时间:2023-08-21 17:24:53
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇化学工程专业课程,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。
1环境工程与化学工程复合型人才的培养方式
目前许多院校广泛采用主辅修方式培养复合型人才,即学生在完成主修专业课程的基础上,再辅修第二专业的课程。辅修课程的上课时间经常与主修课程的上课时间相冲突,或者辅修课程的上课时间统一被安排在周末或晚上,这给辅修课程的学习带来不便。环境工程与化学工程复合型人才的培养可采用特色班级方式培养,即在招生时就用固定班集体招生、统一培养。这种培养方式便于课程体系的学习,尤其是便于实践课程的教学与管理。湖南城市学院化学与环境工程学院同时拥有化学工程和环境工程两个专业,这使得该学院在环境工程与化学工程复合型人才的招生、教学与管理有独特的资源优势。
2环境工程与化学工程复合型人才培养的课程体系
在课程体系设计上,不能简单地将环境工程专业与化学工程专业的课程“拼盘”。根据环境工程与化学工程复合型人才培养的特点和要求,我们在请教专家、调查学生的基础上对环境工程专业、化学工程专业的相关课程进行了有机整合,形成了培养环境工程与化学工程复合型人才的课程体系,该课程体系由5个课程模块组成。公共基础和素质课程模块。该课程模块包括中国近现代史纲要、思想道德修养与法律基础、基本原理、思想和中国特色社会主义理论体系概论、大学生心理健康教育、军事训练、大学体育、大学英语、计算机基础、大学语文。专业基础课程模块。该课程模块包括高等数学、工程制图及CAD、无机化学及实验、有机化学及实验、分析化学及实验、仪器分析及实验、物理化学及实验、化工原理及实验、波谱分析。专业核心课程模块。该课程模块包括环境化学、管网工程、环境微生物学及实验、环境生态学、环境监测及实验、水污染控制工程及实验、大气污染控制工程及实验、固体废物处理工程及实验、噪声污染控制工程、环境影响评价。特色课程模块。该课程模块包括化工环境保护、化工污染控制工程、化工污染控制设备、绿色氧化技术、突发性化工环境污染事故的预防与处置等课程。实践教学课程模块。该课程模块包括环境工程仿真实验、工程设计、工程实验设计与数据处理、PIDCAD工艺流程制图、认识实习、生产实习、毕业论文(设计)。该课程体系在保留环境工程专业的核心课程基础上,《无机化学》、《有机化学》、《分析化学》、《物理化学》、《仪器分析》、《化工原理》、《波谱分析》等专业基础课程内容和学时与化学工程专业一致,在课程设置上体现出环境工程专业与化学工程专业课程的复合;特色课程模块和实践教学课程模块体现出环境工程专业与化学工程专业课程的融合。
3环境工程与化学工程复合型人才培养的教学方法
对于环境工程与化学工程复合型人才,要求综合培养学生环境工程、化学工程两专业的知识和能力,达到综合培养的目标,这就要求其相应的教学不能采用灌输性的教学风格,而应采用渗透式教学、融合式教学、案例式教学和研究性教学等。(1)渗透式教学是指在上述专业基础课程模块中渗透环境工程专业知识的教学,在上述专业核心课程模块渗透化学工程专业知识的教学。例如,《物理化学实验》中动力学实验可以让学生动手做“Fenton试剂降解除草剂2,4-D反应速率常数和活化能的测定”。(2)融合式教学是指在上述特色课程模块和实践教学课程模块中将环境工程和化学工程中的知识、原理、技能融成一体进行教学。例如,《化工污染控制工程》中教师可结合工程实践进行“流化床化学反应器处理农药厂废水”的专题教学,将流化床工艺设计参数、原理、废水排放标准等融合在一起进行教学。(3)案例式教学就是指在环境工程与化学工程复合型人才培养的教学过程中结合教学内容运用工程中的实际案例进行教学。例如,《水污染控制工程》中教师可结合工程实践进行“电镀厂含铬废水的深度处理”的案例教学。(4)研究型教学是指在环境工程与化学工程复合型人才培养的教学过程中教师结合教学内容,通过创设学习情境,促进、支持和指导学生完成研究型学习活动,来综合培养学生能力与素质的一种教学方法。例如,在“Fenton试剂降解除草剂2,4-D反应速率常数和活化能的测定”实验中,教师可引导学生自己查阅文献资料,引导学生思考如何测定溶液中2,4-D的浓度?如何用计算机软件绘制2,4-D浓度的标准曲线?让学生自己确定实验中所需要的仪器和使用的方法,引导学生思考FeSO4和H2O2使用量对2,4-D降解速率的影响,如何求算该降解过程中的速率常数K和表观活化能Ea?
4环境工程与化学工程复合型人才培养的师资队伍建设
良好的师资队伍是实施环境工程与化学工程复合型人才培养的关键。要培养环境工程与化学工程复合型人才,首先必须有环境工程与化学工程复合型的师资。笔者认为,要改变目前环境工程与化学工程复合型的师资匮乏问题,可从如下几个方面加强环境工程与化学工程复合型人才培养的师资队伍建设。(1)引进、培养具有环境工程和化学工程双专业学位的高水平的博士或硕士,他们在学士、硕士或博士学位教育期间接受过环境工程、化学工程的专业教育,具备环境工程和化学工程复合的知识结构和科研素养,是环境工程与化学工程复合型人才培养的理想师资队伍。(2)教师交叉自学和资格认证。在学院内部要求有环境工程专业学位的教师参加化学工程的本科理论与实践教育,要求有化学工程专业学位的教师参加环境工程的本科理论与实践教育,教育期满后进行考试认证,达到认证资格的教师才能评聘为环境工程与化学工程复合型人才培养的师资。(3)聘请企业有工程实践经验,且有良好师范素养的工程师参与环境工程与化学工程复合型人才培养的教学和科研工作。
5学生自主学习是环境工程与化学工程复合型人才培养的重要手段
现代环境工程和化学工程日新月异,要培养环境工程与化学工程复合型人才,单靠教师的培养显然是不够的,必须充分调动学生自主学习的积极性。高等院校拥有丰富的中文、英文文献资料数据库,有丰富网络平台资源;高等院校图书馆拥有大量的纸质版和电子版书籍、期刊和报纸;高等院校实验室拥有大型的现代化仪器等。这些资源为学生的自主学习提供了良好的物质保障。教师在环境工程与化学工程复合型人才培养的教学中,以问题、专题为核心,引导学生自主学习、相互交流,从而优化学生的知识结构和能力结构。例如,教师可引导学生查阅相关网站,自主学习“离子交换树脂”专题,要求学生掌握离子交换树脂的分类、命名、合成、性能、工作原理、再生方法及在污水处理中的应用等,并要求学生要充分利用学校网络资源,构建自身交流的QQ群,进而广泛、深入、持续地交流。总之,在今后环境工程与化学工程复合型人才培养的研究与实践中,我们还需要不断地努力探索与实践,逐步形成科学、系统的环境工程与化学工程复合型人才培养体系,为环境工程与化学工程复合型人才培养提供启示和建议。
作者:孟秋冬肖谷清胡拥军单位:湖南城市学院图书馆湖南城市学院化学与环境工程学院
关键词:能源化学工程;培养目标;课程体系;人才培养模式
1能源化学工程专业的产生
随着世界经济的不断发展,人类社会对能源的需求越来越多。能源问题成为21世纪人类面临的最基本问题。长远来看,在全世界范围内,一次能源仍将占主要地位。但随着时间的推移,一次能源逐渐消耗殆尽,煤、石油和天然气等含碳能源的洁净、高效利用,太阳能、风能、地热能、生物质能、潮汐能等具有清洁、低碳、可再生等优势的新能源的开发利用将成为未来世界经济可持续发展的关键[1]。能源化学工程(EnergyChemicalEngineering)作为一个全新的专业应运而生。安徽理工大学化学工程学院化学工程系根据自身化学工程与工艺(煤化工方向)专业优势,仅仅依托煤化工,但又不局限于煤化工,涵盖燃料电池、生物质能、电化学、生物柴油、环境化工等丰富内容,于2011年新增加能源化学工程专业。关于能源化学工程专业本科生课程体系建构、人才培养模式正处于不断探索和完善中。
2能源化学工程专业的培养目标
能源化学作为化学的一门重要分支学科,是掌握煤炭综合利用,了解非煤矿物能源,普及新能源和可再生能源知识、实现能源科学利用和可持续发展的重要科学技术基础。它利用化学与化工的理论与技术来解决能量转换、能量储存及能量传输问题,以更好地为人类经济和社会生活服务。化学变化都伴随着能量的变化,而能源的使用实质就是能量形式发生转化的过程。能源化学因其化学反应直接或者通过化学制备材料技术间接实现能量的转换与储存[2-8]。能源化学工程属于一个全新的专业,之前仅在化学工程与工艺专业里涵盖过一点,主要关注怎么利用能源、对大自然造成较少的伤害。主要研究方向:能源清洁转化、煤化工、环境催化、绿色合成、新能源利用与化学转化环境化工。如今上升到一个全新的专业独立出来,可见其重要程度。专业人才培养目标的制定应建立在对专业深入分析和了解的基础上并结合国情、校情,能源化学工程专业人才培养目标也不例外[9-10]。考虑到安徽省淮南市是历史悠久的煤炭城市,再结合安徽理工大学化学工程学院化学工程系专业的办学特色,考虑专业发展与社会进步对人才的客观、合理的要求。我们在制定本专业的培养目标时,强调“厚基础、宽专业、高素质”,力求培养出具有良好科学素养、基础扎实、知识面宽,同时具有创新精神和国际视野的高级专门应用型人才[11-12]。学生具有了扎实的化学化工基础知识和能源化学工程专业知识就能够快速适应涉及化学、化工、传统和新能源加工等领域的相关工作。具备在煤炭行业、电力行业、石油石化行业、生物质转化利用行业从事低碳能源清洁化、可再生能源利用以及能源高效转化、化工用能评价等领域进行科学研究、生产设计和技术管理等工作。我们培养的毕业生工作领域包括:煤化工行业、天然气化工行业、电厂化工综合利用行业、生物质能源化工行业、固体废物综合处理行业、石油加工行业、石油化工行业、催化剂生产和研发行业。可以在这些行业从事设计、科学研究、技术管理等工作或继续深造[13-16]。
