HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 纳米医学论文

纳米医学论文

时间:2023-02-08 01:13:59

纳米医学论文

纳米医学论文范文1

这是一个小型印刷厂车间,面积只有70平方米左右,不到两节地铁车厢那么大。车间有七名女性和一名男性工人,每天的工作是将一种白色涂料喷到有机玻璃板上。

不幸很快就降临在这些工人的身上:七名女工相继发病,其中两名女工去世。

在2009年9月号的《欧洲呼吸杂志》(European Respiratory Journal)上,首都医科大学附属朝阳医院(下称朝阳医院)医生宋玉果及其同事发表研究论文称,上述女工“所患的可能是‘一种与纳米材料有关的疾病’”。

这大概是全球首宗关于纳米颗粒可能致命的临床毒理病例报告。论文的发表,在国际学术界引发了一场小型“地震”。无论那些与纳米技术有关的学术会议,还是科学新闻网站和科学家博客,中国女工之死和纳米安全都是激烈争论的话题。

喷涂车间悲剧

从研究论文披露的情况看,七位女工的年龄在18岁至47岁之间,平均不到30岁,在车间工作的时间从5个月至13个月不等。患病之前,她们的身体健康状况良好。

2007年1月至2008年4月期间,这几位女工被送到朝阳医院职业病与中毒科救治。这个科室专业水准较高,其医生经常被派往中国各个地方,协助处理血铅超标、重金属污染等职业安全事件。

女工们的症状比较类似。所有病人的肺部都受到严重损害,并且有胸腔积液,脸上、手上和胳膊也都出现了严重的瘙痒皮疹。其中,有四位女工体内的器官组织还面临缺血缺氧的危险。

无论对于患者,还是对于医生,治疗过程都令人煎熬。胸腔积液反复出现,常用的治疗方法均告失效。

最终,一名19岁的病人在接受外科手术16天之后去世;另外一名29岁的病人在症状出现后的第21个月,死于呼吸衰竭。

负责诊断和治疗这些女工的,是朝阳医院职业病与中毒科副主任医师宋玉果。根据医院网站的介绍,他多年来从事尘肺、有毒化学物中毒的诊治和临床研究。

宋玉果及其同事开始追究女工们患病的原因,并将嫌疑对象锁定为那个印刷厂车间的工作环境。

该车间所使用的原料是一种象牙白色的聚合物材料――聚丙烯酸酯混合物。聚丙烯酸酯作为一种黏合剂,广泛运用于建筑、印刷和装修材料中,被认为毒性很低。不过,为了让材料更加结实和耐磨,制造商有时会加入硅、锌氧化物、二氧化钛等金属纳米颗粒。

1纳米等于1米的十亿分之一,大致相当于人头发丝直径的数万分之一。通常,粒径在100纳米以下的材料,均被称为纳米材料。

七名女工和一名男工被分为两组,每天工作8个至12个小时。工人们每天要将大约6000克聚丙烯酸酯混合物,用勺子涂到机器的底盘上;这些混合物随即被高压喷射装置喷涂在聚苯乙烯材质的有机玻璃板上;然后,有机玻璃板在75摄氏度至100摄氏度的温度下被加热烘干。

车间只有一扇门,没有窗户。喷射装置附带有一个燃气排气口,对喷涂过程中产生的烟雾起到一定的排除作用。

女工们发病以后,来自中国疾病预防控制中心、北京疾病预防控制中心、当地疾病预防控制中心的流行病学专家,以及朝阳医院的医生,对这家印刷厂的工作环境进行了调查。

在喷射装置燃气排气口的吸气口中,专家们找到了累积的尘埃粒子。女工们发病前五个月,燃气排气口发生了故障。由于室外温度很低,车间的门也经常被关闭。专家们推断,在这期间,车间内的空气流动非常缓慢甚至处于静止。

这些工人都是工厂附近的农民,没有任何职业安全卫生知识。她们所得到的惟一用来保护自己的工具,就是棉纱口罩。而且,她们工作时只是偶尔戴戴。

据工人们反映,在喷涂过程中,经常会有一些原料喷溅到他们的脸上和胳膊上。惟一的一名男性工人在工作三个多月后离开,并没有显示出任何症状。在其他车间工作的工人,其中包括女工们的亲属,也没有出现类似症状。

研究论文没有透露这家印刷厂的名称及其所在地区。在朝阳医院的办公室,宋玉果也谢绝了《财经》记者的采访。

女工之死谜团

在女工们的肺部和胸液中,均发现了直径约30纳米的颗粒。而这般尺寸和形态的颗粒,同样存在于她们接触的喷涂材料之中。

此外,女工们出现了罕见的非特异性间质性肺炎,以及奇特的肺部增生组织――异物肉芽肿等症状。这些症状与纳米材料毒理的动物实验结果相似。

宋玉果及其同事因此认为,很可能是纳米颗粒导致这些女工发病甚至死亡。

但不少专家对这一结论持有保留态度。

9月1日至3日,在北京举行的中国国际纳米科技会议上,多位专家提及宋玉果及其同事的论文。

美国纳米健康联盟(Alliance for NanoHealth)主席、得克萨斯大学医学中心教授毛罗法・拉利(Mauro Ferrari)告诉《财经》记者,这篇论文非常重要,但他不认同作者关于纳米颗粒导致工人患病和死亡的分析。

法拉利说,要确定纳米颗粒与疾病之间的关系,首先应该分析纳米颗粒的组分,确认这些颗粒来自工作环境;即便病人肺部的纳米颗粒来自工作环境,在没有对照试验的情况下,也很难证明这些纳米颗粒一定是女工患病的罪魁祸首。

他还强调,这家印刷厂的工作环境恶劣而封闭,有毒化学品和气体充斥其中,工人们又没有好的保护措施。这些因素对于工人患病和死亡究竟有怎样的作用,都值得推敲。

对于论文中的一个推论――纳米颗粒进入工人身体的途径是吸入和皮肤接触,中国科学院纳米生物效应与安全性重点实验室主任赵宇亮表示,这并不总是正确的。他强调,通过吸入方式进人体内是可能的,但是纳米颗粒穿过皮肤直接进入生物体内的证据还很少。

美国麻省大学洛厄尔分校健康与环境学院助理教授迪米特尔・贝罗(Dhimiter Bello)因故取消了行程,未能到北京参加此次学术会议。但他通过电邮对《财经》记者说,在工人肺部和工作环境中都发现纳米颗粒,只能说明纳米颗粒有可能是一个致病因素。实际上,从论文提供的信息来看,并不能排除其他的可能致病因素。例如,喷涂过程中用到的聚合物材料在高温下的降解产物,也可能是主要或者惟一造成女工患病的原因。

在贝罗看来,这场悲剧或许不应归咎于纳米颗粒,而应怪罪车间内原始的、不人道的工作条件,“这是一次警醒,无论(悲剧)是否与纳米颗粒相关,工作场所的暴露条件都应当被控制在安全范围内。在这方面,中国还有很长的路要走。”

美国加州大学洛杉矶分校纳米毒理研究中心主任安德烈・内奥教授(Andre Nel)也说,在这起事件中,工人们没有得到应有的生产安全保障,政府部门应该负起监督的责任,以保证生产过程中不会产生对人体和环境有害的物质。

实际上,论文本身也承认了研究存在局限:由于缺乏环境监测数据,无法弄清印刷厂车间纳米颗粒的浓度;纳米颗粒的组成也不清楚。

此外,令宋玉果及其同事疑惑的是,究竟是特定的纳米颗粒,还是所有纳米颗粒都有可能致病?如果的确是纳米颗粒导致那些女工患病,对其他在工作中也会接触纳米颗粒的工人来说,又意味着什么?

如今,关于女工之死的研究论文已经成为了纳米技术研究者们的一个热点话题。据《财经》记者了解,欧洲和美国还有科学家打算组成一个专家小组,到中国开展调研,并希望取到样品回去研究。

诱人前景与安全隐患

不管纳米颗粒是否被确认为几位女工悲惨命运的元凶,纳米技术的安全性问题都因此再度引发各界关注。

纳米技术正在走进人们的生活。从一桶涂料、一瓶防晒霜到一件衣服,都有可能用到纳米技术。

纳米材料颗粒小、表面积巨大,会显示出很多独特的物理化学性质,从而在电子、光学、磁学、能源化工、生物医学、环境保护等领域有巨大的应用前景。例如,很多纳米材料都可用作涂料,替代那些强毒性的化学物质;用碳纳米管等纳米材料改良电池,可以推动电动汽车的发展,使电力更持久等。

纽约一家名为“卢克斯研究”的市场分析公司称,2007年销售的纳米技术相关产品,价值约1470亿美元。到2015年,这一数字可能突破3万亿美元。

纳米技术在展现出诱人前景的同时,其安全性问题也进入了人们的视野。

随着纳米材料的大规模应用,研究人员和工人容易暴露在纳米颗粒浓度较大的实验室或生产车间之中。此外,普通公众也可能暴露在纳米颗粒之下:涂料、化妆品等产品中用到的纳米材料,可能在产品损坏或分解时释放。

这些纳米颗粒物可能经过呼吸道吸入、胃肠道摄入、药物注射等方式进入人体,并经过淋巴和血液循环,转运到全身各个器官。

根据多项流行病学研究,空气中的细颗粒物,尤其是纳米级别的颗粒物,浓度的大量增加会导致死亡率的增加。伦敦大雾曾经导致居民大量死亡,就是一个被经常引用的案例。

那么,人造的纳米材料进入人体后,是否会导致特殊的生物效应,并对人体健康构成危害呢?从理论上说,纳米物质由于尺寸小,与常规物质相比更容易透过人体的各道屏障;由于表面积大,也可能有更多毒害人体的方式。

朝阳医院的宋玉果在8月31日《健康报》发表文章说,相关的动物实验研究发现,许多纳米物质具有明显的毒性,其中研究较多的为碳纳米管、纳米二氧化钛等。一些纳米物质还被认为可致动物肺脏、肝脏、肾脏和血液系统等损伤。

对于与纳米物质相关的疾病,宋玉果称之为“纳米相关物质疾病”。当然,他也表示,公众不必为纳米物质相关疾病感到恐慌,不是所有纳米颗粒物都有毒性。

动物毒理性实验的结果,也不能简单地推到人的身上。但由于科学界对纳米安全性的研究刚刚开始,几乎没有任何相关人体毒理性资料――这也是宋玉果及其同事的论文引起国际科学界高度关注的一个原因。

中国科学院纳米生物效应与安全性重点实验室主任赵宇亮告诉《财经》记者,目前开展过安全性研究的纳米材料只有十几种,还非常有限。但他相信,随着研究队伍的壮大和研究投入的加大,将来必定可以从大量的数据积累中寻找到一些规律。

在国际上,纳米安全性研究的热潮大约始于2003年。《科学》和《自然》等著名学术杂志纷纷发表文章,探讨纳米材料与纳米技术的安全问题:纳米颗粒对人体健康、自然环境和社会安全等是否有潜在的负面影响。

这之后,各国明显增加了纳米安全性方面的研究。美国的国家纳米技术计划(NNI)将总预算的11%投入纳米健康与环境研究。欧盟每年支持三个左右与此相关的项目,每个项目的经费规模在300万至500万欧元之间,而欧盟各个国家还有自己国内支持的纳米安全性项目。

中国在极力推进纳米技术研究和产业化的同时,也开展了纳米安全性的研究。其中,中国科学院在2001年就开始筹建纳米生物效应与安全性实验室。科技部在2006年启动了为期五年的国家重点基础研究发展计划(即“973”计划)项目“人造纳米材料的生物安全性研究及解决方案探索”,经费2500万元,首席科学家由赵宇亮担任。

不过,赵宇亮告诉《财经》记者,与美国和欧盟相比,中国在纳米安全性研究上的投入只是“一个零头”。

政治决策与公共参与

中国科学家在纳米安全性方面的研究工作,得到了国际同行的认可。其中,在每年召开的与纳米毒理学相关的国际会议上,几乎都会邀请中国科学家作大会报告。赵宇亮还与其他科学家共同主编了第一本纳米毒理学英文专著。美国纳米健康联盟主席法拉利称,中国科学家是纳米毒理学研究领域的领导者之一。

不过,令赵宇亮感到尴尬的是,美国国家纳米技术协调办公室的官员曾经问他,包括美国、欧盟、英国、日本等很多国家的相关管理部门,都发表了对于纳米技术安全性的调研报告、方针和策略,为什么中国没有?对此,赵宇亮不知如何回答是好。

