管基钡铁氧体纳米复合材料。

1.1 碳纳米管的纯化处理

(1)氢氧化钠除氧化剂颗粒。将研磨后的碳纳米管投入烧杯中,然后加入浓度为2mol/L的NaOH溶液,置于加热磁力搅拌器中40℃搅拌1h,冷却至室温,静置,置于真空干燥箱内烘干至恒重,备用。(2)浓硝酸的冷凝回流处理。取一定量经过预处理的碳纳米管加入68%的浓硝酸中,于100℃水浴下加热磁力搅拌,沸腾状态下冷凝回流处理24h,冷却至室温,静置,置于真空干燥箱烘干至恒重,备用。(3)浓硝酸、浓硫酸超声波处理。将经过浓硝酸处理后的碳纳米管和体积比为5/2的混合酸(H2SO4/HNO3)放于烧杯中,常温超声处理4h,处理结束后用去离子水洗涤至中性,60℃真空干燥12h即得纯化后的碳纳米管。

1.2 碳纳米管表面包覆钡铁氧体的溶胶-凝胶法制备

1.2.1 实验步骤

按化学计量配比称取一定量的原料,硝酸钡:硝酸铁:柠檬酸=1:12:13(摩尔比),加入水完全溶解后,得到均一透明的混合溶液。

取适量经过纯化处理的碳纳米管加入该混合液中,超声分散后一边搅拌一边向混合液中滴入氨水,然后加入少量聚乙二醇和阳离子表面活性剂CTAB(十六烷基三甲基溴化铵),电磁搅拌溶解后置于80℃水浴中恒温搅拌蒸发,使之形成湿凝胶,继续磁力搅拌2h后进行真空抽滤,之后置于干燥箱中恒温干燥得到干凝胶,将所得干凝胶置于管式炉中加热,自然冷却后即得样品。

1.3 分析仪器与测试方法

用S-4800型场发射扫描电镜(SEM)观察所制得的样品的微观形貌,D/max-%\B型X射线衍射仪分析样品的相组成,用Model 4 HF振动样品磁强仪对样品的静磁性能进行测试,用Agilent E8362B PNA系列矢量网络分析仪测试样品的电磁参数并对其吸波性能进行分析。

2结果与讨论

2.1 碳纳米管纯化处理前后的SEM图

图1(a)为酸处理前未经纯化的原始碳纳米管扫描电镜照片,从图中可以看到弯曲的碳纳米管互相缠绕在一起,在碳纳米管的表面及周围附着大量团状和颗粒状物质。图1(b)为经浓硝酸回流处理及混酸超声处理后的碳纳米管的SEM图片。从图中可以看出,碳纳米管表面的杂质已经被除去,碳纳米管进一步被短切成了几百纳米的短管,这有利于碳纳米管的分散,对下一步碳纳米管表面包覆是非常重要的。

2.2 碳纳米管表面包覆钡铁氧体的SEM图

溶胶凝胶法制备碳纳米管基钡铁氧体纳米复合材料的SEM如图2所示,从SEM图像中看出:钡铁氧体或以均匀的涂层包覆于碳纳米管表面或以团聚的形态缠绕于碳纳米管表面,说明成功地合成了碳纳米管基钡铁氧体纳米复合材料。

2.3XRD分析

图3(a)为包覆前的碳纳米管的X射线衍射谱图,从图3(a)可以看出,包覆前碳纳米管的相组成主要为碳;图3(b)为经过钡铁氧体包覆后的碳纳米管的X射线衍射谱谱图,从谱图中可以看出,谱图中有钡铁氧体及中间产物%\-Fe2O3的衍射峰,由于涂层较薄,因此谱图中出现了基体碳纳米管的碳衍射峰。

2.4 静磁性能测试

图4为碳纳米管表面包覆钡铁氧体后粉末的VSM磁滞回线图,从图中可以看出,粉末的矫顽力Hc为0.225kOe(17.9kA/m),饱和磁化强度Ms为48.6emu/g(48.6Am2/kg),该复合粉末的饱和磁化强度小于理论上的极限值72 Am2/kg,说明样品中钡铁氧体的纯度不是很高,可能是含有%\-Fe2O3等反铁磁性物相的缘故。

2.5 电磁参数及电磁特性分析

图5为原始碳纳米管与碳纳米管/钡铁氧体复合材料在2-18GHz的测试频率范围内反射率的比较。

由图5可知,原始碳纳米管在测试频率范围内出现两个吸收峰,吸收峰位置分别出现在8.17GHz和16.70GHz,对应的吸收峰值分别为-22.53dB和-16.50dB,最大反射损耗值R = -22.53dB,R