3能源化学工程专业课程体系
除了公共基础课程、学科专业必修课程,立足能源城淮南市,依托安徽理工大学化学工程学院化学工程系的特色开设特色专业核心课程(如,能源化工导论、化学反应工程、化工热力学、化工分离工程、煤化学、工业催化I、能源化工工艺学、化工过程分析与合成、化工过程控制、化工设计基础)以及特色专业任选课(如,煤气化工艺学、煤基合成燃料、生物质能源及化工、燃烧工程、燃料电池、现代仪器分析、电化学工程、膜科学技术过程与原理、基本有机化工工艺、废弃物处理与资源化、环境化工、化工专业英语)。此外专业实践模块本系能源化学工程专业开设的专业基础实验-《煤化学及工艺学实验》,包含实验项目:煤样的制备、煤样的粒度分析、煤样堆积密度的测定;煤中水分、灰分、挥发分产率的测定及固定碳的计算;煤中硫元素的测定;煤的发热量测定;煤中碳氢元素的分析;煤气成分分析;烟煤坩埚膨胀序数的测定;烟煤奥亚膨胀度的测定;煤的粘结性指数的测定;煤灰熔融性的测定。这些实验项目以煤化工为特色,厚基础理论,意在培养学生扎实的理论基础。开设的专业实验-《能源化工专业实验》,包含实验项目:煤样的XRD分析;煤的热重分析;水煤浆的制备和性能评价;油品的常压蒸馏;生物柴油制备及性能评价;石油产品的性能测定1;石油产品的性能测定2;电化学-燃料电池电化学性质的测定;电化学-质子交换膜电化学性质的测定。这些实验项目不限于煤化工,设计生物柴油,电化学,燃料电池等,重在拓展知识面,培养宽专业,高素质人才。
4能源化学工程专业建设中存在的问题
安徽理工大学化学工程学院化学工程系根据自身化学工程与工艺(煤化工方向)专业优势,开设能源化学工程专业,经过这些年的不断摸索,至今已有一届毕业生,通过学生反馈,在专业建设上仍有一些不足:
(1)专业实践教学条件有待改善。就当前现状来看,本专业实验条件还相对落后,缺少大型分析仪器和设备,实验室建设相对滞后,现有实验器材台数还不能很好满足学生分组实验要求。
(2)师资队伍建设还需进一步加强。由于本专业办学历史较短,师资力量相对不足,专业结构也不近合理,一批青年教师还需逐渐成长,缺乏高水平科研项目和教学研究成果。
(3)部分课程设置不尽合理,同时,专业基础课、专业课开课的先后顺序还需进一步调整和完善。对于新开设的课程,有的授课教师对内容不太熟练,有必要加强教师的授课水平,有条件的话可以走出去,加强与兄弟院校和科研院所的交流合作。
(4)校外实习基地建设有待加强。现有实习基地以煤化工企业为主,与能源化学工程专业培养目标中强调的“宽专业”背景还有一定差距[17]。以煤化工行业为背景的院校能源化学工程专业建设是一个不断发展的过程。在开设该专业时仍需明确方向,吸收、借鉴相关院校办学经验,不断摸索、改进、完善专业建设。不仅要办出自身专业特色,还要进一步解放思想,紧跟经济社会发展需要,培养出适应经济社会发展的高素质应用型人才。截止到目前为止,安徽理工大学能源化学工程专业建设经费陆续到位,新进大型设备招投标已完成,等待供货、安装调试。专业教师也正忙于实验室和实训基地的规划设计。结合应用型人才培养目标,学院领导带领专业教师通过广泛调研,集众家之长,具有专业特色的实践教学基地也逐步落实到位。相信安徽理工大学能源化学工程专业的明天会更加光辉灿烂。
参考文献
[1]刘淑芝,王宝辉,陈彦广,等.能源化学工程专业建设探索与实践[J].教育教学论坛,2014(06):209-210.
[2]韩军,何选明,王世杰,等.《能源化学》教学团队多导师制的探讨[J].科教导刊(上旬刊),2011(09):72-73.
[3]龚启迪.浅析我国能源化学发展模式[J].化工管理,2015(24):4.
[4]2013年贵州大学新增专业介绍及就业方向[OL].高中频道-中国教育在线,gaozhong.eol,2013.
[5]2013年东北电力大学新增专业介绍及就业方向[OL].高中频道-中国教育在线,gaozhong.eol,2013.
[6]《能源化学》[OL].重庆创业资讯共享平台-重庆高技术创业中心,www.cqibi.cn.
[7]能源化学工程专业-百度文库[OL].wenku.baidu.c,2012.
[8]能源化学工程-百度文库[OL].wenku.baidu.c,2012.
[9]孟广波,毕孝国,付洪亮.能源化学工程专业优化实践教学体系研究[J].中国电力教育,2014(03):145-146.
[10]钟国清.无机及分析化学课程改革的实践与思考[J].化工高等教育,2007(05):11-14.
[11]徐美玲,李风海.能源化学工程专业无机化学教学改革的探索[J].山东化工,2015,44(17):150-151.
[12]高庆宇,吕小丽,蒋荣立,等.能源化学化工实验课程体系的建设与实践[J].化工高等教育,2009,26(02):20-23.
[13]陈彦广,韩洪晶,陈颖,等.基于国际化、工程化能源化学工程创新人才培养模式的评价及效果[J].教育教学论坛,2013(13):224-225.
[14]陈彦广,韩洪晶,杨金保,等.能源化学工程专业本科生创新能力培养体系的建立与实践[J].教育教学论坛,2013(15):228-229.
[15]王淑勤,郭天祥,汪黎东.能源化学工程专业建设初探[J].山东化工,2015,44(19):116-117.
[16]走进奇妙的“化学反应”中-历数化工制药类专业[J].考试与招生,2012(5):42-43.
20世纪前叶,一批重大化学工艺出现使得化学工程这个学科在学术界崭露头角,而煤和石油迅速发展也要求有透彻的理论指导与专业知识,因此作为化学工程的一级学科应运而生。经过几十年的发展,化工学科逐渐走向成熟,目前国内各大地方院校中,绝大部分开设了化工工程专业及其类似专业,为我国化学工业培养了大批人才。但是随着时代的发展,高校化工教育也面临着一些问题和挑战,这也成为我们亟待改革教学模式的原因。
(一)化学工程与高新技术学科交叉发展
化学工程涉及面广,且涉及品种多、数量大,不仅关系到人们生活的方方面面,也是提高人们生活质量的“载体”和“桥梁”。而化工在学科上与材料、能源、化学等学科联系越来越紧密和深入,因此在人才的培养上也应该遵循学科发展规律,培养专业化、多样性复合人才。目前,我国高校专业教育仍然停留在过去传统教学方式,与高新技术发展的现实有所脱节,学科交叉引起专业界限的淡化,因此在教学过程中不应在仅仅强调本专业知识的把握,更应着眼于未来,打造化工与生物技术、计算机技术等交叉发展的新型教学模式,培养多层次、复合型人才。
(二)人才就业观念和培养模式改革
这就要求高校化工教育人员转变教学模式,从化学教育深层理念创新入手,扩大学科内涵,改变教学设置和教学方法,开展以理论教学作为基础,以实践训练为载体的教学模式,努力提高化工学科教学质量。就目前情况来看,“平台加方向”实为不错的选择。近年来,我们以主动适应经济社会发展需求的人才培养模式,以深化改革教学模式与实践等教学项目为依托,进行了人才培养模式改革的探索和实践。根据社会需求,调整学科专业,压缩冷门内容,采取专业互补的形式,拓宽专业发展方向,尽可能增加知识含量。此外,化学工程专业应紧密与生产实践相结合,通过建立不同种类的培训基地,在打好基础理论知识前提之外,尽可能增加实际操作的经验,以便毕业后很快适应工作环境。
(三)教育模式落后,学生创新能力不足
人才的竞争是一切竞争的核心。教学模式的落后直接导致学生创新能力不足,难以承担新领域开发和高新技术研发的重任。高校教学仍然遵循过去传统的教学模式,单一的授课模式容易导致学生缺乏学习化学工业的热情,进而导致学生缺乏创新意识。这也是目前高校教学中存在的主要问题之一。针对上述情况,未来高校必须在人才培养以及课程教学方面有所改变,适应当今社会对化工人才的要求和化工产业未来的发展方向。具体说来,可从基础专业知识和课程改革入手,打造高素质专业人才。
二、高校化工类人才培养模式及课程改革探讨
(一)适应社会发展,拓展专业外延和内涵
1.重视新兴专业,与社会接轨。
近年来,高新科技发展突飞猛进,与人们生活有关的各种新科技层出不穷,特别是生物化工与新能源等发展十分迅速,在日常生活与生产方面发挥越来越大的作用。我们高等教育院校应该抓住当前发展契机,重视新兴产业的出现和发展,努力调整专业课程,与社会发展接轨。特别是生物制药、节能减排、环境保护等作为人类的重要课题,近年来引起了人们的极大重视,这些都是当前化学工程未来的发展方向和重要领域。高校教育应及时了解行业最深动态,调整教学方案,以适应当前化工行业发展的现状。
2.把握发展趋势,发掘专业内涵。
化学工程最早包括“化学工程”、“化工自动化”等几个板块,但就目前的形式看,仅仅围绕这几个传统板块展开教学已不能满足现在的产业发展现状,应在原有基础上发掘专业内涵,确保传统人才培养紧跟学科发展趋势,不断充实基础知识和专业知识。另外,根据信息技术在化工领域应用的愈加广泛的特点,一方面将其纳入传统课程体系,另一方面,与信息学院、生物学院等展开合作,探索和实践复合型人才培养模式,使化学工程焕发新的生机。