在美国和欧盟,纳米技术及其安全性已经成为政治家们关心的话题之一。它们的环保部门、国家科学与技术委员会,以及其他政府研究机构,会通过白皮书等文件形式,发表政府层面对于纳米安全性问题的见解。

其中,2001年,美国在国家科学技术委员会之下建立了国家纳米技术协调办公室,负责协调政府层面之间的纳米研究计划。而纳米研究项目的成果,会通过这个办公室反馈给其他政府机构,帮助科学研究去影响政府决策。

2009年3月,美国食品药品监督管理局(FDA)还了一份有关纳米技术的合作倡议。该局将与纳米健康联盟旗下的八个研究机构合作,以加快建立保障纳米医疗产品安全可靠的有效体系。法拉利告诉《财经》记者,在实验室研究结果与安全性评估的关联,以及纳米技术相关药物的审批等方面,美国食品药品监督管理局都做了很多工作。

相比之下,纳米安全性在中国似乎局限于科学研究的阶段,政府部门仍然保持沉默。

对于纳米技术的研究和产业化,各国都在积极支持。其原因正如美国《环境健康展望》杂志所称,科学界普遍认为,纳米材料和纳米技术对于社会是十分有益的,能够提供更好的药物、更强更轻的产品、对环境更友好的能源和环境技术。

与此同时,为了获得公众对于纳米技术发展的支持,各国也需要在纳米安全性方面进行更多的研究,同时鼓励公众参与。在中国纳米国际科技会议的闭幕式上,法拉利也特地呼吁加大公众在纳米安全性研究上的参与程度。

实际上,关于纳米技术发展的“风险预防”原则,在欧洲和美国等地正深入人心――人们希望在纳米技术等新技术的风险出现之前,尽可能地提前进行防范和干预。而公众及早参与到纳米技术研究和政策的讨论,是“风险预防”实践的关键环节之一。

英国杜伦大学风险研究所负责人菲尔・麦克纳顿(Phil Macnaghten)教授告诉《财经》记者,要想避免纳米技术重蹈转基因技术的覆辙,让公众从“上游”参与讨论影响纳米技术的研究和政策,或许是一个有效的办法。如果等到技术发展之后再让公众在“下游”参与,可能为时已晚,“很难改变公众业已形成的印象和认识”。

纳米医学论文范文2

关键词:纳米材料;纳米安全性;科学发展

一、纳米技术与纳米材料简介

纳米(nano)本是一个长度单位,1纳米为10-9米,即十亿分之一米。大部分原子和分子的尺寸约为0.1-100nm,当很多宏观物质的尺度降低到纳米量级时会表现出很多与我们平时所观察到的不同的现象,所以研究材料在0.1-100nm尺度范围内的性质和应用就形成了当前非常热门的纳米科学与技术。

90年代末,纳米技术在我国也有着快速发展。纳米科技与以往的科技领域有所不同,它涉及物理学、化学、生物学和电子学等科学技术领域,并引发核派生了纳米物理学、纳米化学、纳米生物学和纳米材料学等诸多新领域。其中纳米材料学是研究纳米材料的设计、制备、性能和应用的一门纳米应用科学[1]。如纳米尺度的结构材料能在不改变物质化学成分的情况下,通过调节器纳米尺寸的大小来控制材料的基本性质,如熔点、磁性、强度和颜色等。纳米材料是纳米科技的基础,只有提高纳米材料的性能才能实现需要的功能。所以,纳米材料在整个纳米产业中占有很大的市场份额。

二、纳米材料的健康效应

1、正面效应:纳米医学

纳米材料已经或正在走进我们生活的诸多方面,如生物医学领域的纳米制药和疾病监测的方面。因为纳米材料尺度小、活性强,用纳米材料制成的药物可以准确的杀死病变细胞不会对健康细胞产生影响,这是常规药物所不能实现的。纳米生物芯片技术将传统的生物样品检测实验室集成到一个芯片上来,大大增强了检测速度和精度。

纳米材料技术与生物技术结合为生物医学领域带来了全新的视野,纳米材料也医药学方面和生物芯片方面取得了显著的成绩。随着纳米材料在生物医学领域更为广泛的应用,疾病诊断、临床治疗等将会变得更有效率,治疗费用也会随着纳米技术的不断成熟又逐步降低,从而我们的生命健康保障将会得到很大提高。

2、负面效应:纳米毒理学

尽管纳米材料在生物医学领域产生的革命性的变化,但是纳米材料的安全性问题同时也非常值得我们关注。任何一门技术都具有双面性,即有有利的一面也会存在有害的一面,纳米材料也不例外。

对纳米材料安全性的研究工作最早的是英国牛津大学和蒙特利尔大学的科学家在1997年发现防晒霜中的TiO2和ZnO纳米颗粒会破坏皮肤细胞的DNA。直到2003年3月,美国化学会年会上的有关纳米颗粒对生物可能存在危害的报告才引起了世界对纳米材料安全性的广泛关注。纽约罗切斯特大学的研究者让大鼠在含有粒径为20 nm 的聚四氟乙烯(特氟龙)颗粒的空气中生活15分钟,大多数实验大鼠在随后4小时内死亡;而另一组生活在含120 nm特氟龙颗粒的空气中的大鼠,则安然无恙[3]。

三、纳米材料负面效应的解决方法

1、各国政府的对策和行动

20世纪末才发展起来的纳米科技正在逐步完善,已经应用于关系国家安全和国民经济的许多重要领域。21世纪是科技迅速发展的时代,纳米材料已经应用在众多国防和军事领域,如美国B-2隐形轰炸机的表面涂层材料,新型的特种兵作战服。而且,纳米材料作为其他行业的基础,为传统的制造业带来了新的生机,纳米材料有着巨大的市场前景。纳米材料标准化方面引起了纳米研究大国的激烈竞争,纳米材料的安全性问题正是竞争的交点。为了率先占领纳米科技的未来市场制定纳米材料标准,纳米材料的安全性问题更显得非常重要。

2、结合我国国情的策略

我国的纳米材料科技研究起步较早,与国际领先水平差距不大。纳米材料在化妆品、涂料、纺织业、汽车工业和半导体产业都有着很好的市场前景。就我国纳米材料市场来看,其主要产品为金属纳米颗粒材料、纳米氧化物、纳米碳化物和半导体纳米材料,如银、铜和铁等纳米颗粒材料,纳米氧化锌,碳纳米管和纳米钛酸钡等。2007年出版了纳米毒理学领域第一本专著《Nanotoxicology》。此外,北京大学化学生物学系、北京大学医学部、中国科学院武汉分院、中国医学科学院、中国科学院化学所、军事医学科学院等也都成立的纳米材料安全性方面的实验室开展研究工作。白春礼院士在第243次香山科学会议上指出:"任何技术都是有两面性的,纳米技术也可能同样是把双刃剑。正确的态度是吸取20世纪科学技术发展的经验和教训,以科学发展观为指导,在发展纳米技术的同时,同步开展其安全性的研究,使纳米技术有可能成为第一个在其可能产生负面效应之前就已经过认真研究,引起广泛重视,并最终能安全造福人类的新技术"[3]。

四、科学发展营造绿色纳米世界

纳米材料研究和产业的发展要符合科学发展观的内容,要坚持以人为本,全面发展和可持续性发展。纳米材料安全性的题不仅关系到产业的发展和国家的利益,更关系到人民群众的生命健康。新兴的纳米材料科技要为人民所用,而不是要危害人民的健康。纳米材料产业的发展必将成为我国经济的新的增长点,也会带动制造业、国防产业等领域的发展。健康、绿色的纳米材料是纳米材料科学发展的最基本前提。坚持纳米材料的科学发展观,促进纳米材料、人与社会的和谐发展,实现经济发展、科技发展和人口、资源、环境的协调发展[9]。

当前,传统行业里的"中国制成"已经在世界范围内站住脚,但是在当前世界的利润分配中,制造环节的利润越来越低而且产生巨大的资源消耗和环境破坏,取而代之的是研发和服务环节的利润所占比例越来越大,这就是著名的"微笑曲线"。

我国著名科学家钱学森曾说:"纳米和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将是21世纪又一次产业革命[1]。"纳米材料的安全性问题是困扰纳米科技进一步走进人生生活的关键,只有解决好纳米技术也人类发展的关系,营造一个绿色纳米科技发展环境,人类才能真正的享受到纳米科技的福音。

参考文献:

[1]徐云龙,赵崇军,钱秀珍.纳米材料科学概论[M].上海:华东理工大学出版社,2008:21.

[2]贾宝贤,李文卓.微纳米科学技术导论[M].北京:化学工业出版社,2007:3.

[3]赵宇亮,赵峰,叶昶.纳米尺度物质的生物环境效应与纳米安全性[J].中国基础科学科学前沿,2005:19-23.

[4]赵宇亮,白春礼.纳米安全性:纳米材料的安全效应[J].世界科学技术,2005,(4).

[5]汪冰,丰伟悦,赵宇亮,邢更妹,柴之芳.纳米材料生物效应及其毒理学研究进展[J].中国科学,2005,(1).

[6]Y.Song, X.Li, X. Du.Exposure to namoparticles is related to pleural effusion, pulmonary fibrosis and granuloma[J].Eur Respir,2009,34:559-567.

[7]Service R F.Nanomaterials show signs of toxicity[J].Science,2003,300,(11):243.

[8]张立德.我国纳米材料研究的现状[J].中国粉体技术,2001,(5).

纳米医学论文范文3

【关键词】稀土上转换;生物监测;生物成像;疾病治疗;生物医学

0前言生物医学是生物学与医学理论知识与技能相互影响之后形成的学科,主要是通过应用生物学有关技术解决生命科学及医学方面所存在的问题。生物医学能够让人们对于生命成长过程及活动规律更加了解,进而发现疾病发生与发展过程,这样能够为疾病治疗提供新的方向。在生物医学研究中,在对于生命现象研究中经常使用化学探针,其中荧光材料是常见化学探针。但是传统荧光材料具有一定缺陷,对于生命体具有一定损害。稀土上转换材料是一种新型材料,对于生命体损害较小,并且还能够多重标记,使用寿命较长,是生物医学研究中的理想性材料。

1生物监测领域内的应用

1.1基于稀土上转换纳米材料的检测

稀土上转换材料光源是由近红外光激光器发出,能够降低检测对于细胞或者是组织的敢要。在1999年科研人员第一次制备出上转换荧光材料,并且在前列腺组织检测中应用功能,之后上转换纳米材料开始逐渐被广泛应用到生物检测中。在2013年,陈学元课题小组提出了一种新型上转换生物检测方式,利用将Yb与Er结合在上转换纳米颗粒中,对于抗生物素蛋白与肿瘤进行检测。多功能酶标仪能够发现上转换纳米颗粒所发射出来的信号,对于生物分子浓度进行量化分析。本文在对于稀土上环环纳米材料研究中,结合核酸适配体,通过潜在指纹检测方式,利用水热法合成,让上转换纳米材料表面拥有一层油酸,油酸不仅仅能够承担起活性剂的功能,还能够让让聚丙烯酸转移到纳米颗粒上面,进而得到的上转换纳米颗粒不仅仅能够溶解在水中,还能够通过据活性分子与溶菌酶核算相匹配。核酸在对适配体高效结合中,能够在近红外光器下发出可见光源,所呈现出的指纹图像能够在微焦镜头下被记录下来,这种潜指纹检测方式不仅仅能够对于不同人指纹进行检测,还能够对不同状态下人指纹检测。潜指纹内不仅仅具有自身所遗留下来的分泌物,还具有一定化学物质,能够高效应用在刑事侦查上面[1]。

1.2基于荧光共振能量转移的检测

上转换纳米材料的荧光共振能量转移分析技术是被著名研究人员kuningas所提出的,并且能够抗生蛋白链菌作为能量源头,对于生物素进行高效率的检测,同时在UC-FRET上面广泛应用。贵金属纳米颗粒表面具有等离子体共振特点,并且消光系数较高,这些材料在应用到上转换纳米材料中,能够有效提高检测过程中受到背景荧光的干扰,提高检测精准性,因此贵金属纳米颗粒经常被称之为能量受体,在生物检测中广泛应用[2]。