3结论

本实验运用溶胶凝胶法在经过纯化处理过的碳纳米管表面包覆了磁性材料钡铁氧体,根据实验得到如下结论:

(1)通过观察所制备的碳纳米管/钡铁氧体复合粉末的SEM图像和XRD分析可知:碳纳米管表面上较均匀地包覆了一层钡铁氧体。(2)通过对实验所制备的碳纳米管/钡铁氧体复合粉末的磁滞回线分析可知:粉末的矫顽力Hc为0.225kOe(17.9kA/m),饱和磁化强度Ms为48.6emu/g(48.6Am2/kg),具有较好的磁性。(3)碳纳米管/钡铁氧体复合材料的磁损耗比原始碳纳米管要大,相对于原始碳纳米管,虽然表面包覆钡铁氧体的碳纳米管复合材料的吸收峰值变小,但在所测试频率范围内出现多个吸收峰,在多个频段内都有较强的吸收峰,特别在f>12GHz的高频区出现四个吸收峰,表现出较好的吸波特性。

参考文献

[1] 钱海霞,熊惟皓.纳米复合隐身材料的研究进展[J].宇航材料工艺,2002.32(2):8.

[2] H.J.Zhang,X.Yao,L.Y.Zhang.The preparation and microwave properties of BaZn2-z CoZFe16O27 ferrite obtained by a solCgel process[J].Ceramics International,2002.28(2):171.

[3] T.Nakamura,Ken-ichi plex Permeability of Polycrystalline Hexagonal Ferrites[J].IEEE Transactions on Magnetics,2000.36(5):3415.

纳米复合材料范文7

【关键词】 生物医学材料;纳米羟基磷灰石;壳聚糖;复合材料;共沉淀

Abstract Objective:Preparation and Characterization of reasonal artificial bone biomaterial.Methods:Nano-hydroxyapatite/chitosan composites were prepared through a co-precipitation method. The properties of these composites were characterized by means of TEM ,SEM, XRD test machine.Results:The HA synthesized here was poorly crystalline carbonated nanometer crystals and dispersed uniformly in chitosanp hase and there was no phase-separation between the two phases.Conclusion:The HA composite material can be use for bone organize substitute material.

Key words Biomedical material; Nano-hydroxyapatite;Chitosan;Composite material;Co-precipitation

由于羟基磷灰石(Hydroxyapatite,简称HA)具有良好的生物相容性和生物活性以及骨传导性,与自然骨矿物相组分的相似性,因而在众多的人工合成骨替代物中脱颖而出,倍受瞩目[1-4]。虽然HA陶瓷具有较高的抗压强度,但其易发生脆性断裂和疲劳破坏,而且陶瓷烧结体中的HA颗粒结晶较好,均在微米以上尺寸,与天然骨磷灰石相去甚远。从仿生学角度出发,应当保持骨替代物中HA呈纳米状态,所以在制备骨修复材料时只能选择HA非烧结体或HA浆料,尽可能避免HA颗粒发生团聚。但是HA制品只有通过烧结才能获得较好的力学性能,单纯的HA粉体或浆料成形困难,而且承受外力和液体冲刷的能力极差,不能用作承重骨组织的修复。自然界中一些生物体(如动物骨组织、贝壳、珍珠等)是通过无机物和有机物之间奇特的相互作用而成的具有优异力学性能的生物复合物,其中的无机相呈纳米状态分散在有机相中,起弥散增强的作用[5-6]。壳聚糖(Chitosan,简称CS)是自然界中少见的一种带正电荷的碱性多糖,是甲壳素(Chitin)的脱乙酰化产物。HA-CS复合材料除了生物相容性、降解性俱佳外[7],而且还具有pH-体积溶胀响应的智能特征,为生物材料的设计带来更大的空间,HA-CS复合生物材料的制作大多将HA粉体与壳聚糖的酸溶液通过机械或化学方式混合成膏状体,然后注成型。本文尝试将HA粉制备与成分的复合结为一体的方法,基本设计思想是将HA的前驱液与壳聚糖的酸溶液混合,以尿素为沉淀剂,加热,尿素分解,体系pH值升高使HAP与壳聚糖先后沉淀出来,由于混合方式为溶液混合,因而预期复合粉体有较好的均匀性。为了进一步调整粉体的微观尺寸,将共沉淀出来的粉体再进行水热陈化处理。

1 材料与方法

1.1 仪器与试剂

Ca(HO)2、H2PO4、醋酸溶液均为分析纯,80目的壳聚糖粉末(脱乙酰度为90%,购自济南海得贝生物工程有限公司),以及实验中所用的其它试剂均为分析纯。利用JEM2100CXⅡ型透射电镜(JEOL公司,日本)进行晶粒观察,应用Quanta-400扫描电镜进行形貌和孔隙率分析,利用PHILIPS AUTOMATED X-RAY POWDER DIFFRACTOMETER SYSTEM APD-10测定HA/CS样品的X射线衍射谱。