(二)深化教学改革,提升人才培养质量
美、英、德等西方发达主义国家早就将“通识教育”作为高等教育的核心内容,澳大利亚也明确指出到2020年高等教育的使命是输送符合国家和全球劳动力市场需求的、有知识、技能和适应能力的优秀人才。我国紧跟世界发展步伐,也将提高教学质量作为未来一段时间教育领域发展的重要领域来把握。尤其当前我国“世界工厂”的地位,导致对于人才需求的变化速度非常快,毕业生也面临日益严峻的就业压力,因此,深化教学改革,提升人才培养质量成为当前教育领域的重点。
1.变革课程体系,注重课程质量。
本着务实专业基础,注重能力培养的原则,高等院校,特别是石油高校应认真梳理与优化传统化工课程,同时根据现代化工发展方向和发展重点,打造适应化工人才培养的专业课程体系,这不仅要求高校对传统课程进行整合,更要抓住重点,利用化工学科与其他学科的交叉点,拓展化工专业课程,与其他课程相互支撑,形成一个有机整理,以满足新形式下的化学工程技术发展要求。努力提高课程质量也是当下高校发展需着重考虑的重要方面,如何将枯燥的原理课程讲得精彩、生动,培养学生对于化工产业的热爱并激发学生投身化工实业的热情,这是衡量课程质量的一个重要标准。根据一项研究调查显示,在化工专业毕业生对高校教学效果等评价中,与世界总平均值相比,中国化工教育只有教师优秀与敬业精神一项略高于平均值,而包括教师激励作用、就业所需课程深度、授业满意度以及课程组织优劣等其他四项评选,中国的得分全部低于世界平均值。这其中尤其需要警惕的是,中国学生学习化工专业愉悦程度仅仅为67%,这一成绩远远低于美国、澳大利亚以及英国等同类学生,这一调查结果也给我们化工教育从业人员敲响了警钟。
2.加强创新实践教学环节。
“纸上得来终觉浅,绝知此事要躬行”。实践教学环节对于学生创新能力的培养非常重要,高校可利用自身资源和外部条件,从实验教学和实习教学两方面加强学生实践能力。高校可利用现有实验室,开设大量综合性、设计性、研究性等实验项目,将创新能力培养融入实验教学过程中,启发学生主动探索创新,增强学生的创新意识。实习教学作为化工专业极为重要的一个环节,在培养学生实践能力的过程中也起到极为重要的作用。过于单一、落后的教学模式很难适应当前瞬息万变的就业环境,必须积极的组织实习教学,建立高效与高新技术企业之间的合作关系,通过人才输送等渠道加强学生与企业之间的联系,有效调动学生学习的积极性、主动性,并在实习教学过程中及时发现问题、解决问题。
3.构建优良育人环境。
在我国高校教育领域,过去往往过分强调“教书”,而忽略了“育人”;过分强调“教学”,而忽略了“教育”。这种情况导致的结果就是,高校毕业生很多时候不能适应社会发展的需求,所学专业仅仅局限于课本知识,缺乏应有的动手操作能力,或者所学知识与社会脱节,最终不得不背弃自己所学专业。西方教育在之前的发展过程中也曾出现过类似情况,而中国目前这种情况则相当突出。我们如何吸取发达国家的经验教训,将可迁移性技能培养作为基础知识领域外的重要环节,努力培养学生可迁移性技能是高校教育的必由之路。除了这些基础知识的培养外,更应该注重大学生心理健康与道德品质方面的培养,学生可通过良好的素质进行自觉地学习与提升,很快适应未来的就业岗位与就业环境,这是高校未来人才的培养方向。在高校课程设置过程中,以专业知识为主线,以可迁移性技能培养为辅线,增加学生团队合作的机会,进一步提高学生合作精神和交流理解水平,不断提高大学生解决实际问题的能力,使其成为社会与企业放心人才。
三、结语
美国化学工程师学会(American Institute of Chemical Engineers, AIChE)北京化工大学学生分会是美国化学工程师学会国际学生分会的一员,是国际化的学术创新性组织。
AIChE北化学生分会主要通过参加Chem-E-Car竞赛、参与化工国际会议以及举办讲座、座谈来为化学工程相关专业学生提供一个更加便捷的接触学术界和工业界的渠道。
分会面向化工学院、机电学院、材料学院、理学院、信息学院相关专业本科生。
分会目前正筹建独立学生创新工作室,用于后续创新实验工作,主要创新项目为Chem-E-Car(化学工程车)。
Chem-E-Car竞赛是由美国化学工程师学会(AIChE)组织开展的一项具有国际影响力的赛事。该竞赛是一项针对大学生运用化学工程技能并进行跨学科应用的大赛,要求参赛队伍在不使用任何商业电池的前提下,以化学反应为动力源、设计和制造出既能载重、又能通过化学反应精确控制行驶距离的“化工车”。自1999年第一次在美国举办至今,吸引了全球众多顶尖高校积极参与,比赛队伍经过地区赛的严格选拔,最终入围年度竞赛。
Chem-E-Car是理论与实践的融合,看似简单的化工小车,却展现出一个完整的创新型化工专业人才全周期培养过程:整个项目涉及到物理化学、化工原理、电工学等专业课程知识,同时对英语、编程、科技论文写作、工艺设计、工程制图、环保、危险品管理等方面能力有较高要求,随着项目的进行,同学们的研究创新和动手实践能力将得到全方面的提升。
AIChE北化学生分会,于2017年5月赴天津大学参加第一届中国大学生Chem-E-Car竞赛获全国第三名,入围年度世界竞赛;同年10月赴西班牙巴塞罗那参加第十届世界化工大会(WCCE),并参加国际Chem-E-Car竞赛获世界第四名。
我们对我校化学工程与工艺专业近五年来的招生率和就业率进行了统计和分析。近5年来的第一志愿的平均报考率约为26%,就业率约为95%。低的报考率说明学生对该专业的认识不足或缺乏兴趣和自信,而高的就业率说明化工行业对该专业的需求量较大。从生源的招生率来看,重庆的约占65%,外地约占35%。从就业的人员从事行业的统计数据来分析,从事化工行业的约占70%,其他行业的约占30%。从就业率的地域分布来看,在重庆工作的约占75%,在其他省份工作的约占25%。从上述分析数据可看出:一方面是大部分学生为调剂生,存在对专业兴趣不足或缺乏专业自信,因此,必须在第一个实践性教学环节-认识实习中激发学生的专业兴趣和培养学生对化工行业的热情及专业自信心;另一方面,我校培养的化工人才绝大部分服务于本地,因此,我校化学工程与工艺专业担负着为重庆化工行业输送工程性技术人才的重任。
2全国同类高校的化学工程与工艺专业认识实习的现状
目前,全国高校的认识实习时间几乎都安排在学习专业课之前,安排为期一周的认识实习,旨在使学生初步了解专业内容,增强学生对各种化工企业的感性认识,激发学生学习后续专业课程动力和兴趣,以增强学生对后续要学习的化工原理、分离工程、化工工艺学和化工设计等专业课程有初步的认识。但普遍存在认识实习的时间短,经费有限等问题,认识实习仅体现于单纯的现场参观实习。我校在大一结束的夏季学期安排了为期1周的认识实习,由指导老师带队参观西南地区的大中型化工企业和研发机构,同样由于实习经费和时间有限,学生只能看、问、听不能动手操作。对于尚未接触专业课的大学生来说,这种走马观花的认识实习显得生疏且抽象,学生只能看到表面的企业生产情况、工艺流程与设备,无法深入理解化工是我市的支柱产业之一,更不能激发他们对化工行业的热情和兴趣,进而导致我校化工专业大部分调剂学生对专业的积极性降低等实际问题。对2006、2007和2008届化工专业的学生在认识实习后进行座谈会交流,50%以上的学生认为这种认识实习效果一般,甚至有近5%的学生认为实习效果甚微。因此,面临招生就业的新形势,如何提高认识实习效果与实习效率是急需解决的课题。
3我校化学工程与工艺专业认识实习的改革与探索
3.1强化校企产学研合作实习基地
基于重庆长寿天然气化工产业园区,涪陵化肥化工产业园区和万州盐化工产业园区三大化工基地的地域特色优势和发展,地方高校培养的化工应用型人才大部分会服务于重庆的地方支柱产业,因此,我们选择了具有地方特色的产学研合作基地,既让学生深入了解重庆化工产业的发展,同时也解决了实习经费有限和工厂不愿接收大规模学生实习等问题。选择的特色产学研合作基地如下:一是与我校开展合作共建工程技术研究中心的江津德感工业园区的“重庆三峡油漆股份有限公司”和万州盐化工园区“重庆大全新能源有限公司”等,二是我校科技特派员下乡入园进企的涪陵李渡工业园区的“中化重庆涪陵化工有限公司”和“巫山天地农业开发有限责任公司”等,三是与我校专家开展科技攻关合作的北碚产业科技园区的“重庆仪表材料研究所”、长寿化工园区的“重庆紫光化工股份有限公司”和“重庆博赛矿业(集团)股份有限公司”等,四是与我校开展广泛科研合作的科研院所“重庆化工研究院”和“重庆化工设计研究院”等。这不但使我们与各单位确定了稳定的合作关系,实习过程不会敷衍应付。企业指导老师也会因为校企合作认识到自己是实习工作的负责人员,会更加积极主动地参与实习,并愿意与学生交流,热心回答学生所提出的问题,取得较好的实习效果。
3.2打造专业的认识实习的师资队伍
学校选派教师深入实习基地或相关企业和从企业中选聘具有较高理论水平和素质的技术人员作为实习指导教师,提高教师的实践能力,为实习教学提供重要的保证条件。如为了让学生更好地了解无机化工工艺学“合成氨”的生产工艺流程,我们邀请了建峰化工有限公司的技术总工为我们讲解空分、气化、净化、合成等四个工序,充分理解原料气如何制备和净化,合成氨反应塔的结构及能量综合运用与节能减排。在学习有机化工工艺学时,我们派送了教师去紫光化工有限公司挂职学习蛋氨酸等有机产品的生产工艺,再进行认识实习的指导。通过打造专业的师资队伍,认识实习的效果明显增强。