2生物成像领域内的应用

2.1体内深层组织的荧光成像

稀土上转换纳米材料所使用的光源在组织内部拥有良好的穿透性,并且生命体不会受到荧光的损害,结果检测是生命体自身所携带的荧光不会干扰结果,因此稀土上转换纳米材料可以说是生物医学成像分析中的最佳材料。研究人员通过使用PEI覆盖纳米颗粒的方式,首次对于动物生命体进行了生物成像检测,检测结果表示稀土上转换材料与传统量子点,在对于动物体内深层次成像上面具有显著优势。为了能够提高稀土上转换材料在生命体内的穿透深度,提高成像精确度,需要对于稀土上转换纳米材料可见光波长调节到红光去内,这样所发出出来的波长散射及吸收都较低,也不容易受到生命体自身所携带的荧光干扰,对于体内深层组织荧光成像具有重要作用。多路复用成像是现在对于生物体成像上面应用最为广泛的一种方法,伴随着稀土上转换材料不断深入性建设及开发,各种元素在稀土上转换内应用也更加精准,并且能够呈现出多个发射峰[3]。

2.2双模态成像

现在对于上转换荧光成像与MRI结婚研究最为光热点课题,就是构建双模态成像探针,并且将探针应用到生物医学领域内。荧光成像能够显著提高生物成像的精准度与灵敏度,并且对于生命体组织穿透深浅度能够调节。于荧光成像相比较,MRI能够有效提高对于生命体内的分辨率,但是所拥有的灵敏度较低,因此需要解决荧光成像与核磁共振成像的优点,所形成的双模态探针不仅仅拥有较高的灵敏度,分辨率与穿透深度能够显著提高。近几年,对于双模态成像探针的稀土上转换纳米材料制备方面已经进行了一些研究。最为常见的有两种方式,第一种就是分子的功能化,也就是将配合物等造影剂因公到上转换纳米颗粒表面上,进而形成双模态成像复合探针;第二种就是磁性材料与上转换纳米材料的复合[4]。

3结论

本文对于稀土上转换纳米材料在生物医学领域上的应用功能进行了简单分析,也就是生物检测与生物成像上的应用。稀土上转换纳米材料在实际应用中由于能够有效降低生物体自身荧光对于检测的干扰,能够显著提高检测的灵敏性,并且还能够将各种成像方式应用功能在探针上面,在药物输送及治疗上面拥有良好的前景。但是稀土上转换纳米材料在生物医学内应用还面对较多的挑战。

【参考文献】

[1]单爽,吴昊,谭明乾,马小军.稀土上转换荧光纳米材料的制备与生物应用[J].生物化学与生物物理进展,2013,10:925-934.

[2]张瑞锐,高源,唐波.稀土掺杂氟化物纳米材料的上转换发光特征及其生物应用[J].分析科学学报,2010,03:353-357.

纳米医学论文范文4

1、各国竞相出台纳米科技发展战略和计划

由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了部级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。

(1)发达国家和地区雄心勃勃

为了抢占纳米科技的先机,美国早在2000年就率先制定了部级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。

日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。

欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。

(2)新兴工业化经济体瞄准先机

意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。

中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。

(3)发展中大国奋力赶超

综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。

2、纳米科技研发投入一路攀升

纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。

美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。

日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。

在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。

中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。

就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。

另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。

3、世界各国纳米科技发展各有千秋

各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。

(1)在纳米科技论文方面日、德、中三国不相上下

根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。

2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。

在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。

另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。(2)在申请纳米技术发明专利方面美国独占鳌头

据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。

专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。

(3)就整体而言纳米科技大国各有所长

美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。

虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。

日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。

在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。

日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。

日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。

欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。

中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。

4、纳米技术产业化步伐加快

目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。

美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。

美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。

日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。

欧盟于2003年建立纳米技术工业平台,推动纳米技术在欧盟成员国的应用。欧盟委员会指出:建立纳米技术工业平台的目的是使工程师、材料学家、医疗研究人员、生物学家、物理学家和化学家能够协同作战,把纳米技术应用到信息技术、化妆品、化学产品和运输领域,生产出更清洁、更安全、更持久和更“聪明”的产品,同时减少能源消耗和垃圾。欧盟希望通过建立纳米技术工业平台和增加纳米技术研究投资使其在纳米技术方面尽快赶上美国。

纳米医学论文范文5

摘要:纳米技术为人类带来的便利:纳米技术的发展,不仅可以在治理环境污染方面起到很好的作用,对于有害气体,污水处理,而且对于磁辐射,废弃物等治理方面起到了很大的作用,但是随着纳米技术的逐步发展,人类一味的对技术产生依赖心理,在这种情况下我们要用自己的判断力,增加自己的基本素养,具备独立思维的能力,合理的运用科技的发展为人类服务。

关键词:纳米技术 污水处理 依赖技术 基本素养

中图分类号:N031 文献标识码:A 文章编号:1006-026X(2013)10-0000-02

1.纳米技术的定义

纳米技术是一种创新的技术,它在非常小的范围之内之内,来进行对原子,分子的研究,并利用其来进行发展和创新的一门技术,纳米机器人,纳米马桶,人类通过电子显微镜看到的微观的人体细胞,病毒等等。利用纳米技术制作的材料又与我们经常使用的材料有很大的区别,它发展了吸附等的一系列功能。那么这种新型材料的出现,也将会利用到人类生活的各个方面,带来了技术创新。

2.纳米技术为人类带来的便利

纳米技术的发展为科学技术的发展带动了新的改革,纳米技术的发展也推动了医学、艺术等方面的发展。医学中产生了光学传感设备,对于骨质修复作用产生了重要的作用,同时纳米技术在药物输送方面产生了重要作用,纳米技术在艺术层面也产生了重要的影响,纳米画等作品。纳米技术不仅从技术层面关心人类,而且从人的综合状态中予以提升。

2.1 纳米技术带来了科技层面的改革

例如,纳米技术制作的微型器械,按照人类的操作任意运动,将微小的颗粒,划分成原子或者分子,再按照自己的想法任意拼接,这些器械不仅可以按照人类的想法任意工作,而且具有自我还原的能力。纳米材料是一种新型的材料,这也体现了从认识―实践―认识的客观规律。人类之所以能制作出纳米仪器,利用纳米材料的主要原因是人类对于纳米世界认识的比较深入全面,然后再利用纳米材料制作出纳米设备,这也是令一个再认识―实践―认识的过程,推动了从不断认识到实践的过程,体现出了发展是靠不断运动的哲学道理。

2.2 纳米技术体现了物质和意识的关系

物质决定意识,意识对物质有反作用。人类推动了纳米材料的发展,最主要的原因在于人类对纳米世界有了非常客观的认识,了解了它的运动发展规律,通过人类对于纳米世界的学习和研究,来创造出纳米材料,而这种材料的创造体现了物质决定意识,意识对物质起到了发作用。

2.3 纳米技术同时体现了由量变到质变的一个过程

物质的质变有两种来源,一种形式是量变达到一定程度就会产生质变,质变的另一种形式就是在总量不变的前提下,内部组织自己行的排列与组合,从而产生质变,纳米技术一方面是利用纳米结构的特点而生产的一种纳米材料,另一种就是利用原子,分子中间的距离变化,重新组合,而产生的质变生产的纳米材料,这就体现了由量变到质变的过程,

2.4 纳米技术加强了人们对于排列结构的认识

原子,或分子之间的距离,位置不同就会形成新的不同的物质,纳米技术也就是利用了这一特点,而形成的技术。纳米技术完成了从生物到非生物的跨越,在医学上生产出新的微型仪器,置放在人体中代替,或者弥补人体某些部分脏器的功能,通过改变人体细胞的组织结构,利用纳米技术孕育出新的生命,

3.纳米技术带来的消极影响

纳米就会造成人类社会的危害,人类的想象和发明没有边界,纳米技术的产生就是对原子分子进行重新的排列组合,在这种非常方便的状况下,纳米技术也会生产出任何东西,这是一件可怕的事情,在这种没有节制的的状态下,纳米技术就像病毒一样无限蔓延开来,可以想象一下,我们周围到处存在着纳米仪器,有有利于人类发展的仪器设备,医药用品,也有限制人类发展的纳米病毒,学生利用纳米仪器来应付考试,小偷利用纳米仪器进行偷窃,人人都有纳米设备防身,这是一件多么可怕的事情。

人类如果过度依赖技术,就会将人类和技术之间的关系发生改变,不是技术为人类服务,而是人类对技术的崇拜,人的思想会随着发生改变,产生混乱和偏执,基本理论的缺失。

技术会导致人缺乏用自己的思维,一味的对技术产生依赖心理。有些观点认为纳米技术可以解决任何问题,此观点认为,所有的物质存在方式都是按照自己的规律存在的,万事万物的存在都有自己的规则,相互之间也有自己的的特点,遵循着某种法则,依照纳米技术的原理,人类社会的存在方式也可以任意组合,相互之间可以打乱,再进行新的排列组合,有的观点认为,人的思维,与任何一种社会存在进行排列组合,所有的存在都可以依照纳米技术的存在方式来进行发展,有机界和无机界,非生物和生物,任何物种都可以排列组合,有些组合还没有实现,得依据纳米技术的发展状况,需要进一步学习研究。更有甚者认为人的思维是由大脑控制的,为了改变人的思维方式完全可以像纳米技术那样,将人的大脑细胞与大脑结构重新进行排列组合,这种思想是非常可怕的。

依照这种推论,我们要想让刚种的树苗,瞬间长大,完全可以改变它内部细胞生长结构,要想让刚出生的婴儿长大,改变他的细胞排列结构,要想让养的家禽快速长大,只要改变体内细胞的排列结构,这是一件多么可怕的事情,况且这种言论还没有成立,纳米技术的无限制发展就会对人类社会带来危害,使人的思维发生错乱,

这也是一种拜物的想法,一味的抬高技术的发展,而降低了人的主观能动性,人服务于技术,技术是最高的物质,失去了人在社会中的主导地位,虽然这样的想法没有办法去证明它的合理性,但也很难证明它的不合理性,但是能够确定的是,如果按照这种状况发展下去,人类社会的发展将会被阻挠。

4.面对纳米技术的优劣是该如何解决

根据纳米技术的发展而产生的一些消极理论,我们必须做一些考虑,针对性的提出一些意见,来限制其肆意发展。阻止其危害人类社会。纳米技术的发展一方面促进了人类社会的发展,为人类的医学,艺术,技术各个方面提供了积极地影响,而另一方面纳米技术的肆意发展又导致了人的异化,对人类社会的发展产生了阻碍,这种现象也是不可避免的,事物的发展总是存在这两面的,如果利大于弊,它就是正面的,可继续发展的,如果弊大于利,就要引起人们的反思,那么从纳米技术的发展状况来看,它更多地是造福人类,但是在它为人类带来方便的同时又对社会的发展产生了阻碍。对于这一利大于弊的现状,针对于它的利弊我们一方面要改变人的观念发扬正面的力量;另一方面,应该采取一些相关的政策措施,针对性的阻碍它的负面影响。

4.1 改变人们的观念发扬正面力量

在科技不断发展的今天,从人的本身开始,从知识文化层面,提高人本身的素养,对科学技术重新认识,树立科学的文化精神。只有这样,当新的的技术出现时,就不会出现违背科学文化而出现的不合于人的伦理道德的事情,人类尊重科学知识,但不盲目崇拜,对科学技术的态度,要合理保护。只有这种科学知识观念扎根在人的脑海中,任何消极的观念都不会滋生,另一方面,科学技术的发展的最要的目的,是以为人类共同利益而服务的,我们应该分出什么任务是共同的,这就需要对人类自身修养的提高与丰富,当面对共同利益时,联合起来,共同发展,当科学技术不符合人的共同利益时,人的自我修养自我意识,就可以提醒自己,科学技术的发展危害到人的共同利益时,要知道杜绝其发展,人的思想也是一步一步完善起来的,科学技术也在发展的阶段,虽然人类很难预测科技发展的后果,但由于人类有基本的科学素养,基本的科学文化,人类在面临科学发展的时候,最基本要做到的是科学技术的发展要与人类社会的发展,相互协调。

科学技术是一种被人类用来创造的东西,是人类达到某种目的的手段或者媒介,是人类可以掌控的东西,在这个时候就对创造者有要求,创作发明者本着为人类共同利益的原则,选择性的发展科学技术哲学,纳米技术也一样,当它符合人的共同利益的时候我们大力发展,当它没有边界肆意发展,为社会的发展总成阻碍,危害人类的共同利益,违反公共道德,反人类的基本素养,创造者就要摒弃它,限制其发展,当然在不同的年代,各个国家对于科学技术发展,纳米技术的发展的衡量标准是不一样的,在这个时候,首先纳米技术的发展要符合当时,符合国家的需求,符合人们的共同利益,不能超越人类的道德底线,不同年代,不同国家的国情,科学技术的发展,要和当时国家的人们素质,国庆的发展相互协调,整体性推动人类发展的历史进程。始终不能违反人类的共同需求,和人性发展的基本素质的本质要求。

4.2 纳米技术的发展应从政治、教育、法律等方面来约束和规范

从政治方面国家应该出抬相应的政策引导纳米技术的发展朝向符合国家利益,人民根本利益的方向发展,明确规定杜绝哪些科学技术的发展。最大化的实现人民根本利益的。要杜绝不良技术的发展滋生,不仅仅要依靠政策的导向,严重的情节要依靠法律的武器,彻底消灭不符合人类发展规律的科技发展,有些人为了自己私利,不顾人类发展的根本利益,利用科学技术,发展生产一些危害人类的利益,危害社会健康的一些科技,在这种情况之下,国家的法律应该做出明确的规定,对于这类,危害人类,危害社会发展的行为,予以法律的制裁。目前我们的国家正处于发展中的阶段,以上说的政策导向。和法律法规还需要一个发展过程,科学技术,尤其是纳米技术的发展是一个新型的事物,人类对它的了解是一个非常模糊的状态,所以难免会造成一些违背大众基本文化原则的事情,所以人类要树立这种科技发展的文化观,在每朝每代,社会舆论,难免是人类发展的一个催化剂,我们应该树立正确的舆论导向,人人心里树立正确的和意识,引导科学技术从正确的方向发展,当科学技术,违背大众舆论的时候,人类要积极站出来,对不良的发展想象造成压力,时刻朝向正确健康的方向发展。

结语:纳米技术是一种新型的科学技术,是科技发展的一场革命,它将人类带进了另一个新的先进的世界,它的发展造福了大众,另一个新的光明的世界已经到来,任何事物的发展都有双层的利害关系,纳米技术的发展也如此,人类不能被异化,要树立对科学技术发展的认识和基本素养,并通过政治、文化、法律等一列的约束和导向,使科学技术朝正确的方向发展,造福人类。

参考文献:

[1]阵垮泉.纳米科技探索[M].北京:清华大学出版社,2002.