1.2 纳米羟基磷灰石/壳聚糖复合材料的制备

(1)多孔羟基磷灰石的合成。按照羟基磷灰石(简称HA)的化学计量比Ca/P = 1.67 称取合适量的Ca(OH)2和H3PO4,以过氧化氢为发泡剂,并将Ca(OH)2溶于乙二醇中配成5%的悬浮液,得到A液,备用。(2)羟基磷灰石/壳聚糖的合成。将磷酸稀释为10%的水溶液,然后按照n-HA/CS 重量比分别为80/20、70/30、60/40、50/50、40/60、30/70的6种比例称取壳聚糖粉末,并将其溶于2%醋酸水溶液,连续搅拌5h,过滤得到完全透明的3%壳聚糖溶液。将配好的磷酸溶液倾入壳聚糖溶液中,充分搅拌,得到B液。整个反应在室温下进行,在剧烈搅拌下将B液缓慢滴入A液中,该过程pH值保持在10左右,滴加速度4mL/min。滴加完毕,继续搅拌24h,所得浆料室温下陈化1d。将沉淀过滤、洗涤,于80℃真空烘干,并研磨成粉。再分别在300℃、600℃、800℃马弗炉中煅烧2h后制成样品。

2 结果

2.1 TEM观察

n-HA 及n-HA/ CS 复合材料的透射电镜照片如图1所示。其中图1(a)是在室温条件下合成的n-HA的TEM照片,图2(b)是共沉淀法合成的n-HA/CS复合材料的TEM照片。可以看出n-HA粉末呈纳米级的短棒状晶体,其平均尺寸大约为10nm×30nm。这些n-HA颗粒具有较好的分散性,表现出相对均匀的形貌。当加入壳聚糖后,颗粒变得纤细,并呈梭状,但仍在纳米范围内,平均尺寸大约20mm×80nm。可能是壳聚糖的加入加速了n-HA沿c轴(002)方向的生长。

2.2 XRD图谱

n-HA/CS不同比例复合材料的XRD图谱见图2。从图2a中可以观察到n-HA的各个特征衍射峰,但这些峰都发生宽化,表明合成的n-HA呈非化学计量的弱结晶状态。图2中在2θ=10°和20°处的两个峰是壳聚糖的两个特征衍射峰。复合材料图谱中(图2b、c、d、e、f)也都出现n-HA和壳聚糖的特征衍射峰,但峰的强度都有不同程度的弱化,这与二者的含量高低有关。

2.3 SEM观察

扫描电镜观察复合材料具有多孔结构(图3a~b),孔径为100~500μm,大多数孔径为400~500μm。材料孔内无HA晶体聚集,孔壁上有大量细小的HA晶体连续、均匀分布,犹如“铺路石”状紧密镶嵌在孔壁上(图3b)。材料具有很高的孔隙率,而随着CS含量的增加,支架的孔壁增厚,孔隙率降低,密度升高。

3 讨论

两相之间的相容性一直是无机-有机复合材料体系需要解决的首要问题。本文合成的各种比例的n-HA/CS复合材料中都没有相分离现象发生。SEM也证明,n-HA颗粒在复合材料中分散良好。在n-HA/CS复合材料体系中,当壳聚糖含量较高时, 细小的n-HA颗粒以填充相均匀分散在连续有机基体中,但随着壳聚糖含量下降,有机相不足以将n-HA颗粒完全包裹,仅作为粘结剂将无机粒子均匀地粘附在一起。

壳聚糖通过胺基与金属离子之间的相互作用可以形成壳聚糖-金属螯合物。在共沉淀过程中,壳聚糖的瞬时沉积将n-HA微粒包裹在聚合物纤维之间。由于Ca2+与乙醇中-OH之间的螯合作用,所以Ca(OH)2在乙醇中的溶解度较之在水中的高,而且乙醇的分散效果也较水的分散性能好,因此,本文选用乙醇做Ca(OH)2的溶剂。TEM及XRD分析都表明,共沉淀法合成的HA是类似于自然骨磷灰石的非化学计量的弱结晶含碳酸纳米晶体,由于晶格缺陷,该n-HA比高结晶度HA的溶解度高。因此,当n-HA/CS复合材料植入体内后,表面的n-HA微粒在生理介质作用下缓慢溶解,使材料周围的Ca2+、P离子浓度局部升高;反过来,这些n-HA颗粒又为Ca2+、P离子的沉积提供活性位点,从而在材料表面形成一层类骨磷灰石。壳聚糖具有良好的生物降解特性,当其作为组织工程支架植入体内后,壳聚糖的降解为新骨的生长提供足够的空间,直至完全被新骨替代。有研究证实壳聚糖还有促进磷灰石和方解石沉积的作用,而且壳聚糖的表面是亲水性的,有利于细胞的黏附、生长和分化[10-11],所以n-HA/CS复合材料植入体内后将可以有效地促进骨的修复和重建。