3.3开展三大化工园区的专家大讲堂
围绕重庆的化工产业发展,为更好地让学生了解重庆化工产业链布局,邀请三大化工园区的管委会领导和实习工厂总工程师及车间技术高工来校讲学,使学生更好地了解实际工业生产,减少现场实习的盲目性。为了让学生更好地理解“天然气化工”的产业发展和高附加值精细化学品和高分子化学品产业,邀请长寿化工园区管委会主任来我校讲学,让学生理解石油化工、天然气化工、氯碱化工、生物质化工、精细化工和新材料产业的布局及相互关系,深入理解“产业项目一体化、环境保护一体化、公用工程一体化、物流配送一体化、管理服务一体化”等可持续发展观和循环经济理论,构建学生工程思维。为让学生理解“磷化工”产业在我市经济发展中的作用和地位,邀请了中化重庆涪陵化工有限公司的总工程师给学生介绍磷化工产业的概况、发展历程、市场动态,并详细讲解各车间的工业原理、工艺流程、生产设备及本专业领域最先进的新技术、新工艺、新材料、新设备、研究热点以及市场前景。这些大讲堂激发了学生的求知欲,增强对其所学专业的使命感和责任感,从而增加了他们学习专业知识的动力。
3.4引入现代CAE技术
在学生看、问、听的实习过程中,学生无法了解各种反应器、换热器、精馏塔和泵等设备的内部结构的,这对学生学习后续的专业课程,如化工原理、化学反应工程、分离工程和化工工艺学,是非常不利的。基于这方面的考虑,我们做了两方面的准备。一是准备了专门的实习课件,课件中包含了大量的实物照片(原料,反应工艺和产品分离和输送)、实景录像(具体流体输送、搅拌、精馏、吸收和干燥等单元操作)等,课件真实、形象、生动地展示出离心泵、搅拌反应器、精馏塔和换热器等设备的内部结构,并让学生对尚未学到的化工单元操作原理、典型设备结构和操作有所了解。二是我们建立了计算机仿真实习系统,将认识实习工厂的具体产品的生产工艺(如合成氨制气、净化、合成工艺),所涉及的单元操作(吸收、干燥和精馏等),典型设备(离心泵、反应器、精馏塔和换热器等)作为主要内容,对生产工艺进行模拟,让学生在计算机上模拟工业过程,对制气、净化、合成等工艺的管件、阀件和控制仪表进行操作,对工艺参数进行控制和调节,进行开、停车及事故处理等各种仿真操作。这些计算机辅助教学技术可激发学生的学习兴趣,增强学生思考问题、解决问题的能力,培养学生的创新能力。
3.5强化认识实习教学管理与指导
加强实习教学管理与考核有利于提升学生的认识实习效果,让学生意识到化工工业生产过程不仅仅是需要先进的化工技术,更重要是的是理解化工生产过程是严谨而有序的,监管是严格科学的。我们要求学生在实习过程中需严格按照工艺操作规程和工艺要求,认真做好实习记录,不得有丝毫松散与马虎。每一个工段实习结束,开展了现场技术人员与学生、教师的研讨会,引导学生在认识实习过程中大胆怀疑,提出问题、分析问题和解决问题。实习结束,我们开展了认识实习的交流会,启发学生思维,培养在生产实践中的创新观念和创新能力。实习结束时需要提交实习报告(包括实习时间、地点、工厂概况、实习车间的主要设备与工艺流程图、产品的生产原理和工艺流程草图、三废处理和环境保护、实习心得体会和合理化建议)。
关键词:化学工程基础;课程改革;人才培养
中图分类号:G642.0?摇 文献标识码:A 文章编号:1674-9324(2012)05-0027-02
“化学工程基础”是理科院校化学专业的专业基础课程,主要内容为化学工程的基本原理和化工生产的各种单元操作,包括化工过程的动力学原理、热力学原理、能量守恒与转换原理、质量传递原理以及相应过程的控制机理、操作方法、影响因素、设备结构和工艺过程等,具有与生产实践紧密联系的特点,应用性很强,是理科化学类专业唯一的一门工程技术课程。
一、人才培养的要求
当代化学工业对化学化工类人才的培养提出了更高的要求。如何培养基础理论知识扎实、工作适应性强、具有创新能力的人才,是综合性大学化学化工教学改革面临的重要课题。目前,综合性大学化学与应用化学专业每年都有相当一部分毕业生进入化学、化工和制药等企事业单位业从事研究开发或工程技术工作,这种趋势还会随着创新性国家的建设而逐年增长。化学工程基础是综合性大学化学专业的专业基础课,也是唯一的一门工程技术类课程,该课程的教学改革与实践对于理工学科交叉与学生综合素质的培养是综合性大学化学与应用化学专业其他课程所不能替代的。在充分发挥综合性大学基础理论研究优势的同时,通过对理科专业化学工程基础课程教学内容的更新、充实和调整,为化工类企事业单位培养和造就具有开拓创新精神、胜任科学研究与工程技术工作、适应性强的化学化工专业人才。
二、教学内容与教学方法的优化
以创新教育思想为指导,研究改革化学工程基础课程教学内容和教学方法,建立培养学生创新能力的化学工程基础课程内容新体系。动量传递、热量传递、质量传递与化学反应工程(“三传一反”)仍将是化学工程基础教学的核心内容,应不断充实更新才能反映学科发展现状和适应社会经济需求。化学和化学工程学是支撑物质转化相关工业的学科,前者研究分子之间发生反应的可能性、必要的条件和产物的结构,后者研究物质的流动、质能传递及其对反应过程与产物的影响。
1.优化更新教学内容,反映体现学科发展与技术进步。化学工程基础作为理科化学专业的工程技术课程,其教学内容除了动量传递、热量传递、质量传递与化学反应工程以外,还应当及时反映和体现学科的发展与技术进步。根据授课学时,突出教学重点,优化教学计划,精选教学内容。以化学工程学的基本观点、基本原理和基本方法为核心,结合典型化工过程,理论联系实际,使学生在有限的教学学时内,掌握本门课程的基本知识,熟悉研究与应用对象,为今后从事化学化工专业技术工作打下坚实基础。在其他科学技术的带动和社会需求的推动下,化工分离技术近年来取得了很大进步。新技术不断涌现,膜分离和超临界流体萃取等新型分离技术就是其中的代表。我们在教材的编写和课堂教学中,有意识地加入这些内容,便于学生从课堂上了解新的科学知识,拓宽学术视野。
2.引导学生建立工程技术与技术经济观点,提高学生综合素质。科学与技术的交叉和渗透,要求我们培养的学生不仅要掌握扎实的基础理论知识,还要学会运用所学的理论解决工程实际问题。综合性大学理科化学专业的学生基础理论知识比较扎实,在课堂教学中,我们根据教学内容,结合工程实际,启发学生从工程实际问题出发,强调工程实际的特点,突出工程实践的技术经济问题,灌输学生节能减排与绿色环保的理念,训练学生综合运用数学、物理与化学等多学科知识,综合分析化工单元操作与工业装置中涉及的复杂问题,培养学生的工程技术思维方法与工程设计等综合素质。
3.改进教学方法,提高教学效率。化学工程基础课程的课堂教学内容涉及化工单元操作与工艺过程。综合性大学化学专业的学生一般没有见过真实的化工设备,对化工厂与化工设备和装置缺乏感性认识,通过多媒体教学技术和传统课堂教学方法,可以促进学生感知与思维、理论与实践的结合,提高学生对化学工程基础的学习兴趣,激发他们的学习热情,使他们由不熟悉、不了解化工企业与装置转变为喜欢应用学科、乐于进入与应用密切相关的教师实验室开展业余科研。为此,我们一方面利用多媒体的优点,在课堂教学中放映一些设备的实物图像。另一方面,在有关课程中增加了实习参观环节,组织学生到石油化工厂、有机化工厂和精细化工厂等企业参观实习,增强学生对加热炉、精馏塔、泵、换热器等主要化工设备的感性认识。
三、教学团队与课程体系的建设
以先进的教学理念为先导,以高水平的教学团队为根本,以科学的课程新体系为核心,以优良的规划教材为保障,强化教学团队的建设,使所有主讲教师成为教学改革的高水平运动员和创新教育的优秀教练员。
1.建设高水平教学团队。从事课堂和实验教学的主讲教师也要承担高水平的科研项目,提高教师的科研水平。我们承担“化学工程基础”的主讲教师都具有教授职称并担任博士生导师,承担了一些科学研究项目。同时,也积极思考和实践课程的教学改革,奠定了学生创新能力培养的坚实基础。没有高水平的教学团队,不可能进行教学改革的实践,更不可能培养出具有创新精神的学生。
2.构建工程教育、创新教育的课程体系。夯实基础,将理科化学知识和工程知识有机结合。理科化学基础课程、化工过程开发、化学工程基础及多门专业课程的开设,可将学生所学知识形成知识链。重视对学生业余科研和毕业论文的指导,吸引对化学工程有兴趣的同学来实验室和博士研究生、硕士研究生一起进行科学研究,培养学生的创新意识和对科学研究的兴趣。通过毕业论文阶段的培养,加强了学生对知识的掌握和运用,特别是对“应用”和“工程”概念的强化。近年来,来我们化工实验室进行业余科研和毕业论文的学生每届都在十人以上,占理科化学专业学生的5%作用。
3.将科研成果向教学实践转化,形成教学促进科研、科研反哺教学的良性循环。构建应用学科人才培养、现代科技发展相适应的“基础性、综合性、工程性、创新性”体系。我们承担了国家和企业的一些化工类科研项目,特别是在水与废水处理、化工分离和国防化学等方面取得了一些科研成果,我们注意将教师的科研成果和科研实践融入课堂教学。从事课堂教学的主讲教师与实验课指导老师一起合作,将“渗透汽化膜分离”编入了实验教材和开展了教学实验,受到学生的欢迎。
化学是实验性很强的学科,化学工程作为一个共性的工程学科,我们应充分利用科学技术发展和教学改革带来的机遇,加强化学与化学工程的结合,为国家培养更多复合型创新人才。
参考文献:
[1]严世强.化学工程基础课程教学改革的认识与实践[J].大学化学,2003,18,(1):29-31.