[2]孙超.纳米技术带来的哲学思考[J].安徽农业大学学报(社会科学版):2002(61)

[3]郝春城等.纳米科技及纳米材料发展的哲学思考[J].青岛化工学院学报(社会科学版):1999(3)1.

[4]吴文新.科学技术应成为上帝吗?[J].自然辩证法研究:2000(11).

[5]王秀丽,王德胜.纳米技术的哲学价值[J].自然辩证法研究:2006,22(4)61-64.

纳米医学论文范文6

【关键词】药物 制剂 新技术

药物制剂在医药学及药物制造工业中都占据着重要地位。在我国的长期医疗保健事业的发展中,我们不断引进先进的药物制剂新技术,来促进药物制剂质量、作用的提高和完善。当然,随着各种边缘学科甚至自然科学的渗透,药物制剂也发生了深刻的变化,新技术的发展和应用是药物制剂必须面对的课题。本文简单概述了几种新技术在药物制剂中的应用(以中药制剂为例)。

一、几种新技术在药物制剂中的应用,以中药制剂为例

(一)纳米技术在药物制剂中的应用。

纳米技术在中药制剂中已经取得了重大突破,纳米中药也获得了巨大成就,主要应用于:病理学诊断、癌症早期诊断、遗传诊断、器官移植、基因治疗、纳米机器人治疗疾病等。纳米中药的含义是:粒径小于100nm的有效的,中药成份、部位、原药以及复方制剂。纳米技术在中药制剂的应用解决了中药的毒副作用、时效性慢、溶解性能差、生物利用度等问题,填补了我国药物现代化、突破性、原创性技术平台的空缺。纳米中药微囊是纳米技术应用到中药领域的作品,为广大患者带来了福音。但是,纳米技术是一把双刃剑。纳米在常温下,由于布朗运动,使得它悬浮在液体或空间之中,进而通过人体的呼吸系统、皮肤、毛囊、甚至五官进入到病患体内,因此,它的危害要比粉尘的危害大,所以,对待纳米技术在中药制剂上的应用我们要一分为二,用严谨、科学的态度来解读。

(二)中药提取浓缩技术在中药制剂中的应用。

我国的中药提取应用技术的发展,呈:从静态到动态、从单元设备到多缸连续、蒸馏芳香性成分。其中最新被推广应用的逆流缸连续提取技术、超临界流体萃取技术及药酒恒温循环提取技术,简称为:(SFE)在近年来被许多诸如:美国、德国、日本等国家所关注并重视,并且已经归入到其国家的食品医药工业体系之中了,在其国家得到了大力发展。20世纪70年代的提取技术一般采用:从咖啡中提取咖啡因、从啤酒花中提取啤酒花精以及从烟草中提取尼古丁,而20世纪90年代至今,提取技术采用的是:从红花中提取红花苷及脂苷、从月见草中提取月见草油、从长春花中提取长春花碱、从沙荆中提取沙荆油,这种在临界状态下提取方式已经被广泛应用于制药工业中。

浓缩技术是药物制剂生产的重要工序。随着社会经济的发展,人们对药物生产的质量提出了更高的要求,促使中药制剂不断开发了高效、剂量小、毒副作用小且易被患者服用的药品,正因如此,薄膜式、反渗透法浓缩以及离心薄膜式重要提取液技术得到大力发展且被广大患者认可。

(三)脂质体技术在中药制剂中的应用。

脂质体属于一种靶向给药系统、定向药物载体的新型药物制剂。它能够改变被包封药物的内在分布,因为它具有类细胞结构,主要通过网状内皮系统激活的自身免疫机能进入病患者的体内,其给予的药物主要蓄积在肝、脾、骨髓、肺等组织器官中,从而降低药物的毒性、减少药物用量以及提高药物治疗指数。脂质体具有生物膜特性,能够应用于:疾病的诊断和治疗、生物物理、免疫研究、生化学、免疫诊断学等诸多领域。

脂质体技术的研究要从邓英杰说起,邓英杰等研究人士首先研究并制成了黄氏制成脂质体,从而提高了黄氏多糖脂质体的稳定性并且增加了其免疫活性。总之,脂质体技术的应用成为了目前药物制剂研究的新动向。

(四)中药生物增效技术在中药制剂中的应用。

中药生物增效技术的理论依据是;在生物酶工程技术的基础上,融合四大前沿领域,即:生物酶工程、基因工程、生物医药工程、人体科学,以天然野生的动植物作为基本的药液提取原料,在加以结合传统的中医药理论进行生物技术加工,从而达到增效。

举个例子:背景梵事生物技术研究所采用中草生物增效技术,对中草药的加工进行了探索,主要应用于各类水解酶和部分工具酶的结构重组。

中草生物增效技术主要做到:百分百的利用原材料,节约能源,降低生产成本,提高药剂药效。经过中草生物增效技术的改善的药剂都具备:增强病患者的免疫调节内分泌功能、促进病患者排泄和增进食欲、降低病患者的血脂含量、改善病患者的疲劳状态、抗肿瘤等积极有效作用。

二、结语

综合全文几种新技术在中药制剂中的应用,可以看出新技术的渗透作用很强烈,且是满满的正能量。我国当前的医药学及医药加工制造工业要不断反思,充分利用新技术的优势,为我国的药物制剂事业做出贡献。期望本文的概述起到一定的积极作用。

参考文献:

[1]关皎.药物制剂新技术与药物新剂型设计性实验的探索与实践[J].2012(6).

[2]杨祥良.药物制剂新技术在现代中药研究中的应用[J].2005(3).

[3]陈茂伟.药物制剂新技术概述及其药剂制作中的实例研究[J].2011(7).

[4]邱树毅.药物制剂新技术在药物研究中的应用[J].2007(6).

纳米医学论文范文7

文章编号:1003-1383(2013)01-0106-04 中图分类号:R319 文献标识码:A

纳米(符号为nm)是一种度量单位。1 nm=1/100万mm。“纳米材料”的概念是20世纪80年代初形成的,指的是物质的颗粒尺寸小于100 nm的具有小尺寸效应的零维、一维、二维、三维材料的总称。目前在口腔医学临床上使用的材料相当广泛,运用于口腔的纳米材料称之为口腔纳米材料,对口腔临床修复治疗起到了非常重要的作用。随着纳米材料和纳米技术的兴起,新型的纳米材料开始在口腔医学领域[1]应用,对现有口腔材料的改性和创新具有重要意义。纳米材料具有以下主要特点:纳米粒子大小在1~100 nm;有大量的自由表面或界面;纳米单元之间存在着相互作用,作用或强或弱。因为具有以上特性,纳米材料具有包括表面或界面效应、小尺寸效应、量子尺寸、宏观量子隧道效应[2]。纳米材料与组成相同的微米晶体材料比较具有其许多优异的性能[3],主要表现在催化、磁性、光学、力学等许多方面。纳米高分子材料的应用涉及多方面,主要为介入性诊疗、免疫分析、药物控制释放载体等[4]。纳米技术涉及许多领域,包括纳米合成技术、纳米装置技术、微加工技术等,在口腔医学方面采用的纳米技术称之为口腔纳米技术[5]。现就纳米材料与纳米技术在口腔内外科学中的应用进行如下概括综述。

纳米技术与纳米材料在口腔内科学中的应用 1.纳米复合树脂 从以化学方式固化的复合树脂到光固化灯照射固化的复合树脂及双固化型复合树脂。用复合树脂修复牙体缺损已有40多年历史。复合树脂的基本组成部分是无机填料,根据无机填料的粒径大小分为大颗粒型、超微颗粒型和混合填料型。混合填料型树脂填料粒径近几年不断向纳米级发展。如今推出的适用于所有充填通用型纳米复合树脂,将是最有希望的新型复合树脂。为改善牙科树脂的性能,目前多采用许多增加强度和增加韧性的方法。在树脂中加入种类、数量、大小不相同的无机填料,虽然使复合树脂的强度得到提高,但同时又使树脂的韧性降低。而在树脂中运用纳米粒子来填充,可使复合树脂强度与韧性增加。使复合树脂的强度增强的纳米粒子包括纳米二氧化硅[6]、纳米氧化锆[7]、纳米羟基磷灰石[8]、纳米氧化钛[9]等。由于纳米粒子具有以下独特的性能,如非配对原子多,表面缺陷少,比表面积大,能与聚合物发生较强物理结合或化学结合,使粒子与基体间界面粘结时,对更大的载荷都能承受,从而使纳米复合树脂具有更高的强度和韧性。为使材料发生聚合时不收缩或收缩减小,在光化聚合丙烯酸脂或异丁烯酸脂基的向列液晶单体中,加入二氧化硅纳米微粒和较高含量的金属氧化物,使形成高分子量的聚合物粘结性增强,

体积收缩减小。二氧化锆用于口腔科具有X射线阻射性高、强度高和硬度高等优点,纳米氧化锆复合树脂光学透明性极高,是理想的口腔科复合树脂增强材料。口腔临床使用的树脂充填材料,放射阻射性弱,如发生继发龋坏时,X线片上很难将充填材料与继发龋进行鉴别,若将氧化钽纳米粒子通过运用纳米技术填充入树脂材料中,形成具有放射阻射性的新型纳米复合树脂材料,材料的物理强度会得到增强。而将氧化钽纳米粒子加入玻璃离子材料中,能使材料克服容易溶解的不足,同时强度增强,与一般的复合树脂相比,具有更好的耐磨性。该材料主要是依靠纳米机械结合,来提高其耐磨性。如果把纳米多孔二氧化硅凝胶加入树脂材料中,使新形成的材料具有不相同的结构,耐磨性能得到提高。有学者将纳米材料加入复合树脂中,发现能使其具有抗菌性能。Xu等在口腔科复合树脂中加入熔附了纳米硅颗粒的晶须和纳米二钙或四钙磷酸盐,可达到自修复的目的[10,11]。宋欣等人在复合树脂中加四针状氧化锌,发现该材料不仅能提高树脂的机械性能,还使树脂具有抗菌作用[12]。Niu等也在复合树脂中加入四针状氧化锌,使复合树脂具有抗菌性能的同时机械性能也增强[13]。由有机高分子材料和各种纳米单元通过多种方式复合成型的新型复合材料就是纳米填料复合树脂,是一种含有纳米单元相的纳米复合材料。纳米复合树脂与过去的复合树脂相比较性能上有更大提高,其优势就是色泽更逼真,抛光性与持久性更佳,超强强度更耐磨,可以广泛用于前牙或后牙。