本文通过共沉淀法合成了不同比例的n-HA/CS复合材料,其中HA为弱结晶含碳酸的纳米晶体,均匀分散在复合材料基体中。复合材料中两相间较强的相互作用赋予材料良好的力学性能,该复合材料作为骨组织替代材料将具有很大的研究价值及应用潜力,对植入体内后将会引导新骨的生长,促进骨缺损的修复和愈合的进一步研究提供了理论研究。

参考文献

[1]Pezzatini S,Solito R,Morbidelli L,et al.The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions[J].J Biomed Mater Res A,2006,76(3):656-663.

[2]Manjubala I,Scheler S,Bossert J,et al.Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique[J].Acta Biamater,2006,2(1):75-84.

[3]吕彩霞,姚子华.羟基磷灰石/壳聚糖复合材料研究进展[J].化工进展,2006,25(7):755-759.

[4]李洲成,李年丰,张阳德.纳米羟基磷灰石及其复合材料研究进展[J].中国医学工程,2005,13(3):257-259.

[5]杨晓庆,李玉宝,魏杰,等.医用羟基磷灰石/二氧化钛纳米复合材料的制备及性能研究[J].中国现代医学杂志,2003,13(5):26-28.

纳米复合材料范文8

摘 要:构一体化的热、力耦合多尺度模型与算法研究是力学、数学、物理学与材料科学多学科交叉的前沿领域,也是重大装备研发中需要着重解决的基础科学问题。材料与结构在裂纹、空洞、夹杂、纤维取向、基体分布形态等方面具有内在的不确定性,其损伤和破坏还表现为复杂的热力耦合非线性多尺度力学行为。尺度间隙和跨尺度连接,涉及微―细―宏观不同尺度间数学物理模型的联系与差别等基本问题,建立微/纳米尺度的热、力模型,揭示热、力耦合的物理机制,发展材料与结构一体化的宏―细―微观耦合的多尺度模型与算法,具有重要的理论与实际意义。结果表明:复合材料界面结构对于材料的力、热、电、磁等物理、力学性能有十分重要的影响。我们针对复合材料与界面纳米结构热传导问题,发展了一类分子动力学与连续模型跨尺度耦合模式、MD/FEM耦合算法,并编写了相关计算程序。主要进展有:(1)实现了纳米结构导热系数等热学参数的分子动力学计算和量子校正;(2)发展了复合材料和多孔材料周期及随机结构热传导问题连续模型的多尺度算法;(3)提出了一类分子动力学与连续模型的跨尺度关联模式和MD/FEM耦合算法;(4)实现了三维复合材料和界面纳米结构的MD/FEM计算。

关键词:分子动力学-连续介质耦合模型 热传导 多尺度渐近展开 分子动力学 有限元方法

A Molecular Dynamics-Continuum Coupled Model for Heat Transfer in Composite Materials

Cao Liqun1 Huang Jizu2

(1.Academy of Mathematics and Systems Science; 2.Institute of Software Chinese Academy of Sciences)

Abstract:The heat transfer problem in composite materials has been investigated which contain the nano-scale interface. A molecular dynamics-continuum coupled model is developed to study the heat transport from the macro- to the micro-scales. The model includes four major steps:(1)A reverse non-equilibrium molecular dynamics (RNEMD) is used to calculate some physical parameters such as the thermal conductivities on the interface.(2)The homogenization method is applied to compute the homogenized thermal conductivities of composite materials.(3)the temperature field in the global structure of composite materials is computed with the multiscale asymptotic method for the macroscopic heat transfer equation.(4)A molecular dynamics-continuum coupled model has been developed to reevaluate the temperature field of composite materials, in particular, the local temperature field near the interface. The numerical results in one-, two- and three-dimensional structures of composite materials including the nano-scale interface are given. Good agreement has been achieved between the numerical results of the proposed coupled algorithm and those of the full MD simulation, demonstrating the accuracy of the present method and its potential applications in the thermal engineering of composite materials.