[关键词] CDIO;化工实践教学;项目设计;实训改革
[中图分类号]G642.4[文献标识码]A[文章编号]10054634(2016)060097040引言
随着社会科技的飞速发展,化工行业对工程技术人才的要求越来越高。化学工程专业作为理工科专业之一,实施 CDIO 教育模式成为化工专业教学改革的重要方向之一[1]。化工实践教学是化工专业课程体系中的重要组成部分,其内容包含化工实训、化工仿真、化工认识实习、化工生产实习、本科生科研立项、专业课程设计、化学反应工程实验、化工原理实验及毕业设计等实践环节。进行化工专业实践教学的CDIO 模式改革,不仅可以提高教学质量,而且可以培养学生的工程素质、创新意识和团队意识,提高就业竞争力。
1基于CDIO教育理念构建化工专业实践教学体系按照 CDIO 工程教育模式要求,教学过程要以学生为主体,教学内容安排设计型及综合型内容,引导学生主动学习,提供更多的实践动手机会[2]。基于燕山大学省级化学实验教学示范中心的化工实践教学体系,是按照CDIO的工程理念对实践教学内容重新整合设计,构建了课程教学演示、化工仿真操作、实训综合、化工设计、科研创新5个层次的化工实践教学体系平台,兼顾基础性、综合性、研究性,如图1所示。1.1基础型
基础型包括教学演示和仿真操作。教学演示是使用化工设备多媒体素材库及化工原理实验仿真软件, 以真实直观的仿真界面和丰富的资料展示实际过程;仿真操作内容使用了“聚丙烯聚合工段仿真系统”和“苯胺生产3D虚拟仿真系统”等仿真系统[3],可以在计算机上真实地再现化工生产过程。仿真操作是学生在掌握化工产品的工艺流程及操作步骤的基础上,用计算机模拟化工产品生产过程中的开车、停车、正常运行及事故处理,弥补了传统实习学生无法亲自动手操作的不足。通过局域网互联的教师站,教师可以实时修改培训内容,汇总并分析学生成绩等。
1.2综合型
综合型内容由化工实训基地的多套化工实验装置组成,如图 1所示,这些实验装置的操作帮助学生树立工程实践概念,使其在完成化工产品的生产操作的同时在化工过程基本原理和化工实践之间建立起紧密联系。例如,在“化工生产工艺流程优化实验装置”的实训过程中,要求学生通过仿真DCS控制系统进行生产操作,由原料乙烯、氧气及冰醋酸经过换热器预热,在气固相管式反应器中反应生成产品醋酸乙烯酯,粗产品经过水洗釜、气液分离器分离后进入精馏塔进行精馏,得到的纯醋酸乙烯酯在聚合反应釜中发生聚合反应得到聚醋酸乙烯酯。该项目要求学生在掌握“三传一反”基本原理基础上,学会熟练操作并完成各项工艺参数的控制。该项目的实训操作不仅使学生理解了气固相催化反应器、气液分离器、醋酸乙烯酯精馏塔及聚合釜等化工单元设备的基本原理,而且可以培养学生的工程实践能力,实现基本理论与工程实践的结合。
科研创新型主要是在化工设计和科研方面。化工设计型按照CDIO的工程理念及教育模式要求,将本科生第6学期的化工原理课程设计、第7学期的专业课程设计及毕业设计环节整合到一起,由点到面,从局部到整体,对学生的分析和解决问题能力、创新意识和团队意识进一步训练。例如“丙烯腈合成工段设计”题目中,在化工原理课程设计中,要求学生在掌握化工过程基本原理后,根据老师给定的设计任务完成氨中和塔、空气饱和塔或反应器等某一化工单元的设计计算,而在专业课程设计中,要求学生在完成某一化工单元的设计任务基础上完成丙烯腈合成工段的初步设计与计算及工艺流程图的绘制,在毕业设计时候,则要求学生在专业课程设计基础上进行完整的工艺设计,包括主要设备的工艺计算、工艺设备、原料消耗、能耗表、排出物表及带控制点的工艺流程图等。
科研型是鼓励学生自主创新,积极参加创新与设计竞赛等。例如,学生在教师的指导与带领下,完成了“基于Aspen plus的聚醋酸乙烯酯生产工艺流程仿真及优化”和“平推流与全混流反应器系统仿真”等创新项目,并在由中国化工学会、中国化工教育协会、教育部高等学校化工类专业教学指导委员会主办的第九届全国大学生化工设计竞赛中荣获全国二等奖、华北赛区一等奖的优异成绩。
2基于CDIO模式的化工实践教学体系改革与实践2.1改革实训内容,培养学生工程实践能力
1)课堂教学引入讨论环节,培养学生工程分析能力。 按照CDIO的教育理念,课程的教学过程应围绕着设计项目展开。在化学反应工程教学实践过程中,分别针对课程重点内容“均相反应过程”和“气固催化反应工程”烧掳才帕肆酱翁致劭危由教师指定两章的讨论选题内容。例如,针对“气固催化反应工程”中的难点“固定床反应器计算”,要求学生在拟均相模型求解算法和Aspen Plus反应器计算中选题,学生在讨论课前需进行相关文献资料的查阅整理,讨论完后由小组派出代表进行主题发言,其他同学讨论主题发言同学的意见,最后由教师进行总结。讨论课使学生的综合能力、创新能力及团结协作能力都得到了加强和锻炼。
2)采用3D虚拟现实仿真,提高学生学习兴趣。CDIO的教育理念倡导“做中学”的教学方法,让学生在知识的学习和应用之间形成良性互动。3D虚拟现实仿真技术[4]营造了“自主学习”的环境,学习者可以通过自身与信息环境的相互作用获得知识与技能。在化学反应工程教学实践中[5],使用了“苯胺生产3D虚拟仿真软件”等仿真系统。如图2所示,学生在掌握了苯胺生产的工艺流程及流化床反应器的内部结构基础上,在3D虚拟生产环境中贴近真实地体验实际操作的感受,在激发了浓厚学习兴趣的同时更深刻理解了所学的专业知识,提高了学生分析和解决生产操作中各种问题的能力。
2.2采用项目式教学,培养学生工程设计创新能力和团队协作能力CDIO倡导“基于项目的教育与学习”。在化学反应工程教学实践过程中引入了Aspen Plus工艺软件进行三级项目设计[5]。项目要求学生结合实际问题从Aspen Plus反应器模块中进行选题,学生要采用类似讨论课的方式分组完成反应器的选型及计算模块选择、物性方法及参数的设定、计算过程和结果输出、项目报告及答辩等工作,以答辩的形式进行验收。
三级项目的实施为后续的专业课程设计和毕业设计等实践环节打下了良好的基础,学生通过对反应器模块设计的熟练运用,掌握了分析和设计化工过程的基本技能,同时也加深了对反应器设计基础知识的理解。例如,在“乙烯法生产聚醋酸乙烯酯工艺设计”毕业设计题目中,学生按设计任务对气固相催化反应器、油水分离器、醋酸乙烯酯产品精馏塔、水洗釜及聚合釜等化工生产单元进行分析,在完成设计计算后通过操作“化工生产工艺流程优化实验装置”来验证计算结果。此类项目设计与实施是对学生的工程设计能力和团队协作能力的进一步提高。
2.3利用化工实践教学平台,培养学生工程实践能力CDIO的含义为构思―设计―实现―运作[6]。将这一理论应用到化工实践过程上,就是化工过程的合成、设计、分析、评估和实现。利用图 1所示的综合型化工实训装置,选择具有实际应用背景的产品开发项目,企业工程技术人员和校内教师作为指导教师相互协作,指导学生组成团队合作完成设计案例。例如,在“聚乙烯醇合成工段工艺”设计题目案例中,以“化工生产工艺流程优化实验装置”为基础进行二次开发,利用Aspen Plus工艺软件设计了以聚醋酸乙烯酯为原料合成聚乙烯醇的工艺方案,初步完成了聚乙烯醇合成工段工艺设计计算、主要设备计算选型及工艺流程优化等工作。
2.4成绩评价体系的改革
在化学反应工程教学实践中,按照CDIO的教育理念,建立了一套完整实践考核体系[5],依据全程监控的理念从7个方面进行考核,见表 1。其中,讨论课、仿真操作及项目设计是考核的主要内容,学生在巩固反应器基本知识的基础上,又熟悉了应用Aspen Plus软件进行反应器设计的基本内容,并通过平推流和全混流反应器的实验操作做到了理论和实践的结合,真正实现了“做中学”。期末的闭卷考试只占总成绩的50%,闭卷考试分值的弱化也避免了以往学生考试突击及作弊的现象。
2.5加强校企合作,突出教师工程素质培养
校企合作及企业的参与是真正实现CDIO 工程教育模式的关键途径。全方位的校企合作不仅可以实现化工专业实践与科学研究、工程实际及社会应用的有机结合,而且对教师的工程素质的提高有很大帮助。学校和秦皇岛华瀛磷酸有限公司及中国阿拉伯化肥有限公司建立了长期的合作关系,积极推进校企共建平台建设,利用学校现有的科研平台及信息资源等主动服务于企业,帮助企业解决实际问题,加大企业参c高校人才培养的步伐,并由企业工程技术人员和校内教师共同指导学生来完成项目案例,保障实践教学的实施。
表1化学反应工程教学实践成绩评价
序号内容比例%考核方式1出勤5签到2作业5作业内容及完成情况3讨论10分组答辩、报告及PPT4仿真操作10仿真在线测试5项目设计10分组答辩、报告及PPT6实验10分组操作表现及实验报告7期末考试50闭卷考试3结束语
基于CDIO教育理念的化工实践教学体系,在实践教学的过程中效果明显,提高了化工专业的教学质量,培养和锻炼了学生的工程创新能力和团队意识。结合学校的人才培养和教学理念,在化工实践教学体系构建与实践过程中,不断深化CDIO工程教育改革,继续构思与设计以构建实施新的人才培养方案。
参考文献
[1] 顾佩华,沈民奋,李升平,等.从CDIO到EIPCDIO汕头大学工程教育与人才培养模式探索[J].高等工程教育研究,2008 (1):1220.
[2] 申延明,刘东斌,樊丽辉.化学工程与工艺专业应用型人才培养体系的构建与实践[J].化工高等教育,2014(3):13.
[3] 宋建争,李建军,张永强.化工虚拟仿真实验教学探索与实践[J].教学研究,2014,3(37):107109.
[4] 夏迎春,吴重光,张贝克.现代化工仿真训练工厂[J].系统仿真学报,2010,22(2):370375.
[5] 李建军,宋建争.化学反应工程教学改革探索与实践[J].化学教育,2015(10):5961.
[6] 查建中.工程教育改革战略“CDIO”与产学合作和国际化[J].中国大学教学,2008(5):1619.