2.纳米粘结材料 从BisGMA粘结剂和酸蚀技术用于口腔临床以来,在口腔临床粘结治疗方面获得很大进步。口腔内环境有其独特性,使许多粘接材料和粘接技术没有达到理想要求。随着纳米技术的广泛运用,纳米材料的日益发展,将纳米粒子加入现有的口腔粘结材料中进行改性外,还把纳米杂化树脂(poss)作为基质,用它与硅基纳米材料发生共聚,从而得到高强度、热稳定、耐久性的高粘结性材料。这种材料不仅能很好地克服酸蚀过程中造成的牙本质小管闭合问题,而且能在牙体和材料之间发挥较高的粘结性,使粘接技术和粘接材料达到一个更高更新的水平。牙本质过敏是口腔内科临床上常见病多发病,是牙齿上暴露的牙本质在受到外界刺激,如温度、化学性、机械性刺激后,引起牙齿的酸、软、疼痛症状,这主要是牙本质暴露后,牙本质小管内的液体,即牙本质液对外界刺激产生机械性反应所引起。临床主要是通过在暴露的牙本质表面涂布粘结剂来缓解敏感症状。在临床口腔常用的光固化粘结剂中加入一些纳米材料,不仅能提高其粘结力,还可作为牙本质过敏治疗的封闭材料。主要是利用纳米粘结材料来封堵牙本质小管,可以使牙本质过敏得到迅速和永久的治愈。

3.纳米根管充填材料 临床上用于做根管治疗的根充材料要求有以下特点:其一,能把炎症始发地彻底清除,能使根管封闭、死腔消灭,从而防止微生物进入根管内,阻止根管再次受到感染;其二,材料自身有恢复组织病变的能力,对根尖孔的钙化闭合有促进作用。因羟基磷灰石颗粒的尺寸较大,如单纯使用羟基磷灰石作为根管充填材料,在根管充填后形成的整体脆性较大,弹性模量与牙根牙本质不匹配,从而出现明显的微渗漏。随着纳米羟基磷灰石生物材料的出现,能很好解决根充材料存在的关于生物相容性的难题。经过大量基础和临床研究,发现纳米羟基磷灰石的结构与天然骨的无机成分很相似,均有良好的生物相容性,两者可以紧密结合,结合后周围组织未见有炎症和细胞毒性的发生,其对骨组织还有良好的诱导性。材料的组成和构造与脊柱动物硬组织相似,生物相容性良好[14~16]。将纳米羟基磷灰石制成糊剂用于充填根管,大多数病例根尖透影区变小或消失,临床症状消失,成功率达93.2%。根尖周围组织有病变的牙齿,成功率达93.8%。王艳玲[17]研究指出,用纳米羟基磷灰石根充与传统氧化锌丁香油糊剂根充两者相比较,在根管壁密合度方面,前者明显优于后者。纳米羟基磷灰石具有良好的根尖封闭特性,用其作根管封闭剂可减少微渗漏的出现。不少学者把具有良好的生物相容性,可使病变组织愈合加快,根充不会被组织吸收的纳米羟基磷灰石作为根管充填材料和根尖屏障材料,对其可行性进行了大量的临床研究[18~22],取得良好的疗效。纳米羟基磷灰石材料本身无杀菌作用,将碘或其他抗生素加入其中可以使该材料的抑菌和抗菌效果提高[23]。张海燕等[24]对难治性根尖周炎应用无机抗菌剂作为根管充填剂进行根管治疗,取得很好临床疗效。本身没有成骨性的纳米羟基磷灰石,可为新生骨的沉积提供合适的生理基质,引导牙骨质不断沉积来封闭根尖处的根尖孔。有临床报道将其用于年轻恒牙的根管充填特别合适。

纳米技术与纳米材料在口腔外科学中的应用 1.纳米技术在拔牙麻醉上的应用 拔牙麻醉时的注射操作和疼痛往往让患者感到害怕和恐惧。临床上可使用丁卡因进行组织的表面麻醉或局部注射碧兰麻来减轻患者的疼痛,但有时仍会出现诸多问题如麻醉镇痛不全、血肿、面神经暂时性麻痹等。随着纳米技术的发展,口外医生可将纳米粒子活性麻醉剂悬液直接涂布在牙龈和牙龈沟内,在声学信号(如超声波)或程序化的化学反应链(电化学机制)的指引下,经牙齿的薄弱区牙颈部,药物通过牙本质小管到达牙髓腔,达到麻醉效果。比牙本质小管管径(1~4 μm)小数百倍甚至数千倍的纳米粒子,可由信号引导,从牙本质小管灌流到牙髓腔内,起到麻醉效果,实现牙科无痛麻醉,给患者减少疼痛和恐惧感。

2.纳米复合体材料修复骨缺损 随着口腔材料学不断发展,羟基磷灰石作为新兴的材料,可大量用于口腔骨组织缺损的修复,如牙槽骨再造、牙周骨组织缺损、颌骨囊肿等。研究表明:羟基磷灰石所具有的许多特征与多种因素有关,尤其与它的颗粒直径大小有密切关系。如果颗粒直径大小在1~100 nm,羟基磷灰石则会具有特有的生物学特点。纳米羟基磷灰石的晶体构造与自然骨中的无机成分相比较,两者极为相似,都可以通过氢键方式与蛋白质及多糖结合在一起。无细胞毒性,生物相容性好,故认为其是多种口腔疾患造成天然骨质缺陷最好的替代物[25~29]。纳米羟基磷灰石材料既可作为骨形成的支架,而且还对骨细胞有引导的作用。有学者用纳米羟基磷灰石复合胶原植入术,对牙周病造成骨组织缺损的患者进行临床治疗及疗效观察,取得令人满意的临床效果[30,31]。羟基磷灰石复合胶原与周围组织相容性好,其组成和构造跟天然骨相似,本身无细胞毒性,对牙周膜细胞的生长和新生骨的形成有促进作用,故认为它是一种良好的组织工程支架材料。清华大学材料科学与工程系研制的纳米羟晶/胶原仿生骨,用来修复家兔颅颌骨实验性穿通性骨缺损,因仿生骨有良好的生物相容性,对骨组织的再生、修复起到促进作用,从而取得良好的骨创愈合效果,达到骨创的关闭和骨性桥接。有学者用纳米羟基磷灰石人工骨充填慢性根尖周炎及根尖囊肿手术后的骨缺陷区内以及下颌智齿拔除后的牙槽窝内,均取得令人满意的疗效。颌骨囊肿是口腔科的一种常见疾病,为减少术后出现感染概率,缩短术后修复时间,防止患者面部出现畸形,可加入纳米羟基磷灰石人工骨,纳米羟基磷灰石人工骨在充填骨缺损的同时,使感染问题得以解决,而且对骨诱导作用明显,手术操作简便易行,应在口腔外科临床工作中广泛推广。

3.纳米控释系统在肿瘤治疗中的应用 纳米控释系统包括纳米粒子和纳米胶囊,它们直径在10~500 nm之间。药物可以通过吸附作用、附着作用位于粒子表面或者通过溶解、包裹作用位于粒子内部。在外磁场的引导下,将磁性纳米颗粒作为药剂载体引导到肿瘤患者的患病部位,对病变部位进行定位治疗,这样可以减少治癌药的毒副作用,提高药物疗效。恶性肿瘤血管组织的通透性较大,细胞的吞噬能力较强,用静脉给药方式把纳米粒子运送到肿瘤组织,可使药物疗效得到提高,降低毒副作用和减少给药量。Lebold T等[32]把针孔结构的纳米硅石当作载体,结合多柔比星,将两者制成薄膜,与其他给药方式比较其释药时间显著延长。作为抗恶性肿瘤药物的输送系统,纳米控释系统被认为是最有发展的应用之一。纳米颗粒乳剂载体与分散于人体内的癌细胞容易融合,临床上可利用它将抗癌药物包裹。有人用聚乙烯吡咯烷酮纳米粒子将抗癌药物紫杉醇包裹用于肿瘤治疗,结果表明,含紫杉醇的纳米粒子与同浓度游离的紫杉醇在治疗肿瘤疗效方面,前者疗效明显增加。大量研究显示,具有纳米级的一些抗肿瘤药物,延长在肿瘤内停留时间,肿瘤生长缓慢,同时减少对组织器官的毒性和副作用,减少药物剂量。纳米脂质载体在肿瘤造影和成像等方面具有较好的优势[33],因为其对药物、基因、成影剂有较好的包封率。

综上所述,随着纳米材料与纳米技术的兴起和快速发展,为口腔材料学的研究提供了一种全新的方法和手段。使我们能以全新的思维模式从纳米水平来重新探索和研究材料的成份与结构,从而为口腔医学领域研制出更好更理想的口腔材料。

参考文献[1]王程越,李曦光.纳米技术与口腔医学[J].辽宁医学院学报,2004,25(4):6870.

[2]梁立红.纳米材料特点及研究动态[J].吉林工学院学报,2000,21(3):3033.

[3]胡文祥.分子纳米技术在生物医药学领域的应用[J].化学通报,1998(5):3238.

[4] Song CX,Labhasetwar V,Murphy H,et al.Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery[J].J Controlled Release,1997,43:197212.

[5]陈治清.口腔生物材料学[M].北京:化学工业出版社,2004:116166.

[6]支 敏,李长福,韦界飞,等.纳米SiO2在PMMA口腔义齿修复材料中的应用基础研究[J].天津医科大学学报,2007,13(4):493496.

[7]吴伟力,张修银,朱邦尚,等.氧化锆的用量对纳米氧化锆/PMMA复合材料挠曲性能的影响[J].口腔颌面修复学杂志,2008,9(1):4347.

[8]王 云,王青山.牙体修复性纳米羟基磷灰石复合材料的机械性能研究[J].现代口腔医学杂志,2011,25(2):115117.

[9]Xia Y,Zhang F,Xie H,et al.Nanoparticlereinforced resinbased dental composites[J].J Dent,2008,36(6):450455.

[10]Xu HH,Sun L,Weir MD,et al.Nano DCPAwhisker composites with high strength and Ca and PO4 release[J].J Dent Res,2006,85(8):722727.

[11]Xu HH,Weir MD,Sun L,et al.Strong nanocomposites with Ca,PO4,and F release for caries inhibition[J].J Dent Res,2010,89(1):1928.

[12]宋 欣,杜 滢,肖 月,等.添加四针状氧化锌晶须抗菌剂对义齿软衬材料机械性能的影响[J].黑龙江医药科学,2011,34(1):3940.

[13]Niu LN,Fang M,Jiao K,et al.Tetrapodlike zinc oxide whisker enhancement of resin composite[J].J Dent Res,2010,89(7):746750.

[14]李 平.新型纳米羟基磷灰石根充糊剂(nHA)的应用基础研究[D].四川大学华西口腔医学院硕士学位论文,2005.

[15]苏 勤,叶 玲,周学东.纳米羟磷灰石/聚酰胺66对牙髓细胞生物学作用的实验研究[J].华西口腔医学杂志,2005,23(1):7981.

[16]方厂云,曹 莹,夏 宇,等.大鼠牙细胞与纳米羟基磷灰石的体外复合培养[J].中南大学学报:医学版,2007,32(1):114118.

[17]王艳玲.纳米级HA根充糊剂根管密合度及抑菌性的实验研究[D].佳木斯大学口腔医学院硕士学位论文,2006.

[18]董 波,刘陆滨,刘玉杰.纳米羟基磷灰石修复慢性根尖周炎骨缺损的研究[J].黑龙江医药科学,2006,29(4):103.

[19]杨青岭,李文婷,王健平,等.壳聚糖/纳米羟基磷灰石治疗髓室底穿的实验研究[J].黑龙江医药科学,2007,30(2):37.

[20]程玉华,陈 东,赵广军,等.骨形成蛋白复合羟基磷灰石用于盖髓根管充填的临床观察[J].医药,1998,10(2):9394.

[21]刘秀丽,刘 曦.复方羟基磷灰石充填根管临床疗效观察[J].西安医科大学学报,2000,21(3):257258,295.

[22]Jallot E,Nedelec JM,Grimault AS,et al.STEM and EDXS characterisation of physicochemical reactions at the periphery of solgel derived Znsubstituted hydroxyapatites during interactions with biological fluids[J].Colloids Surf B Biointerfaces,2005,42(34):205210.

[23]Krisanapiboon A, Buranapanitkit B, Oungbho K.Biocompatability of hydroxyapatite composite as a local drug delivery system[J].J Orthop Surg (Hong Kong),2006,14(3):315318.

[24]孙海燕,裴玉岩,梁 楠.羟基磷灰石根管充填诱导根尖形成的临床研究[J].黑龙江医药科学,2003,26(1):21.

[25]温 波,陈治清,蒋引珊,等.纳米羟基磷灰石骨细胞相容性的研究[J].华西口腔医学杂志,2004,22(6):456459.