Key Words:A molecular dynamics-continuum coupled model; Heat transfer; Multiscale asymptotic expansion; Molecular dynamics; Finite element method

阅读全文链接(需实名注册):http:///xiangxiBG.aspx?id=48133&flag=1

纳米复合材料范文9

当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能:

1、尺寸效应

当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。

2、表面效应

一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。

纳米微粒尺寸d(nm)包含总原子表面原子所占比例(%)103×1042044×1034022.5×1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与其它原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。

3、量子隧道效应

微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。

二、高聚物/纳米复合材料的技术进展

对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类:

1、高聚物/粘土纳米复合材料

由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。

2、高聚物/刚性纳米粒子复合材料

用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性方法。随着无机粒子微细化技术和粒子表面处理技术的发展,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。

3、高聚物/碳纳米管复合材料

碳纳米管于1991年由S.Iijima发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。

碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。

在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。

纳米复合材料范文10

Intelligent Nanomaterials

2012,837p

Hardcover

ISBN9781848213678

Ashutosh Tiwari等著

新材料作为工业发展的根本推动力之一,为新产品问世,进而增加社会财富奠定了基础。最近10年,基于纳米结构的特殊行为,具有独特性能的材料大量涌现。

本书旨在对智能纳米材料领域的最新研究进展进行介绍,包括:分子设备材料、仿生材料、混合型功能聚合物复合材料、信息和能量转化材料以及环境友好材料。

全书共分4部分 22章。第1部分,无机材料,含第1-7章:1.半导体量子点的合成、表征及自组装;2.一维半导体金属氧化物:合成、表征及相应气体传感器的应用;3.稀土绝缘纳米晶体:基于改进发光性能的纳米荧光粉的等离子体显示板;4.非晶态多孔复合氧化物:一种新型高度灵活的材料;5.纳米氧化锌及其应用;6.应用于空间及能源领域的智能纳米材料;7.智能玻璃:热致变色薄膜及纳米复合材料。第2部分,有机材料,含第8-11章:8.纳米聚合物、胶束及核壳材料;9.纳米材料与酞菁类的复合材料;10.碳和聚合物材料的纳米复合体及其在能量转换装置中的应用;11.纤维素生物塑料在生物医药中的发展。第3部分,生物材料和设备,含第12-14章:12.智能水凝胶纳米复合材料;13.防渗技术:聚合物/层状硅酸盐纳米复合材料;14.基于聚合物/复合材料的智能传感器。第4部分,含第15-22章:15.药物输送中的水凝胶纳米粒子;16.应用于生物分子的纳米晶体生长机制;17.组织和细胞中单一生物分子的量子点检测、识别和跟踪;18.基于纳米纤维的医疗设备;19.作为核医学新材料的纳米载体系统;20.面向纳米仿生设备的纳米仿生材料;21.用于医学诊断的脂质纳米生物传感器;22.聚合物纳米纤维及其在传感器中的应用。

本书作者之一Ashutosh Tiwari教授,毕业于印度阿拉哈巴德大学,材料化学家,是先进材料快报的主编,就职于瑞典林雪平大学(Link & ouml;Ping University)生物传感器和生物电子学中心,于2011年获得声誉极高的“材料科学创新奖”。

本书适合于具有不同背景的研究者,诸如化学、材料科学、物理、生物科学和工程等。它不仅可以作为研究生和本科生的教科书,也是一本很好的针对材料科学、生物工程、药学、生物技术和纳米技术工作者的参考书。

张文涛,副研究员

(中国科学院半导体研究所)

纳米复合材料范文11

摘要:本文结合实践中的教学和科研经验,以Bi2Te3基合金/PEDOT:PSS纳米复合热电材料为例浅析大学生如何开展科学研究。

关键词:大学生;科学研究;科研能力

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2017)18-0275-02

大学生开展科学研究,有利于巩固所学的理论知识,培养学生发现问题、分析问题和解决问题的能力,对以后从事教学或者科研等相关工作具有重要意义。近年来,很多大学生从大学一年级就开始进入老师的课题组,组建大学生创新项目团队,开展大学生创新项目的研究。在此过程中大学生经常遇到的一个问题就是如何开展科学研究?结合本人多次担任大学生创新项目团队指导教师的经验,以Bi2Te3基合金/PEDOT:PSS纳米复合热电材料为例谈谈自己对材料专业大学生如何开展科学研究的一些看法,具体如下。

一、选择一个感兴趣的课题

兴趣对于课题的研究至关重要。大学生在选择科学研究课题的时候要结合自己的情况选择一个感兴趣的研究课题。比如有的同学对热电材料感兴趣,就可以选择热电材料中的某一个具体问题作为研究课题。由于热电材料是一个相对比较大的研究课题,那么如何选择热电材料中的一个具体问题?这就要求同学们通过文献查阅后进行归纳总结,找到自己感兴趣的、切合自己研究水平的课题。如果在此过程中选择一个研究范围很大或者研究内容很难的课题,课题的完成将面临很大的困难。