Construction and exploration of chemical engineering practice system
teaching based on the concept of CDIO education
Li Jianjun,Zhang Yongqiang
(College of Environmental and Chemical Engineering,Yanshan University, Qinhuangdao 066004,China)
关键词:产学研;创新创业创意;化学工程领域;人才培养
作者简介:刘峙嵘(1969-),男,江西莲花人,东华理工大学化学生物与材料科学学院,教授;乐长高(1967-),男,江西抚州人,东华理工大学化学生物与材料科学学院,教授。(江西 抚州 344000)
作者简介:本文系江西省学位与研究生教育教学改革研究课题(课题编号:JXYJG-2011-028)、江西省学位与研究生教育教学改革研究课题(课题编号:JXYJG-2012-057)、江西省高等学校教育教学改革研究课题(课题编号:JXJG-11-8-14)的研究成果。
中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)35-0034-02
专业型硕士是我国研究生教育的一种形式,与学术型硕士处于同一培养水平。国务院学位委员会将专业学位定位为具有特定职业背景的学位,主要培养特定职业背景的高层次专门应用型人才。2009年首次招生以来,专业硕士发展迅速,专业类型、招生比例和招生专业都有大幅度的增加。预计到2015年,专业硕士招生将占研究生总招生的50%以上,我国将形成学术型研究生和专业型研究生均衡发展的总体格局。[1-3]
化学工程领域是一种工程硕士专业学位。化学工程是研究化学工业和其他工业过程中所进行的化学过程与物理过程共同规律的一门工程学科,涉及在化工、炼油、轻工、冶金、能源、医药、环保、军工等部门从事产品研制、工艺开发、过程设计、系统模拟、装备强化、操作控制、环境保护、生产管理等内容。
东华理工大学化学生物与材料科学学院2002年获得“应用化学”二级学科工学硕士点授予权,2005年获得“化学工艺”二级学科工学硕士点授予权,2008年获得化学工程领域工程硕士授予权,2010年获得“化学工程与技术”一级学科工学硕士点授予权。该学科拥有先进的实验平台,雄厚的科研开发实力。“化学工程与技术”硕士点拥有一支知识和年龄结构均较合理的师资队伍。
产学合作是一种学校理论学习与企业工程实践相结合的教育模式,相对于其他类型的人才培养,产学合作对化学工程领域人才的培养更为重要,丰富的实习实践训练、扎实的研究训练对提高研究生就业竞争力有很大帮助。与19世纪研究生教育产生时所处的社会环境不同,现代社会更加强调产、学、研的一体化。我校“化学工程”领域一直高度重视产学合作教育对化工人才培养的重要作用,对“产学研”与“创新创业创意”结合培养化学工程领域高级人才进行了一些探索和实践,取得了成效。
一、“产”为先、引导创业意识
东华理工大学(原华东地质学院)是江西省人民政府与工业和信息化部国防科技工业局(原国防科工委)共建的一所具有地学优势和核科学特色的高等院校,我校“化学工程”领域长期以来一直为核化学化工行业培养高级人才,一直与核化工企业保持良好的合作关系。
我校建校以来,长期受部委管辖,与当地化工企业联系很少。自从学校下放江西省人民政府管理以来,经过多方努力,积极与地方企业联系,义务为地方企业提供技术咨询和服务,增进了双方的了解和相互信任,局部弥补了企业领军人物和专业人才比例偏低的不足。目前已与江西省内十多家化工企业建立了广泛的产学研合作,如江西抚州添光化工有限公司、江西抚州三和医药化工有限公司、江西赣亮医药原料有限公司、江西抚州苍源生物科技有限公司、江西抚州市临川之信生物科技有限公司、江西省永方电源有限公司。通过不同层次层面的合作,形成了校企长期稳定的产学研关系,促进了企业通过加快引进高校技术成果来提升企业的科技竞争力,形成了产学相结合的化工初中高级人才培养基地和产学研结合的教学科研创新基地,又是企业破解行业技术问题和研究生培养的共同体。
产学研合作是指企业、科研院所和高等学校之间的合作方式,产学研合作是一个系统工程,其功能和作用都是双向的。导师鼓励研究生走出“象牙塔”,向社会学习,向基层学习,向实践学习,注重就业创业引导,努力使专业学习与创业教育紧密结合,专业实践与创业实践有效衔接,让研究生在“做中学”,进一步增强研究生创业理念,促进研究生创新创业能力,提高就业率和就业质量。企业的收获在于教学培养的人才和科研成果最终流向企业,通过一年实践学习,对实习企业有一定了解的化学工程领域研究生毕业后选择回实习企业就业,这些研究生对企业工艺流程有比较深刻的了解,不需要经过培训,很容易上岗;企业的技术骨干也可以到我校通过攻读化学工程硕士学位提高理论水平。
二、“学”为主、培养创新能力
学校不必建立一个比真实化工厂的工程实践环境更好的化学工业实验室,通过多层面、全方位的产学研合作,学校既可有效地解决化学工业实验室建设所需要的经费不足和场地缺乏等问题,同时能够解决实践教学指导环节中化工专任教师“弱工程化”的问题,增加接触化工企业的机会,增强工程实践能力,以提高化工专业课程教师工程素质和培养“双师型”教师。
另外我校“化学工程与技术”学科教师在承担各级纵向科研课题的同时,也通过与化工企业广泛合作,承担大小横向研发项目,在促进自身科研水平提升的同时,也为教学质量的提高奠定了基础。所有这些纵向横向项目的开展都为研究生的毕业论文和毕业设计环节提供了充足的题目来源和经费支撑,为研究生工程实践能力和创新能力的培养奠定了必备基础。
创新是在一定范围内、时间内做别人没有做过的事,提出别人没有提出过的东西的一种活动过程及其结果。进入化工企业的专业型研究生,采取1+2或2+1模式,每位学生分配学校和企业双重导师,共同负责整个培养过程。学生在校遵守学校的各项管理制度,进入企业则必须遵守企业的员工管理制度。使研究生“真刀真枪”作毕业设计(论文),在企业导师的指导下,能够在理论知识学习扎实的基础上获得足够的实际工程技术锻炼,获得较强的化学工程专业技术核心能力,为研究生创新意识的培养和创新能力的开发创造了条件。该学科及时与化工企业交流合作,了解化工企业对化学工程领域高级人才知识结构的需要,不断调整专业型化学工程领域培养方案/培养计划,制定出符合化工市场需求的应用型高级人才培养的课程体系和课程内容;聘请多名企业工程技术人员作为企业导师或工程实践指导教师,形成了化工专业理论教师与化工企业工程人员相结合、学校与企业紧密结合的实践教学体系;突出研究生工程实践能力和创新能力的培养。[4-5]
三、“研”为线、点燃创意火花
化工企业所取得的科研成果由校企双方共享,校企双方以互惠互利、共同可持续发展为原则。通过产学研用结合,可进一步提高我校化学工程领域研究生群体的社会贡献率,优化研究生的知识结构和能力骨架,增强研究生分析问题及解决实际问题的能力,同时促进合作单位研究开发能力、科技创新能力和综合竞争实力的不断提高。[6]
高校应充分发挥教书育人、科学研究及服务社会三大职能。“化学工程与技术”学科教师穿梭于学校和生产企业之间,能及时了解什么是社会急需的技术和适用的技术,密切关注科技成果应用价值来提高科技成果转化率,根本上解决经济科技“两张皮”,摆脱长期以来科研成果在实验室“睡大觉”现象,切实充当产、学、研的纽带和桥梁,让彼此从原来的松散联盟变成紧密合作体。目前“化学工程与技术”学科多名知名教授被化工企业聘请为省级科技特派员或承担省级产学研课题。2010年抚州三和医药化工有限公司科研项目“雷贝拉唑羟基物盐酸盐”先后获得抚州市科学技术奖一等奖和江西省科技进步奖三等奖,2011年抚州三和医药化工有限公司科研项目“奥美拉唑氯化物”又先后获得抚州市科学技术奖一等奖和江西省科技进步奖三等奖,2012年抚州三和医药化工有限公司“医药中间体技术创新团队”被认定省级技术创新团队,这些科研成果里也凝聚了我校“化学工程与技术”学科教师和研究生的心血和汗水。研究生在企业实践期间体会到比别人拥有更多的信息就会有更多的创意,也观察到如何将好创意应用到商业,从而实现自己的创业梦想。
大力开展产学研深度合作,大力倡导创新创业创意理念,培养高素质的化学工程领域研究生,是我们今后将继续探索和实践的目标。
参考文献:
[1]吴启迪.抓住机遇 深化改革 提高质量 积极促进专业学位教育较快发展[J].学位与研究生教育,2006,(5):1-4.
[2]谢发勤,吴向清,田薇.工程硕士教育可持续发展的几个问题[J].学位与研究生教育,2007,(2):34-37.
[3]陈皓明.树立科学的质量观和发展观全面推进工程硕士教育发展[J].学位与研究生教育,2006,(11):15-17.
[4]潘艳秋,张述伟,韩轶.密切产学研结合,培养化工创新人才[J].化工高等教育,2009,(6):42-45.
关键词:应用化学专业;课程体系;民办高校
【中图分类号】G640
应用化学是以化学理论为基础、跨学科交叉、跨领域应用的具有活力的学科,在材料、能源、信息、环境等与国民经济密切相关的领域占有重要地位。我校应用化学专业是处于理工科大学中的工科专业,具有坚实的理科基础。我校的应用化学专业立足宁夏,服务西部,面向全国,培养适应经济建设和社会发展需要,德、智、体、美全面发展,具有坚实的化学化工基础知识、基本理论、基本实验技能、相关的工程技术知识和计算机应用能力,获得应用研究、技术开发、科技管理方面的初步训练,具有较强的实践能力和创新精神,能够从事化学、化工及相关学科领域的科研、工艺的设计与改进、教学及管理工作等面向一线的应用型人才。
一、应用化学专业课程体系初步建立
教育部于2005年批准我校开设应用化学专业,该专业自2006年开始招生,经过近十年的教学实践,现已初步建立了适合我校人才培养需求的课程体系。课程体系由理论教学和实践教学两个部分构成。理论教学部分分为公共基础课、专业基础课、专业课三个模块:(1)公共基础课设置的课程在考虑到数理化理论是工程技术的基础知识外,工程人员的道德品质、经济方面的集约性、环境的可持续性、人文艺术的和谐性等因素也要有所体现。(2)专业基础课模块课程的设置以传统化学类专业课《无机化学及分析化学》、《有机化学》、《物理化学》为学科理论基础、以《化工原理》、《化工仪表及自动化》、《化工机械基础》为工艺和工程课理论基础。(3)专业课模块设置的课程则考虑增强专业适应性、拓宽就业面。设置了《化工分离工程》、《反应工程》、《化工热力学》等辅助建立化学反应模型的课程;《无机化工工艺学》、《精细有机合成及工艺学》、《煤化工工艺学》等工艺类课程。实践教学部分分为集中实践、分散实践两个模块:(1)集中实践模块主要开设的实验、实习、课程设计、毕业设计等环节为提高学生的实践和创新能力提供重要的平台。(2)分散实践模块则结合《思想政治社会实践》、《大学生社会实践》、《学术科技创新》、《专业社会实践》等内容,加强对学生动手能力、独立思考能力、团队协作能力、理论联系实际能力、工程实践创新能力等能力的培养。
二、应用化学专业课程体系改革的思考和实践
自我校设置应用化学专业以来,教学内容和课程体系都在不断的进行改革、变化和发展,但还没有从根本上脱离原有模式的束缚和影响。在“西部大开发”的时代背景下,如何在强化对学生基础性和应用性能力培养的基础上,提高应用化学专业学生创新能力的培养,是高等教育工作者所面临的一个共同的课题。我校一直把课程体系建设放在系部专业发展规划的首要位置,结合我校人才培养要求,不断完善课程体系。
(1)应用化学专业课程体系基本体现了“宽基础、共平台、多方向”的特点
经过几年的努力,我院对应用化学专业相关课程的内容进行了整合,加强了高等数学、大学英语、化工原理、精细有机合成及工艺学等骨干课程的改革与建设,逐步形成了新的课程体系,基本覆盖了无机化工、精细化工、煤化工等专业方向。
(2)应用化学专业课程体系加强了实践教学
将专业课实验课全部安排为为独立课程,如《无机及分析化学实验》、《物理化学实验》等。为了加强学生实验技能的培养,自2012年开始增加了《综合化学实验》课程。除此之外还加强了认识实习、生产实习、课程设计、毕业设计等专门的综合性、实践性教学环节。我院与宁夏区内多家化工企业建立了校外实践教学基地,较为有效的提高了学生的生产实践能力。
(3)在教学过程中引入了现代化的教学手段
多媒体教学以其信息量大、效率高、表现方式直观生动而广泛用于基础课的教学。我院要求教师根据课程实际情况自己制作CAI课件,充分利用网上资源,引入最新动态及相关图片,利用计算机动画进行效果渲染,激发学生学习兴趣。另外我院正在开发《化工原理》课程的计算机辅助教学软件,以DCS控制系统为基础,进行典型化工产品生产过程模拟操作。
结束语
我院将继续立足于地方经济发展和社会需求,以培养应用型人才为核心追求,积极推动和深化应用化学专业课程体系改革,为提高人才培养质量提供有力保障。
参考文献:
[1]史济斌,胡军,虞大红,蔡良珍,张文清.中国大学本科应用化学专业发展历程纪要[J].化工高等教育.2011.