[26]崔 阳,刘一,陈学思,等.改性羟基磷灰石骨修复纳米复合材料的制备及生物学评价[J].中国组织工程研究与临床康复,2007,11(26):50745077.

[27]汤京龙,奚廷斐.纳米羟基磷灰石生物安全性的研究现状[J].中国组织工程研究与临床康复,2007,11(5):936939,943.

[28]Huber FX,Belyaev O,Hillmeier J,et al.First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM in human cancellous bone[J].BMC Musculoskelet Disord,2006,7:50.

[29]Kalita SJ,Bhardwaj A,Bhatt HA.Nanocrystalline calcium phosphate ceramics in biomedical engineering[J].Materials Sci Eng C,2007,27:441449.

[30]张 莉,马 宁,车彦海,等.纳米羟磷灰石和胶原复合膜修复下颌骨缺损[J].国际口腔医学杂志,2009,36(6):647649,654.

[31]孙 波,李月玲,杨德龙.纳米羟基磷灰石胶原骨植入治疗根分叉病变的临床研究[J].口腔医学,2010,30(6):358359,366.

[32]Lebold T,Jung C,Michaelis J,et al.Nanostructured silica materials as drugdelivery systems for Doxorubicin:single molecule and cellular studies[J].Nano Lett,2009,9(8):28772883.

纳米医学论文范文8

论文摘要:纳米尺寸开辟科学新领域,介绍纳米材料的神奇特性及在生活中的应用。

人类对物质世界的研究,曾小到原子、分子,大到宇宙空间。从无限小和无限大两个物质尺寸去认识物质,使人们了解到世界是物质的。物质是由原子或分子构成的,原子、分子是保持物质化学、物理理特性的最小微粒。这为人类认识世界、改造世界推进科学的向前发展提供了坚实的理论基础,也产生了一个个的科学原理和定理,推动了人类生产和生活的不断向前发展。

随着科学研究的进一步发展,人们发现当物质达到纳米尺度以后,大约在1~100纳米这个范围空间。物质的性能就会发生突变,出现特殊性能。这种既不同于原来组成的原子、分子,也不同于宏观物质的特殊性能的物质构成的材料,即为纳米材料。

过去,人们只注意原子、分子,或者宇宙空间,常常忽略他们的中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度的范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家。他们发现:一个导电,导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电,也不导热。材料在尺寸上达到纳米尺度,大约是在1~100纳米这个范围空间,就会产生特殊的表面效应,体积效应,量子尺寸效应,量子隧道效应等及由这些效应所引起的诸多奇特性能。拥有一系列的新颖的物理和化学特性,这些特性在光、电、磁、催化等方面具有非常重大应用价值。

近年来,已在医药、生物、环境保护和化工等方面得到了应用,并显示出它的独特魅力。

1医学方面的应用:

目前,国际医学行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医学就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法,随着健康科学的发展,人们对药物的要求越来越高。控制药物释放减少副作用,提高药效,发展药物定向治疗,必须凭借纳米技术。纳米粒子可使药物在人体内方便传输。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织,尤其是以纳米磁性材料作为药物载体的靶定向药物,称为"定向导弹"。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由的滚动,因此可以用检查和治疗身体各部位的病变。利用纳米系统检查和给药,避免身体健康部位受损,可以大大减小药物的毒副作用,因而深受人们的欢迎。

2在涂料方面的应用;

纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能。借助于传统的涂层技术,再给涂料中添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性从而获得传统涂层没有的功能,如;有超硬、耐磨,抗氧化、耐热、阻燃、耐腐蚀、变色等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射,耐大气侵害和抗降解等,在卫生用品上应用可起到杀菌保结作用。在建材产品如玻璃中加入适宜的纳米材料,可达到减少光的透射和热估递效果,产生隔热,阻燃等效果。由于氧化物纳米微粒的颜色不同,这样可以通过复合控制涂料的颜色,克服碳黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅限粒径而变,而具有随角度变色的效应。在汽车的装饰喷涂业中,将纳米Tio2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面色彩多样化。

3在化工方面的应用;

化工业影响到人类生活的方方面面,如果在化工业中采用纳米技术,将更显示出独特畦力。在橡胶塑料等化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米Sio2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。最近又开发了食品包装的TiO2.纳米TiO2能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有利污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。

4其他生活方面的应用:

纳米医学论文范文9

纳米产品没有那么神

就目前的发展情况来看,这种深远的影响只能在未来才能实现,并不是现在。不夸张地说,今天的纳米技术,只相当于信息技术上世纪50年代时的发展水平,人们研究纳米基本尺度现象的工具和对之理解水平还只是很初步的,目前尚有很多有关纳米的基础科学问题未找到答案。国际科技界普遍认为,纳米产生革命性的影响,将是二三十年以后的事情。

例如,在洗衣机的某些部件上加一超细颗粒的涂层,可以保护零部件,延长机器的使用寿命。具有这种性能的洗衣机被某些商家宣传成了“超强除菌的纳米洗衣机”。还有,所谓的纳米冰箱,只不过是往制作材料里添加了一些氧化钛细粒,从而产生一定的抗菌性能,而到了商家的嘴里,就变成了“纳米冰箱能在食物储藏过程中有效杀死食物中的细菌甚至能分解蔬菜中的农药”等等不负责任的广告。

经常听说某纳米服装可以保暖、防水、防油,背后暗藏着什么玄机呢?其实,商家只是将达到纳米尺寸的粉体分散进高分子黏结液,再把面料浸入其中,经过一定的温度和时间达到干燥和韧化,而制成千凝胶膜。由于纳米黏结液很容易进行化学或物理改性,因而可以大幅度改变织物的性能而使之具备某些功能。其实,这并非只在纳米时代才能做到,也不是只有纳米技术才能做到。有商家说纳米服装能够增强保暖,这在理论上是不可能的,因为现在还没有发现一种物质能够把热分子抓住。为什么我们炒菜时能闻到香味?因为空气分子是流动的,既然是流动的,如何能保住暖?除非是金属做的,能使分子无法出来。至于“纳米内衣”和“纳米水杯”宣称能杀菌、治病,就更无科学依据可言了。

还有市场上的护肤液、粉底液、日霜、晚霜、洗面乳等等,宣传中喊着“传承国际高尖端科学的纳米技术保您容颜不老”,甚至某国际知名品牌竟称其某产品因为有了纳米原维生素,而能产生立竿见影的美容效果。其实,现在所宣传的纳米化妆品实际上是将护肤品中的某些有效成分被加工成纳米级的规格后,在一定程度上提高了功效,目前已经被证实的是,防晒品中如果含有纳米级规格的成分,会在功效上有明显提高。因为防晒品的有效成分是二氧化钛,当其被加工为几十个到一百个纳米的规格后,能增强屏蔽功能,更好地防止紫外线伤害。但并不是所有的护肤成分都可以“纳米化”,因为有些成分并不能在微小化之后具有比普通颗粒更强的效果,甚至会适得其反,得不偿失。

细胞就象一个个“纳米车间”

人体每一个细胞都是一个活生生的纳米技术应用的实例。因为构成细胞的物质一般都在纳米量级水平。如果把细胞中的细胞器和其它的结构单元看作是执行某种功能的“纳米机械”,那么,细胞就象一个个“纳米车间”。细胞的新陈代谢都是“纳米工厂”的典型例子。在纳米量级水平研究生命现象(包括生老病死、治病保健、延年益寿)的医学就是纳米医学。

纳米医学的研究内容十分广泛,凡是与人类生理、病理和医疗有关的内容它都涉及。归纳起来,主要有以下几个方面:

基础医学领域

在分子、原子水平对物质进行直接观察,生物学上对DNA、蛋白质进行形态分析;直观下的分子剪辑、DNA特殊位点的定位等高水平研究;细胞的一系列分子生物学研究(膜、离子通道、受体、基因、细胞因子等),为临床发展提供动力和线索。

诊断和治疗疾病

在疾病诊断领域,使用纳米技术的新型诊断仪器,只需检测少量血液,就能通过其中的蛋白质和DNA(脱氧核糖核酸)诊断出各种疾病。在膜技术方面,用纳米材料制成独特的纳米膜,能过滤、筛去制剂的有害成分,消除因药剂产生的污染,从而保护人体。在抗癌的治疗手段方面,德国一家医院的研究人员将一些极其细小的氧化铁纳米颗粒,注入患者的癌瘤里,然后将患者置于可变的磁场中,使患者癌瘤里的氧化铁纳米颗粒升温到45~47摄氏度,这温度足以烧毁癌瘤细胞,而周围健康组织不会受到伤害。

在疾病的治疗方面:

1、组装新的DNA:基因治疗所面临的最大挑战是:首先要使质粒DNA分布于特定的细胞器――细胞核内,最后还要使其插入特定的DNA位点。利用纳米技术,可使DNA通过主动靶向作用定位于细胞;将DNA浓缩至50~200nm大小且带上负电荷,有助于其对细胞核的有效入侵;而最后DNA插入细胞核DNA的准确位点则取决于纳米粒子的大小和结构。此时的纳米粒子DNA本身所组成。

2、开发纳米机器人:纽约大学的一个实验室最近制造了一个纳米级机器人,研究人员认为,将来,纳米级机器人可遨游于人体微观世界,随时清除人体中的一切有害物质,激活细胞能量,使人不仅仅保持健康,而且延长寿命。含有纳米计算机的、可人机对话的、有自身复杂能力的纳米机器人(nanorobot)。这类分子机器一旦制成,能在一秒钟内完成数十亿个操作动作。

3、寻找生物兼容物质:在人工器官移植领域,只要在人工器官外面涂上纳米粒子,就可预防人工器官移植的排异反应。生物兼容物质的开发,是纳米材料在医学领域中的另一个重要应用。

纳米医学论文范文10

[关键词] 纳米技术 体育 应用 思考

随着科学技术的发展,如何将纳米科技真正应用于体育运动,使运动训练更加科学化,使运动员的运动能力和运动技术水平得到更充分的发挥,运动成绩的提高更加有保证已经成为研究重点。

一、体育与纳米技术

1.利用纳米技术进行运动员的科学选材。由于纳米科技推动了微观生物学的发展进程,运用人类基因组计划和纳米技术,有助于我们对人类基因组中与运动成绩密切相关的基因加以认识和了解。有研究表明,人类基因组中有某些与人类运动能力密切相关的基因,其多态性的差异,有可能是造成人们运动能力和训练效果巨大个体差异的最终原因。该领域的研究,为人们进行有效的基因选材提供了理论基础,也为提高运动成绩提供事半功倍的方法。例如在运动员的选材方面,利用纳米加工技术进行DNA的分离和提取,可以快速有效地决定其基因序列,在分子水平上对其遗传、发育进行研究,实现更高层次的基因选材。

2.利用纳米科技揭示人体对各项运动能力的适应度和对各项运动能力的遗传度,找到运动训练在人体生长发育过程中的关键阶段(如青春期)的影响及作用机制。通过开发一种可以植入皮下微型生物芯片,模拟健康人体内的葡萄糖检测系统监测机体在运动过程中血糖水平,然后根据人体需要,适时释放糖等物质,维持机体在运动过程中的血糖水平,有效地提高机体的运动能力。

3.利用纳米技术进行体育运动与健康关系的研究。利用纳米微粒技术,可以灵敏地检测各种组织的特异性蛋白,探讨某些运动性疾病的发病机制,有效地对运动员进行医务监督,维护运动员的健康。通过纳米级敏感器可以监视运动训练导致的细胞内结构的形态与数目的变化,以及这些变化所反映各器官功能结构的功能状态。纳米科技在中国传统医学中的应用,使传统中医药对运动损伤与运动性疾病的预防和治疗具有更好的效果。

4.利用纳米技术防止运动性疲劳和加快其恢复过程。关于运动性疲劳发生的机制,目前虽然有许多假说,但确切的疲劳机制还有待于进一步研究。由于纳米科技在医学上的突破,将对运动疲劳机制尤其是在中枢神经系统方面及其靶器官和靶细胞的研究将更加深入,人们可以利用纳米生物芯片直接研究机体在运动过程中骨骼肌、心肌、肝脏和神经等组织的代谢过程,探讨中枢和外周运动性疲劳及其恢复的生物学机制,并且可以通过某些手段(如纳米药物)抑制导致运动性疲劳的基因表达或诱导加速恢复的基因表达。