二、通过阅读大量的文献找出研究课题的突破口

同学们对某一研究领域的课题产生了兴趣以后,可以通过Web of knowledge平台、中国期刊全文数据库、万方等数据库,输入关键词,查询所要研究课题最新的文献。通过阅读这些文献资料,对所要研究课题目前的国内外研究现状、存在的问题、以及未来可能的发展趋势有较明确的认识。如对热电材料感兴趣的话,可以在Web of Science数据库输入关键词“thermoelectric materials”,或者在中国期刊全文数据库、万方等数据库输入关键词“热电材料”,就可以检索出很多热电材料相关的文献资料。通过对这些文献的阅读和整理,同学们对热电材料就会有一个比较明确的认识和理解,比如热电材料可以将工业废热转变成电能,也可以用来制冷,并且利用热电材料制备的热电发电和制冷器件在使用过程中具有结构简单、无噪声、无污染、无机械振动等优点[1]。目前热电材料已经在航空、航天、军事、汽车等领域取得了应用。热电材料主要分为无机热电材料、聚合物热电材料、以及有机―无机复合热电材料三类。Bi2Te3基合金/PEDOT:PSS纳米复合热电材料是有机―无机复合热电材料的一种,具有广阔的应用前景,比如柔性热电器件等,但是目前此课题的研究相对较少,还有很多亟待解决的问题值得深入的研究。这样找就到了热电材料中的一个可能开展的具体研究课题。

接着可以在Web of Science数据库输入关键词“Bi2Te3”、“PEDOT:PSS”、“thermoelectric”,或者在中国期刊全文数据库、万方等数据库输入关键词“Bi2Te3”、“PEDOT:PSS”、“热电”就能检索出多篇和上述研究相关的英文和中文文献。通过对上述参考文献的分析可知,目前在制备Bi2Te3基合金/PEDOT:PSS纳米复合热电材料过程中主要存在的问题是:(1)Bi2Te3基合金纳米结构容易氧化;(2)Bi2Te3基合金在PEDOT:PSS基体中难于有效的分散[2]。未来可能的发展趋势是研究和开发制备Bi2Te3基合金/PEDOT:PSS纳米复合热电材料新的工艺,从而解决Bi2Te3基合金/PEDOT:PSS纳米复合热电材料制备过程中存在的上述两个问题,提高所制备材料的热电性能。通过对参考文献的进一步分析可知,目前制备Bi2Te3基合金/PEDOT:PSS纳米复合热电材料的一种有效方法是首先对Bi2Te3基合金纳米结构进行剥离,剥离后的Bi2Te3基合金纳米薄片可以在乙醇中有效分散,然后将分散在乙醇中的Bi2Te3基合金纳米薄片与PEDOT:PSS进行混合,最后通过旋涂法和浇注法制备Bi2Te3基合金/PEDOT:PSS纳米复合热电薄膜材料[2]。但是参考文献[2]目前只研究了Bi2Te3基合金纳米薄片的含量对Bi2Te3基合金/PEDOT:PSS复合热电薄膜材料电导率和Seebeck系数的影响规律。而关于Bi2Te3基合金纳米薄片的含量对Bi2Te3基合金纳米薄片/PEDOT:PSS复合热电薄膜材料热导率以及ZT值(ZT=S2σ/κT,S、σ、T和κ分别为Seebeck系数、电导率、热力学温度和热导率)的影响仍未有报道。因此开展此课题研究的创新点就是研究Bi2Te3基合金纳米薄片的含量对Bi2Te3基合金纳米薄片/PEDOT:PSS复合热电薄膜材料的热导率以及ZT值的影响规律。这就找到了Bi2Te3基合金/PEDOT:PSS纳米复合热电薄膜材料研究的突破口,为课题研究方案的制定提供了依据,为项目的顺利开展奠定理论基础。

三、制定详细的实验方案

在找到项目研究的突破口后,需要制定详细的实验方案。实验方案的设计过程中,要综合考虑各种因素对验结果的影响,比如:(1)影响Bi2Te3基合金纳米颗粒剥离成纳米薄片的主要因素;(2)Bi2Te3基合金纳米薄片/PEDOT:PSS复合热电薄膜材料制备工艺的探索;(3)Bi2Te3基合金纳米薄片/PEDOT:PSS复合热电薄膜材料中Bi2Te3基合金纳米薄片与PEDOT:PSS质量比的选择等。一般而言实验方案制备的越详细、各种影响因素考虑的越全面,后续的实验就会相对顺利一些。