[2]杨基和,王车礼.化学工程与工艺专业“大工程观”课程体系的构[J].江苏工业学院学报,2007,8(3).
[3]陈爽,苏育志,赵建华,张建华,周爱菊,王静,董文,王正平,梁红.地方高校应用型人才培养模式下化学专业实验课程体系研究[J].实验技术与管理,2012,29(3).
关键词:新课程; 化学教育专业课程改革; 探讨
中图分类号:G718 文献标识码:A 文章编号:1006-3315(2016)03-103-001
化学教育的根本目的是培养符合时展的化学教师,而化学教师的培养很大程度上依赖于化学教育课程的设置,可以说,化学教育专业课程设置直接影响化学人才的培养目标以及化学人才的综合素质。在新的教育时代背景下,新型的化学教师不仅要具有扎实的专业知识以及教学技能,而且还要具有独特的人格魅力,而化学教学这较强的综合素养需要整体性的成体系的化学教育专业课程的支撑。
化学教育专业课程的改革要始终以化学教育专业课程目标为中心,将学科的知识性与实用性有机的联系起来,让学生不仅能学到专业的知识,更能将理论知识应用到实践中去,让知识在实践中发挥价值。
一、化学教育专业课程的设置
化学教育专业课程可以分为四大模块,即教育课程、专业知识、拓展性知识以及实习实践。
1.教育课程模块
教学课程模块主要针对化学教育专业学生而言,传统的教学课程模块包括教育学、心理学以及化学教学论,现代的教学课程模块新增了化学教育测量与评估、化学文献检索等新型科目,意在增强化学师范生的知识建构,培养出适应时展的化学人才。化学教育专业除了专业课程之外,还有更加丰富的选修课,例如有效思维与学习的策略、教与学的评价、学习动机与心理学等,这些课程打开了学生的思维,丰富了学生的知识建构,使得学生看见更广阔的化学天地。此外系部还开设了诸如中学化学课程分析与解题研究、化学教学实践等限定选修课程,这些课程不仅重视学生的化学专业基础知识,而且格外重视化学教师的专业素养,其引领学生逐渐由化学师范生走向化学教师。
2.专业知识模块
在教育理念不断革新的环境下,时代为教师的教育提出了更为严格的要求,即学科性以及师范性。据调查显示,就目前而言,全国范围内的高校化学教育专业都设有专业必修课程以及专业选修课程,然而学生普遍认为专业课内容偏难且实用性不大。因而我们可以根据实际所需,将化学专业课程进行精简,根据知识的实际利用效率适度降低难度,将值得深入思考的难题列入选修课程,供少数人进一步深造。
3.拓展型知识模块
新课程理念弱化了传统的学科独立性思想,着重强调学科间动态的综合性联系,在学科间紧密联系中寻求学科内容发展的丰富性以及无限性。面对中学课程逐渐走向多元化、就业形式愈加严峻的趋势,高校在注重专业知识培养的同时,要提升对选修课的重视程度,将培养学生的综合思维能力以及综合实践能力放在突出地位。选修课程的设置要根据社会对人才的需求而做出适当的调整,课程的内容要始终以学生为中心,引导学生自主探索选修课程内容,从中发现自身的兴趣爱好。
4.实习实践模块
化学教育专业的教育见习与课堂学习同步进行,见习根据课程的进度穿插在各个学期中,见习的实际操作以中学化学课程分析、化学教学论以及中学化学实验研究等相关理论为支撑;一般而言,教育见习集中安排在大学学习的第七个学期,见习实践为八周,除了集体见习,学生还可以在教师的指导下利用暑寒假以及周末进行自主性见习。教学实践环节除了见习外,还包括工业见习、社会调查等,这些实践活动可以根据教学的具体需要安排在各个学期中,在实践活动中更深层次的体会课堂知识所学的深刻内涵。
二、化学教育专业课程设置的特点
1.课程设置综合化
化学课程的设置在重视基础知识的同时,还应提升对化学教育专业知识的重视程度,两种知识在教学过程中实现有机的统一,共同服务于化学教师的培养。此外,化学课程还应增加化学专业相关领域选修课程的设置,开拓学生的视野,使得化学教育专业师范生不仅能有扎实的化学理论知识,还有较强的化学综合素养,在未来的化学教师岗位能游刃有余。
2.高度重视新课改背景下化学教师的培养
化学教育专业课程实现基础性教育课程与深化拓展性教学课程的有机统一,强化了化学教育专业学生对中学化学知识的建构,加深了学生对中学化学的理解,同时促进学生对中学化学知识展开自主探索,同时,学生能根据时展的潮流对化学知识进行新领域的探究。这种紧密围绕中学化学内容及其认知规律、教育目标与教学要求等来建构的化学教育专业课程,集中体现了中学化学教师培养的专业性与针对性,这为培养符合时代所需教师的目标的实现奠定了扎实的基础。
3.以探究式学习方式为媒介促进化学教育理论与实践的有机结合
在化学教育过程中,教育者要高度重视探究式学习方式,鼓励学生大胆进行个人反思、积极进行集体探究合作,在实践中提升学生的反思意识以及实践能力。探究式学习方式能促进理论与知识的有机结合,让学生更深刻的掌握课堂所学,同时也能提升学生课堂知识的实践应用能力。
参考文献:
[1]徐春荧.关于普通高校化学教育改革的若干思考[J]亚太教育,2015(36)
摘要:优化化工类全日制硕士专业学位研究生的培养方案,设置化工设计和工艺研发两个培养模块,将研究生的专业课分为两个教学班授课,强调实践的重要性,设置实验性(实践性)课程,积极探讨和建立适合浙江地方经济社会发展的全日制硕士专业学位研究生的培养模式。
关键词:专业学位;硕士研究生;课程设置;实践性课程;化工类
中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2016)49-0222-02
一、国内外同类研究工作现状
目前,国内在全日制硕士专业学位研究生培养方面存在较大差异。从检索到的公开资料来看,有些高校有相应培养方案,有些与传统全日制硕士学术学位型研究生的培养方案区别不大;也有的单位在培养方案中有明显变化,如对公共必修课、专业基础课和专业必修课都做了较大幅度缩减(小于23学分),增加了实践性弹性学分(7学分):科学社会主义和自然辩证法各缩减为1学分,英语缩减为2学分,数学基础包括两门课4学分。在实践性环节、毕业论文等方面虽有定性描述,但缺乏实质性的内容;更多的学校大都还没有配套的培养方案,基本沿用学术型研究生的培养套路。这些情况都充分说明,各高校对于全日制硕士专业学位研究生的认识还很模糊,管理上大多借用过去硕士研究生的一套操作办法,还没有形成独立的管理运作体系,尤其是涉及与企业的合作与实践基地的建立等方面,更觉得无从着手。在教学上确实已经与学术型研究生完全分离了,形成了自己的特色。但在实习实践环节还没有统一,表现在有的学生确实进入企业实习岗位,实习效果很好;有的还没有真正进入实习岗位,基本在校内导师实验室进行科研工作,与学术型雷同而学术要求却享受专业学位型,没有达到培养计划的要求。
二、课题指导思想
以教育部《关于做好全日制硕士专业学位研究生培养工作的若干意见》的文件精神为指导,结合我校的现状,以培养应用型人才为目标,开展全日制硕士专业学位研究生的联合培养工作,满足企业发展和地方经济发展对高层次应用型专业人才的迫切需求,发挥化工学院在浙江省的社会影响力。
专业学位是培养在专业领域具有坚实的基础理论和宽广的专业知识,具有较强的解决实际问题的能力,能够承担专业技术或管理工作,具有良好业素养的高层次应用型专门人才。学术性学位硕士研究生则主要培养学术研究人才。两者培养方式不同。专业学位课程设置以实际应用为导向,以职业需求为目标,以综合素养和应用知识与能力的提高为核心。教学内容强调理论性与应用性课程的有机结合,突出案例分析和实践研究;教学过程重视运用团队学习、案例分析、现场研究、模拟训练等方法;注重培养学生研究实践问题的意识和能力。在具体的学习过程中,要求有为期至少半年(应届本科毕业生实践教学时间原则上不少于1年)的实践环节。而学术学位研究生的课程设置侧重于加强基础理论的学习,重点培养学生从事科学研究创新工作的能力和素质。
三、化工类全日制硕士专业学位研究生的培养
以强化实践环节为主线,区别全日制硕士专业学位研究生与全日制硕士学术型学位研究生的培养规格。首先设计由实践主导的全日制专业学位硕士研究生的培养方案,该方案应与传统学术学位型硕士研究生的培养方案有明显区别,强调应用型、实用性和适应性;其次,要建立稳定的全日制专业学位硕士研究生的实践基地,保证全日制专业学位硕士研究生能有充分的时间接触实际生产,加深感性认知。
(一)设计化工类全日制硕士专业学位研究生的培养方案
首先将走访企业了解对人才需求的信息,另一方面,对其他学校专业学位硕士研究生培养模式进行调研,广泛收集材料。我们认为,在专业基础课和专业选修课的设置上,应强调以实践为主导进行课程设置,提高实践性课程的比例。适当减少理论性课程教学,增加应用技术性课程,安排一定实践性课程,特别是与某种特定岗位相匹配的实践技术,强调工程工艺过程的学习和单元操作的学习;在公共基础课方面,引导公共英语教学向提高听、说、读、写应用能力转变;压缩政治理论课学时,增开专利法、民法等法律方面的通识类课程。
(二)优化课程设置方案
在课程设置上应适时减少纯理论型课程及其课时,如高等有机化学、现代色谱分析技术、有机结构分析、高等化工热力学、催化作用导论、杂环化学、农药化学、绿色化学等,精减学时,由48学时精简到32学时;精中取优,组成专业基础课。在上述课程中,可以借鉴我国多年实行且成熟的二级学科课程体系制度,把目前化学工程与技术一级学科的全日制硕士专业学位研究生的课程体系做一个超二级学科的课程体系调整,就是将蕴含量宽大的原化学工程与技术一级学科课程体系变更为两个超二级学科课程体系,形成两个专业模块,即化学工程模块和化学工艺模块,将学生分成两个教学班。依据专业模块的要求对各自课程设置进行调整,即工程设计型模块和工艺研究型模块,两个模块分别按照各自知识结构设置工程设计类课程或工艺研发类课程,同时允许学生跨模块选课。