5.利用纳米技术防止运动损伤与运动性疾病的临床诊断与治疗。纳米医学材料的研制,对于人造器官、人造肌肉、骨骼、关节皮肤等成为永久性的非排斥性。用纳米机械潜入人体的血管和器官,对人体进行检查和治疗,并且可以进入毛细血管以及器官的细胞内,对损伤的细胞进行治疗和处理,甚至可以从细胞基因组中除掉“有害”的DNA,或把正常的DNA安装到细胞基因组中。

6.利用纳米技术对运动员进行机能评定。在人们全面了解运动引起机体产生适应性变化的基因调节机制后,人们可以通过基因工程技术和纳米技术对运动员的疲劳状态、运动训练的适应性及其免疫功能等进行基因诊断。这种诊断一般是在基因的转录水平上进行评定,可以较早地发现运动员在运动工程中的机能变化,具有较好的应用价值。

7.利用纳米技术了解控制运动营养水平,使运动员的营养代谢趋于更加合理和平衡。通过纳米级敏感器使运动员的营养代谢处于一个精细、准确、严密的监控中。运动员所需的营养素完全按照运动项目特点和个人的生理特点进行补充和调配,使运动员的营养变得合理化、科学化。

8.利用纳米技术对体育运动进行精确客观的定量分析。利用纳米技术对运动时人体的骨骼、肌肉、血液组织以及心血管系统、呼吸系统、消化系统等各器官系统对运动训练的适应性进行客观的精确的定量分析,不仅使运动训练更具有科学性,也大大地提高运动员训练的成材率。

二、纳米技术在竞技体育中的作用

1.纳米相材料技术。这是一种通过控制结构纳米颗粒的大小而制造出强度、颜色和可塑性都能满足人们需要的相材料,这种纳米相材料除微观结构与普通材料完全不同外,在宏观上也表现出许多奇妙特征,如纳米相铜强度比普通铜高5倍,纳米陶瓷摔不碎等。这种纳米相材料技术已应用在体育器械、场地和服装的改进方面。就拿撑杆跳运动员使用的撑杆来讲,撑杆跳高最早使用的撑竿是竹竿,1942年美国运动员达姆首次在国际比赛中使用了轻合金撑竿而创下了4.77米世界记录。可以想象应用纳米相技术,将会生产出具有“个性化”(根据撑竿跳项目的特点和竞赛规则的要求及运动员自身的生理和技能特征的)撑竿,使该项目的世界记录再有突破。

2.纳米复合改进技术。少量纳米材料可以综合改善传统材料的性能。例如美国把AL2O3纳米颗粒加入到橡胶中提高了橡胶的耐磨性和介电特性。

3.纳米器件技术。利用纳米器件技术生产的分子自组织结构可用于电子记忆、数据接收、存储器和传递等,这种器件运用于体育训练将大大增加训练的效率和成绩。

三、纳米技术应用于竞技体育所引起的思考

综上所述,随着科学技术的发展,纳米技术在体育运动中的应用显得日益重要,同时,也会引起一些体育道德和伦理道德问题。同时我们要思考的是:器材的高科技化是否会削弱运动员在竞技体育中的主体地位,从而变相剥夺运动员的竞赛权利?若运动成绩的提高在较大程度上依赖于器械和服装的高科技化,这是否会带来一些新的不公平?器材作弊是否会成为兴奋剂的另一种表现形式?这些是我们必须考虑的。可以通过修改某些项目的器械的设计规则,加强一些项目的器械、服装的申报和检测程序,国际奥委会和各国际单项体育联合会要针对纳米技术等高科技的新成就加强新的检测手段,来杜绝运用器械作弊;通过对运动员、教练员、裁判员和科技工作者等进行个体道德教育,以保证竞技体育更好地弘扬奥林匹克精神。

参考文献:

[1]芸世纪之交的我国运动形态学研究.中国运动医学,2000,19(4):340~341

纳米医学论文范文11

纳米机器人是根据分子水平的生物学原理为设计原型,设计制造可对纳米空间进行操作的“功能分子器件”,也称分子机器人;而纳米机器人的研发已成为当今科技的前沿热点。

目前,不少国家纷纷制定相关战略或者计划,投入巨资抢占纳米机器人这种新科技的战略高地。《机器人时代》月刊日前指出:纳米机器人潜在用途十分广泛,其中特别重要的就是应用于医疗和军事领域。

医用纳米机器人

在美国科幻大片《惊异大奇航》中,科学家把变小的人和飞船注射进人体,让这些缩小的“参观者”直接观看到人体各个器官的组织和运行情况。然而在现实中,科学家根据分子病理学的原理已经研制出各种各样的可以进入人体的纳米机器人,有望用于维护人体 健康。

医用纳米机器人目前还处在试验阶段,大到长几毫米,小到直径几微米;但可以肯定的是,未来几年内,纳米机器人将会带来一场医学革命。

许多工程师、科学家和医生都认为,医用纳米机器人有着无限的潜力――而其中最有可能的包括:治疗动脉粥样硬化、抗癌、去除血块、清洁伤口、帮助凝血、祛除寄生虫、治疗痛风、粉碎肾结石、人工授精以及激活细胞能量,使人不仅保持健康,而且延长寿命。

2010年5月,美国哥伦比亚大学的科学家成功研制出一种由脱氧核糖核酸(DNA)分子构成的纳米蜘蛛机器人,它们能够跟随DNA的运行轨迹自由地行走、移动、转向以及停止,并且它们能够自由地在二维物体的表面行走。这种纳米蜘蛛机器人只有4纳米长(一纳米为一米的十亿分之一),比人类头发直径的十万分之一还小。

虽然之前的纳米机器人也实现了行走功能,但不会超过3步。而纳米蜘蛛机器人却能行进100纳米距离,相当于50步。科学家通过编程,让其能够沿着特定的轨道运动;这一进展的强大之处在于:一旦被编程,纳米蜘蛛机器人就能够自动完成任务,而不需要人为介入。他们认为:纳米蜘蛛机器人可以用于医疗事业,以帮助人类识别并杀死癌细胞以达到治疗癌症的目的,还可以帮助人们完成外科手术,清理动脉血管垃圾等。

科学家已经研发出这种机器人的生产线。随着这种机器人的问世,科学家在朝着打造可在血管中穿行,用于杀死癌细胞的先进装置的道路上又向前迈进一大步。

以色列科学家目前正在研制一种微型纳米机器人,它可以在人体内“巡逻”,在锁定病灶后自动释放所携带的药物。这种技术的原理是:在编程过程中将某种特定疾病定义为“是”状态。“巡逻”过程中,机器人可执行一系列计算,检查所在位置处信使核糖核酸(mRNA)上的疾病指标。如果某种特定疾病的所有指标都满足,机器人这时会做出应该释放药物的判断。如果检测到的指标并不充分,它最后会位于“否”的状态。

科学家对这种机器人进行了不断的改进,并取得了突破性的进展,它现在可以从多种渠道来检测疾病指标,例如mRNA、微核糖核酸(miRNA)、蛋白质以及多种小分子。

科学家的目标是:在未来创造大量这种纳米机器人,让它们自动且不间断地在身体内巡逻,寻找各种疾病信号。由于可以从多种渠道直接探测疾病指标,所以诊断更为精确。

在经过更多更好的计算以后,这种机器人还可以向发现疾病的位置释放第一轮预防性药物,作为防止传染的第一道防线。虽然在现实中该技术离我们还有些遥远,但其随时警惕身体健康状态的设想仍非常诱人。

军用纳米机器人

进入21世纪,科技发展如火如荼,军事变革风起云涌。站在历史新起点上审视,到底什么科技能够像核武器一样,对未来军事产生革命性的影响?近来国外军事 专家纷纷预言:纳米机器人离我们的战场并不遥远,它们在世界范围不仅将引领一场真正意义的战争革命,并将同时推进作战理念、作战方法的根本改变。

目前,各主要军事大国正在积极进行军用纳米机器人的研发,并已成功研制出数十种纳米机器人用的元器件;纳米机器人部队将在一些实验室或生产在线整装待发。

纳米机器人是如何消灭或使敌有生力量丧失战斗力的呢?首先,将纳米机器人应用到传统的武器技术装备中去,通过改善其制造材料、制作工艺、指控系统、制导系统、运输和储存方式,提高传统武器技术装备的战术技术性能,加强传统作战手段的杀伤效能;其次,开发新的人体作战手段和作战方式,比如研发出能堵住人脸、鼻、口、眼的纳米微型组件,或能粘住手、脚的纳米微型组件等等;再次,对现有的化学和生物体进行改造或研发出新型的化学或生物体,并将其注入到人造或杂交的昆虫体内,通过昆虫将这些带有杀伤性的化学或生物体传播到敌国军民的身体之中;最后,纳米机器人在进入敌人身体后,可通过自我复制或自我繁殖的方法迅速在敌方阵营中扩散。

有关专家认为:军用纳米机器人可以充当侦察工具,如“智能沙粒”或者“智能尘埃”。这些工具具有电子鼻的功能,只有沙粒那么大,可以分析周围环境、识别化学构成、向监督系统汇报。最终的侦察报告是非常全面的,将成千上万个电子鼻的数据进行梳理,每个纳米电子鼻的侦察范围只有1米,但是众多的电子鼻覆盖在有限的区域中,这些纳米点具有很高的侦察精度。

如果“智能沙粒”组成的网络中有各种不同的传感器,监督计算器可以使用数据融合对遥远的战场或山中道路形成更加复杂、更加精确的实时侦察图像,敌人却全然不知,当地居民的风险也很小。

美国国防部先进研究项目局(DARPA)与工业部门正在研制一种会飞的军用纳米机器人。这种纳米机器人只有昆虫大小或鸟类大小;它不容易被发现,具有致命性,廉价,可以快速反应,可以持续作战,机动性好。他们计划在2015年之前制造出鸟类大小的可以侦察大规模杀伤武器的纳米机器人,在2030年之前制造出昆虫大小的可以侦察大规模杀伤武器的纳米机器人。

顺带一提的是:受DARPA的委托,AV公司于2011年7月研制出一种用于侦察的纳米蜂鸟机器人,它装配不少纳米级元器件;这款机器人被《时代》周刊评为2011年度五十项最佳发明之一。

纳米医学论文范文12

Properties of Electrospun Polysaccharide Nanofiber and Application in Regenerative Medicine

Li Xin et al.

(College of Food Science,Fujian Agriculture and Forestry University,Fuzhou 350002,China)

Abstract:Electrospining is an effective method for preparing polymer nanofibers. Electrospun nanofibers possess excellent characteristic such as good biocompatibility,controllable biodegradability,large specific surface area and high porosity. So it has shown promise in the fields of regenerative medicine. The research progress of several major natural polymer electrospun fibers such as chitosan,konjac glucomannan,natural cellulose,hyaluronic acid and its derivatives,etc. as well as important applications in biomedical field were mainly discussed.

Key words:Electrospinning;Polysaccharide;Regenerative medicine

再生?t学利用生物学及工程学的理论方法创造已经丢失或功能损害的组织和器官,使其具备正常组织和器官的机构和功能。再生医学探索领域包括通过移植细胞悬浮体或聚合体来代替受损组织;生产能够替代天然组织的生物化人工组织或器官的植入;通过药物手段对损伤组织进行再生诱导。而静电纺丝制备的纳米纤维直径小于细胞,可模拟天然细胞外基质的结构和生物功能,是理想的细胞粘附增殖基质;此外,其天然的电纺原料具有很好的生物相容性及可降解性,可作为载体进入人体,并容易被吸收;纳米纤维与人的多数组织、器官在形式和结构上类似,使其有应用于组织器官的潜力。静电纺丝纳米纤维还具有比表面积大、孔隙率高等特性,因此在再生医学领域引起了很大的关注,并已经在药物缓释控释载体、组织工程支架以及创伤辅料等方面得到了很好的应用。

1 静电纺丝原理

静电纺丝是一种连续制备纳米纤维的高效技术。主要装置包括3个部分:供给静电压的高压电源装置、装填纺丝液针管的喷丝装置和接地的收集装置。高压电源可以提供1~30kV的直流电,高压电源使液体带电并被极化,最终从泰勒锥喷出形成射流。喷丝装置是一个注射管,纺丝液装在带有针头的管中,溶液多为聚合物溶液或是熔融状态的熔体。收集装置一般为接地的金属板,此外,还有a、b等接收形式,因此,使其收集到多样的纤维排列方式[1]。其制备纳米纤维过程如图1所示。静电纺丝是让具有一定程度分子缠结的聚合物溶液在高压静电的作用下使表面电荷斥力超过表面张力,产生泰勒锥并高速喷射出聚合物射流。纺丝溶液的粘度是纺丝纤维形成的关键:若粘度太小,在电场力的作用下会分离成小液滴;而射流粘度太高时,由于相邻单元的电斥力致使射流侧向凸出,几乎不能制得纤维[2]。因此,可以通过使用合适的溶剂、调控溶液浓度等方式来提高静电纺丝的效果。相比其他制备纳米纤维的方法,如自组装法、相分离法、模板合成法,静电纺丝具有设备简单、可纺物质种类多、成本低、技术可控等优点。由于静电纺丝溶液中溶有很多功能性物质,且所得的纳米材料具有高比表面积、高孔隙率、良好韧性及轻便的特点[3]。因此具有广泛的用途,可望应用于生物医学领域。