四、按照实验方案开展实验

实验方案制定好以后,就到了实验阶段。通过严格执行所设计的实验方案来具体研究实验方案中制定的研究内容,重点研究Bi2Te3基基合金纳米薄片/PEDOT:PSS复合热电材料中Bi2Te3基合金纳米薄片的含量对于复合材料相组成、微观结构、载流子浓度和迁移率、热电性能的影响规律(电导率、热导率和Seebeck系数)等。当然在这一过程中也可能会遇到一些实验方案设计过程中未曾考虑到的新问题,这就需要根据所遇到的具体问题来重新调整实验方案,以保证实验方案的顺利完成。

五、实验数据的分析和总结

实验完成后,可以借助一些常用的软件对实验数据进行分析,与参考文献中报道的Bi2Te3基合金/PEDOT:PSS复合热电薄膜材料的电导率和Seebeck系数结果进行对比,分析Bi2Te3基合金纳米薄片/PEDOT:PSS复合热电薄膜材料中Bi2Te3基合金纳米薄片的含量对于复合材料热导率和ZT值的影响,并与已经报道的Bi2Te3基合金/PEDOT:PSS复合热电材料[2,3],以及其他类别的有机―无机热电材料(如:Bi2Te3基合金/聚苯胺[4]、石墨烯/聚苯胺[5]等)的性能进行比较。分析实验的效果、存在的不足、提出改进的方法、展示研究成果,形成实验报告或者撰写研究论文。

六、结语

对于材料专业的大学生来说,开展科学研究可以提高学生收集资料、阅读文献、归纳综述、分析具体问题、思维和动手能力,有利于巩固所学的理论知识。对于培养大学生的科研创新能力具有重要意义。希望本文能为材料专业大学生关于如何开展科学研究提供一些思路,更好地完成大学生创新项目课题的研究。

参考文献:

[1]毛健新,乜广弟,卢晓峰,高木,王威,王策.导电高分子及其纳米复合材料的热电性质[J].高等学校化学学报,2016,(37):213-220.

[2]Y.Du,et al.,ACS Appl.Mater.Interfaces,2014,6,5735.

[3]B.Zhang,et al.,ACS Appl.Mater.Interfaces,2010,2,3170.

[4]X.B.Zhao,et al.,Materials Letters, 2002,52,147.

[5]Y Du,et al.,Synthetic Metals,2012,161,2688.

收稿日期:2016-11-30

纳米复合材料范文12

 

关键词:纳米技术;新型建材;应用;前景

1 纳米涂料的应用

通常传统的涂料都存在悬浮稳定性差,耐老化、耐洗刷性差,光洁度不够等缺陷。而纳米涂料则能较好的解决这一问题,纳米涂料具有下述优越的性能:(1)具有很好的伸缩性,能够弥盖墙体细小裂缝,具有对微裂缝的自修复作用。(2)具有很好的防水性,抗异物粘附、沾污性能,抗碱、耐冲刷性。(3)具有除臭、杀菌、防尘以及隔热保温性能。(4)纳米涂料的色泽鲜艳柔和,手感柔和,漆膜平整,改善建筑的外观等。

虽然国内外对纳米涂料的研究还处在初步阶段,但是已在工程上得到了较广泛的应用,如北京纳美公司生产的纳米系列涂料已大量应用于北京建欣苑、建东苑等住宅区的外墙粉刷,效果良好。在首体改造工程中,使用纳米涂料1700吨,涂刷6万平方米。复旦大学教育部先进涂料工程研究中心的专家已研发出了“透明隔热玻璃涂料”。

2 纳米水泥的应用

普通水泥混凝土因其刚性较大而柔性较小,同时其自身也存在一些固有的缺陷,使其在使用过程中不可避免地产生开裂并破坏。为了解决这一问题就必须加速对具有特殊性能混凝土的研发,而纳米混凝土就能有效的解决这样问题,纳米混凝土,与普通混凝土相比,纳米混凝土的强度、硬度、抗老化性、耐久性等性能均有显著提高,同时还具有防水、吸声、吸收电磁波等性能,因而可用于一些特殊的建筑设施中(如国防设施)。通常在普通混凝土中加入纳米矿粉(纳米级SiO2、纳米级CaCO3)或者纳米金属粉末已达到纳米混凝土的性能,而且通过改变纳米材料的掺量还能配置出防水砂浆等。目前开发研制的纳米水泥材料包括纳米防水复合水泥,纳米敏感水泥、纳米环保复合水泥以及纳米隐身复合水泥。

纳米防水水泥是通过在水泥中添加XPM水泥外加剂的纳米材料而制成的,该纳米外加剂掺入水泥后,可以加快水泥诱导期和加速期的水化反应,改善水泥凝固的三维结构,同时提高水泥石的密实度,增强了防水性能。