当前静电纺丝聚合物材料包括合成的、天然的以及二者的混合物。相比于合成聚合物原料(聚乙烯、聚丙烯及芳香族聚酯等),天然聚合物(如多糖、蛋白质、脂类等)具有低毒性、优良的生物相容性、可再生及生物降解性[4]。最近研究电纺多糖及其衍生物的数量增加,然而关于多糖的加工性的困难(例如:差溶解度和高表面张力)限制了其应用。在这篇综述中,总结了壳聚糖、魔芋葡甘聚糖、纤维素、透明质酸等多糖的特征,以及目前正在使用或者有潜力应用的静电纺丝纳米纤维。

2 静电纺多糖的研究

多糖是单糖的均聚物或共聚物,多糖可以在多种生物中发现,包括微生物来源(例如葡聚糖)、动物来源(如壳聚糖和透明质酸)和植物来源(如藻酸盐、纤维素和淀粉)。多糖的化学结构、化学成分、分子重量和离子性质多种多样有助于其功能和生物活性的展现[5]。迄今为止已经进行了许多研究,如电纺丝多糖及其衍生物制造的纳米纤维在再生医学中具有潜在的应用。

2.1 壳聚糖 壳聚糖(CS)是天然生物大分子甲壳素通过脱乙酰而得到的衍生物。它由(1,4)连接的N-乙酰基-β-D-葡糖胺组成,是世界上第二大天然聚合物。它不仅具有优良的生物可降解性、生物相容性和生物黏附性,而且易加工成为膜状物或多孔支架[6]。甲壳素类纤维独特的生物特性具体表现为组织亲和性、无免疫抗原性、促愈合性、抑菌性等,因而成为重要的生物医学材料之一。

Liang等[7]发现带负电的磷黄病毒(PV)和带正电荷的壳聚糖(CS)通过逐层(LBL)自组装技术交替沉积在带负电荷的纤维素垫上。通过扫描电子显微镜(SEM)观察LBL膜涂层的形貌。之后通过在模拟体液(SBF)溶液中温育不同时间的纤维垫进行体外仿生矿化。扫描电子显微镜(SEM),X射线光电子能谱(XPS)和X射线衍射(XRD)用于表征支架上沉积的矿物相的形态和结构。细胞培养实验表明,具有LBL结构膜的支架对于MC3T3-E1细胞具有良好的细胞相容性。同时,细胞增殖受沉积层的数量和最外层的组成的影响。共聚焦激光扫描显微镜(CLSM)和SEM成像显示MC3T3-E1细胞在生物复合支架表面对细胞粘附和扩散具有良好性能。因此,CS/PV纳米纤维毡有望应用于生物医学。

杨文静[8]以静电纺丝的方法制备了CS/PCL血管支架。采用SEM和电子万能试验机检测了该支架的结构和力学性能,将内皮祖细胞(EPCs)与该支架膜复合培养,评估了该血管支架维持细胞黏附、繁殖和分化的能力。SEM表征和力学性能测试表明CS/PCL支架具有和天然细胞外基质/纳米结构相似的多孔结构,当CS与PCL的质量比为0.5时,静电纺丝所制备CS/PCL血管弹性变性能力较强。此外,CS/PCL具有CS和PCL的共同优点,具有良好的细胞相容性,表面多孔结构有利于细胞黏附生长。这为组织工程内皮种子细胞的种植提供一种合适支架。

陈岚[9]尝试静电纺丝法制备类人胶原蛋白(Human-like collagen,HLC)-壳聚糖(chitosan)纳米纤维薄膜,通过加入大分子量的聚环氧乙烷(PEO)改善了HLC与chitosan的纺丝性质,使其可纺。形貌均一的类人胶原蛋白/壳聚糖复合材料克服了纯组分材料降解过快的缺陷,能够有效促进细胞贴附与增殖,组织相容性良好。

2.2 魔芋葡甘露聚糖 魔芋葡甘露聚糖是一种从魔芋块茎中提取的天然高分子聚合物,具有生物相容性、可降解性和水溶性,不溶于甲醇、乙醇、丙酮、乙醚等有机溶剂。有一定的黏度,符合静电纺丝对纺丝溶液的基本要求。因其生物降解性、可再生性和低成本得到了?V泛的关注。魔芋葡甘露聚糖(KGM)由α-1,4的D甘露糖和D-葡萄糖组成,比例为1.6∶1,每12或18个重复单元含有乙酰基[10]。同时,KGM是一种良好的膳食纤维,具有预防和治疗高血压、高血脂、心血管等疾病的药理作用,也可以作为医用材料用于医学。正是因为静电纺丝得到的纳米材料具有很好的生物相容性和结构相容性[11],已经在组织工程支架、创伤修复、药物释放等方面得到了应用。

目前KGM的纳米技术研究大多有关于其结构或KGM与其他材料的复合物。由于缺乏有机物溶剂,许多天然聚合物不能从其水溶液中静电纺丝。Huarong Nie[12]等在研究中发现,通过电纺水溶液制成的魔芋葡甘聚糖(KGM)纤维支架的平均直径在150nm至300nm范围内。在没有任何化学交联剂使用情况下,KGM水溶液通过低浓度NaOH稀释处理后,实现脱乙酰基,提高了KGM纤维支架的稳定性。同时,KGM/壳聚糖双组分膜比较容易从稀酸溶液中获得,随着壳聚糖含量的增加,平均纤维直径从350nm降低到180nm。关于生物学特性的研究表明纳米纤维支架为骨髓基质细胞提供更合适的空间,添加KGM可以提高壳聚糖材料的生物相容性。预计KGM及其复合纳米纤维支架将具有潜在应用于一种新型生物医学材料。

王静[13]将羟基磷灰石、魔芋葡甘聚糖、透明质酸钠三者复合,制备可用于骨组织工程的三维多孔骨组织工程支架材料,并对复合支架进行了体外干细胞相容性实验,探讨复合支架的使用性能。景森[14]发现,可以在 KGM 材料中引入一些具有生物特异性识别能力的多肽(如缩氨酸),或分子识别介质(如整连蛋白)以上实验研究结果表明所制备的复合支架具有一定的降解性、无毒性和良好的生物相容性,有望用作骨支架材料。

2.3 纤维素 纤维素由(1,4)连接的β-D-葡萄糖单元组成。由于其作为丰富的可再生资源和良好的生物降解性和生物系统相容性引起了很大的关注。纤维素的材料已经广泛应用于制药和生物学领域,包括用作吸附珠、过滤器、人造组织皮肤和防化服[15]。然而纤维素的加工受其在有机溶剂中有限的溶解度而限制。纤维素比淀粉更容易结晶,纤维素需要320℃和25MPa压力才能在水中变成无定形。

纤维素不熔化,因此必须从溶液中加工。直接溶解纤维素的几种溶剂已被研究并用于静电纺丝,包括N-甲基吗啉N-氧化物/水(NMMO/水)和氯化锂/二甲基乙酰(LiCl/DMAc)。最近已经有离子液体用于制造电纺纤维素纳米纤维,然而这些溶剂的挥发性低,因此不能完全在静电纺丝过程中蒸发。此外,电纺丝温度必须升高到溶剂熔融温度以上(例如NMMO/水约85℃)。对于LiCl/DMAc溶剂系统,难以完全除去锂或静电纺丝后凝结氯离子。纤维素衍生物因其增强纤维素的溶解度从而提高其电纺丝性能已被广泛利用。纤维素衍生物可以容易地电纺成纤维,然后通过水或乙醇水解转化为纤维素。纤维素用于静电纺丝的衍生物包括醋酸纤维素(CA),三乙酸纤维素(CTA),羟丙基纤维素(HPC),乙基纤维素(EC),甲基纤维素(MC)和乙基氰乙基纤维素(E-CEC)。电纺纤维素纳米纤维基质已被用作为亲和力或阻隔膜,类似于膀胱的三维结构基质抗菌膜以及酶固定膜,药物输送膜[16-17]。

超细氧化纤维素(OC)基质是通过静电纺丝CA产生的超细纤维素的氧化随后进行乙酰化制备的。Khil等[18]人通过使用不同含量NO2氧化剂制备了具有不同羧基的OC基体。在PBS中孵育4d内,OC基质的重量损失大于90%。将电纺CA纳米纤维膜用高碘酸纳氧化产生醛基,共价连接其上含有IgG结合结构域的蛋白质A/G配体[19]。该膜为小规模快速纯化抗体提供了有用的工具。张等人[20]也用二乙基氨基乙基官能化的纳米纤维膜(DEAE)组作为弱阴离子交换组制造再生纤维素,并评价他们生物分离应用的潜力。DEAE功能化纤维素纳米纤维具有增强牛血清蛋白(BSA)的粘合能力。直径超细的纤维素通过静电纺丝和碱性水解制备100nm的CA。电纺丝纳米纤维的表面通过与PEG二酰氯反应被激活,然后使用简单的碳二亚胺化学共价结合脂肪酶。结合的脂肪酶在升高的温度下显示出比游离脂肪酶更高的催化活性,在60和70℃下高至8~10倍。

来自纤维素及其衍生物的电纺丝纳米纤维通过将功能性化合物(例如药物)掺入纺丝溶液而被官能化。通过向丙酮/水(80/20,w/w)中的CA溶液中加入硝酸银制备抗微生物CA纳米纤维膜。随后通过用UV光照射电纺纤维将银离子光还原成银纳米颗粒。颗粒均匀分散在纤维上表面,其粒度范围为10~20nm。CA含有银纳米颗粒的纤维对金黄色葡萄球菌,肺炎克雷伯菌,大肠杆菌和铜绿假单胞菌显示非常强的抗微生物活性。具有杀菌性能的纳米纤维也由静电纺制含有氯己定(CHX)的CA溶液杀菌剂和有机钛酸酯Tyzor TE(TTE)作为交联剂制备的[21]。所得纤维基质由于CHX固定在纤维上及未释放结合而在抑制区内,因此在接触时表现出对表皮葡萄球菌和大肠杆菌的杀菌性能。

2.4 透明质酸 透明质酸(HA)是一种线性多糖,由(1,4)连接的α-D-葡萄糖酸的交替二单元和(1,3)连接的β-N-乙酰基-D-葡萄糖胺组成。HA是结缔组织(ECM)的主要成分,具有重要的生物学功能[22]。由于优异的生物相容性和生物降解性,HA及其衍生物已被广泛应用生物医学领域包括组织工程支架,伤口敷料,药物输送系统和植入材料。

作为天然ECM的主要组成部分,类似于藻酸盐,电解HA水溶液是非常困难的,因为HA水溶液的粘度和表面张力异常高从而阻碍静电纺丝过程。另外,由于静电纺丝时溶剂的蒸发不充分,HA的强保水能力导致电纺丝纳米纤维在集电体上融合。只有在吹制辅助静电纺丝(电喷吹系统)的发展之后,才能从水溶液中将HA制成纳米纤维膜[23]。使用DMF/水制造HA纳米纤维混合物(平均直径=200nm),显著地降低了表面张力,而不改变HA溶液的粘度。HA/明胶纳米纤维基质也可以通过这种方法生产(平均直径=190~500nm)。HA通过与明胶,PEO和玉米蛋白混合而电纺丝。添加HA提高明胶水溶液形成明胶/HA纳米纤维的电纺丝能力。一系列玉米蛋白/HA混合纤维膜与亚甲基二苯交联制二异氰酸酯(MDI),其混合纤维平均直径随着玉米蛋白含量的增加而增加[24]。基于HA的纳米纤维膜已经非常有吸引力作为仿生组织工程支架,伤口愈合材料,和药物输送系统。所以为了模仿天然ECM的架构使用硫醇化-HA衍生物(例如:3,3-二硫代双(丙酰二酰肼)改性透明质酸;HADTPH)电纺丝形成纳米纤维基质。NIH3T3成纤维细胞连接到基质上在基质内扩展树突形态,这表明HA-DTPH纳米纤维在细胞包封和组织再生基质中的潜在应用[25]。

3 总结