纳米敏感水泥是在水泥中加入对周围环境变化十分敏感的纳米材料,从而达到改善水泥制品温敏、湿敏、气敏、力敏等性能。根据添加的敏感材料的不同可将纳米敏感水泥用于化工厂的建设、高速路面的铺设等。

纳米环保复合水泥是利用纳米材料的光催化功能,从而使水泥制品具有杀菌、除臭以及表面自清洁等功能。通常是选用TiO2作为纳米添加剂。

纳米隐身复合材料是通过使用具有吸收电磁波功能的纳米材料(纳米金属粉居多),在电磁波照射时,纳米材料的表面效应使得原子与电子运动加剧,促使电子能转化为热能,加强对电磁波的吸收,从何使材料能够在很宽的频带范围内避开雷达、红外光的侦查,这一材料常用于军事国防建筑等。

3 纳米玻璃的应用

普通玻璃在使用过程中会吸附空气中的有机物,形成难以清洗的有机污垢,同时,水在玻璃上易形成水雾,影响可见度和反光度。而通过在平板玻璃的两面镀制一层TiO2纳米薄膜形成的纳米玻璃,则能有效的解决上述缺陷,同时TiO2光催化剂在阳光作用下,可以分解甲醛、氨气等有害气体。此外纳米玻璃具有非常好的透光性以及机构强度。将这种玻璃用作屏幕玻璃、大厦玻璃、住宅玻璃等可免去麻烦的人工清洗过程。

4 纳米技术在陶瓷材料中的应用

陶瓷因其具有较好的耐高温以及抗腐蚀性以及良好的外观性能而在工程界得到了广泛的应用(如铺贴墙面的瓷砖),但是陶瓷易发生脆性破坏,因而在使用过程中也受到了一定的限制。使用纳米材料开发研制的纳米陶瓷则具有良好的塑性性能,能够吸收一定量的外来能量。在陶瓷基中加入纳米级的金属碳化物纤维可以大大提高陶瓷的强度,同时具有良好的抗烧蚀性,火箭喷气口的耐高温材料就选用纳米金属陶瓷作为耐高温材料。用纳米SiC、Si3N、ZnO、SiO2、TiO2、A12O3等制成的陶瓷材料具有高硬度、高韧性、高强度、耐磨性、低温超塑性、抗冷热疲劳等性能优点。纳米陶瓷将作为防腐、耐热、耐磨的新材料在更大的范围内改变材料的力学性质,具有非常广阔的应 5 纳米技术在防护材料中的应用

通常是在胶料中加入炭黑等以提高材料的防水性能,但这种材料的耐腐蚀性以及耐侯性较差,易老化,研制具有高强、耐腐蚀、抗老化性能的防水材料也是工程界一直在积极研究的问题,纳米防水材料能够很好满足上述要求,北京建筑科学研究院就成功的研制了具有较好耐老化性能的纳米防水卷材,该类防水卷材具有很好的强度、韧性、抗老化性以及光稳定性、热稳定性等。纳米防水卷材具有叫广泛的应用前景,如建筑顶面、地下室、卫生间、水利堤坝以及防潜工程等。

6 纳米保温材料

随着我国推行节能减排的方针,工程界也越来越注重建筑的保温节能性能,我国目前使用的比较多的仍是聚氨酯、石棉等传统隔热保温材料,这些材料在使用过程中容易产生一些对人体有害的物质,如石棉与纤维制品含有致癌物质,聚氨酯泡沫燃烧后释放有毒气体,而通过使用纳米材料开发研制的保温材料则能避免这些弊端,如以无机硅酸盐为基料,经高温高压纳米功能材料改性而成的保温材料不仅具有很好的保温效果,同时对人体也无损害,是一种绿色环保保温材料。

7 纳米技术在其粘合剂以及密封材料和润滑剂方面的应用

对于一些在深海中作业的结构以及其他特殊环境下工作的构件,它们对结构的密封性的要求非常高,已超过了普通粘合剂和密封剂所能满足的范围。国外通过在普通粘合剂和密封胶中添加纳米SiO2等添加剂,使粘合剂的粘结效果和密封胶的密封性能都大大提高。其工作机理是在纳米SiO2的表面包覆一层有机材料,使之具有永久性,将它添加到密封胶中很快形成一种硅石结构,即纳米SiO2形成网络结构的胶体流动,提高粘接效果,由于颗粒尺寸小,更增加了胶的密封性。大型建材机械等主机工作时的噪声达到上百分贝,用纳米材料制成的润滑剂,既能在物体表面形成半永久性的固态膜,产生根好的润滑作用,大大降低噪声,又能延长装备使用寿命,具有非常好的应用前景。