化工类全日制专业学位型硕士研究生应该具备的最直接的实践技能就是实验操作技能。在本领域的实践体系设计中,增加一项实验技能训练,此项训练可以开放选修实验或创新实验的形式开课,内容不同于研究生的毕业论文,主要集中本专业方向的典型成熟实验,如化学工程模块的化工基本单元操作实验和化学工艺模块的热点产品合成及其三废控制处理实验等,通过这类课程可拓展学生的专业知识面,增加实验操作技能的培养。
(三)课程设置要与教学内容调整、教学方式改进等协调进行
全日制硕士专业学位研究生的培养目标是培养应用型人才,所以其课程设置应强调以应用和实践为导向的基础理论课程的学习,并由有丰富实践经验的教师主讲。现阶段开设的多数理论课程对专业学位研究生而言理论知识偏深,并且工程实用性不强。近二十年来化工科技发展的结果证明,传统教科书中的很多理论都存在缺陷,不够完善。这就要求授课教师既要掌握深厚的理论知识,又要有丰富的工程实践经验,能把课程有关理论与当前的最新研究进展结合起来,对课程内容进行补充,把最新的科研成果充实到课堂上。课程学习重在培养,分析问题中找到正确的方式方法,进行多角度、多层次的专业性互动交流,多举例分析从而加深研究生们对某一专业领域里的相关知识的认识。教师要增加生产实例讨论等实践性环节,这种实践型教学方式可以进一步提高课程的教学效果。
为了培养工程实践能力,全日制专业学位硕士生的课程体系还应增加实践教学、专业课程实习实践、专业实训等实践环节。通过实践,使学生把从书本上学到的知识与实际研发工作结合起来,将解决实际问题作为突破口,在实践过程中,强调了解其中的科学原理,摈弃其中的不科学的成分,为提升产品的软实力发挥作用。如:解决生产过程中的不合理过程、或减少能耗、或减少三废排放等。
全日制专业学位硕士研究生的企业实践环节学习时间要求半年至一年。时间培养年限占据了重要环节,深入实际生产把书本上的理论知识和产品研发活动有效连接,让专业实践能力的培养得到了更好的运用贯通,能提高学生工程实践水平奠定坚实的物质基础,为企业发现和解决生产中存在的问题创造条件。
四、结论
关于课程设置方面,在实际操作层面上已经逐步实施,经过几年来的实践检验,从学生和企业的反馈情况来看效果良好。我们强调以实践为主导进行课程设置,适当减少理论性课程教学,增加应用技术性课程,安排一定实践(实验)性课程,特别是与某种特定岗位相匹配的实践技术,强调工程工艺过程的学习和单元操作的学习。从实际情况看,这样的操作方法确实收到了很好的效果。限于资金、场地、设备等条件的制约,实验类课程还未实施,有待今后进一步发展完善。
关键词:工程教育;有机化学;课程改革
20世纪90年代初,以波音公司为首的大型跨国公司对各工程专业毕业生提出了一系列新的要求,促使欧美大学改革工程教育观念和模式。麻省理工学院(MIT)等大学经过探索研究,创立了CDIO工程教育模式[1]。CDIO代表构思(Conceive)、设计(Design)、实现(Implement)和运作(Operate),以产品研发到产品运行的生命周期为载体,让学生以主动的、实践的、课程之间有机联系的方式学习工程,继承和发展了欧美20多年来工程教育改革的理念,是近年来国际工程教育改革的最新成果[2]。2008年中国CDIO工程教育模式研讨会上,与会专家指出:CDIO作为一种指导工程教育人才培养模式改革的教育思想观念和课程设计的框架体系,符合现代工程技术人才培养的一般规律,具有良好的发展前景和推广价值。CDIO的核心在于根据工程链环节的工程、岗位、职业、行业的学生知识、能力和素质的要求,以工程设计为导向,以项目训练为载体,来重新设置课程和教学模式[3]。因此,应积极推广CDIO的经验和做法,努力促进我国工程教育改革和人才培养模式改革。在教育部的发起和组织下,我国于2006年正式开展了工程教育专业认证的试点工作。2011年教育部提出实施“实施卓越工程师教育培养计划”,是改革和创新工程教育人才培养模式,提高工程教育质量的战略举措。作为教育部第二批参与“卓越工程师教育培养计划”的高校之一,四川理工学院在卓越工程师培养方面正在进行积极的探索与实践,提出建立“立足地方、面向行业、构建具有工程精神的应用型人才”培养体系,实施以能力为导向的工程教育课程体系改革,按照课程内容进行整合、重构,建立了通用能力、专业能力、综合能力等三大课程模块,创新多元化人才培养模式[4]。但笔者团队认为:提升工程教育质量的工程教育改革,并不是单纯的培养方案和课程体系的调整,而应该是一个系统工程,其中心和核心的任务是培养高素质应用型人才。这就要求培养方案中的每门课程都要树立培养应用型人才的理念,围绕应用型人才培养的中心任务进行课程体系和结构调整,进行教学方式和模式的改革。《有机化学》课程作为材料、化工、生工、轻化等本科专业群的核心专业基础课程,对后续专业课程的学习和专业知识体系的构建具有重要的作用。但现阶段,《有机化学》课程存在自成体系、自我封闭的问题,很少与后续专业课程挂钩,也很少考虑到课程的理论知识在实际工程问题上的应用,这些都不利于高素质应用型专业人才的培养。为此,笔者团队几年来一直尝试和探索在化工类工程专业的《有机化学》基础课程的教学中,融入工程教育理念,调整知识结构体系,改革教学模式,提升《有机化学》基础课在工程教育和应用型人才培养中的作用和地位,更好的服务于应用型人才培养。
1《有机化学》课程改革思路
相对于化工类工程专业的核心专业课程,如化工原理、化学反应工程、分离工程、化学工艺学和化工设计等课程,《有机化学》课程作为专业基础课程,理论性强且自成理论体系,基本可归属于理论课程的范畴。其教学的重点主要集中于系统讲授各类有机化合物的结构和性质的关系及其相互转化的方法,介绍有机化学反应原理和影响因素、有机化合物的立体化学、分离鉴定和结构表征等内容。因此课程的授课教师普遍认为《有机化学》只是一门理论课程,其任务就是为学生后续专业课程的学习奠定相应的理论基础,在课程的教学中难以实施工程教育理念和“做中学”的教学方式。同时,由于课程的理论性较强,多数学生们认为本课程学习与将来所从事的工作不会产生多大联系,学习兴趣不高和学习动力不足。因此,要在工程教育背景下,首先必须解决课程的改革思路问题,如在《有机化学》在教学中融入工程教育理念的可能性和现实性。美国麻省理工学院教授、国际CDIO创始人EdwardF.Crawley在关于工程教育改革的主题报告中指出,基于产品、过程、系统的生命周期的开发和部署(product,process,anddevelopmentanddeploymentofsyctemlifecycle)的工程实践环境下的工程教育更为有效,CDIO只是基于该工程教育理念的模式之一;对于无实体产品的工程专业,MIT的教育者提出了4M(Measure-Model-Manipulate-Make)教育模式;无论CDIO模式还是4M模式,工程教育的核心基础是情景教育(ContextualLearning)[5]。即学生在学习与工程职业相关的知识和技能并知道如何有意义的应用所学知识和技能时,学习更为积极主动和有效率。另外,工程教育是培养学生的工程理念,赋予学生今后从事相关工程职业的综合能力,除了具有综合运用所学科学理论和技术手段分析并解决工程问题的基本能力外,还需要具有团队协作能力、批判性思考能力和综合思考、解决问题的意识属于综合素质和能力,这些能力在很大程度上需要通过基础课程教学来培养。综上,只要教师在《有机化学》课程教学中,牢固树立工程教育理念,实施工程背景的情景教育,理论联系实际,使学生在工程教育的氛围中学习,受到工程教育的熏陶;同时注重学生团队协作能力、批判性思考能力和综合思考、解决问题的意识属于综合素质和能力的培养,就可以使《有机化学》课程更好的融入化工类工程专业的工程教育体系,服务于学生的“大工程观”的培养,满足工程教育专业认证对专业基础理论课程的要求。
2《有机化学》课程改革措施
2.1构建面向不同专业需求的差异化
《有机化学》课程体系在《有机化学》课程教学中,改革现有的同质化的课程教学模式,在保证课程的基本理论知识体系的前提下,针对每一个化工类工程专业对课程的不同需求,设计差异化和针对性的课程知识体系。如安全工程专业,注重引导学生对危险有机化学品安全知识学习,养成查阅典型常见有机化合物的MSDS的习惯,引导学生通过解读化合物闪点、爆炸极限、危险特性、危害等信息认识其危险性和毒性,了解其防护措施和泄漏处理等化工安全的专业知识。对化学工程与工艺专业,则侧重安排有机化学副反应控制、后处理分离纯化的可能性和方法手段等知识。因杂环、甾族、生物碱是药物的基本结构和功能单元,药物在体内代谢和药理作用又涉及与碳水化合物、蛋白质和核酸等类化合物的作用,因此其他化工专业较少涉及的内容,又成为制药工程专业必需的基本知识。
2.2尝试《有机化学》课程的情景教育
《有机化学》虽然只是一门理论基础课程,但课程涉及的有机化合物在日常生活和化工生产具有广泛的应用;有机化学反应的产物,大多是化工、医药产品或中间体。因此在学生掌握了一些基础理论知识后,在课程后半程教学中,通过合理设计课堂教学内容,采用IDG(inspiration,guidance,anddiscussion)教学模式[6]和“以研究为本,解决一个实际问题”的单元模块式教学模式,尽可能实施情景教育,开展研究型和创新型教学,让学生在学习过程中思考如何将基础的理论知识应用于产品开发实例的分析、处理和设计上,打通基础课程和专业课程的联系。在每一章节引入2~3个应用和产品开发实例,通过引导学生思考相关的原料选择、成本控制、反应实施(副反应控制)、后处理分离等问题,达到对学生实施工程观的培养和一定意义上的工程情景教育的目的。例如对于格氏试剂这部分内容的教学,常规的教学方式是介绍格氏试剂的制备、性质和反应;对于格氏试剂这类在有机合成和精细化学品生产上具有广泛应用的重要有机试剂,单纯作为一个重要知识点进行教学,无法激起学生的学习兴趣,对格氏试剂的应用也没有感性的认识,完全背离了工程教育的理念。笔者团队通过录制、剪辑实验室小试规模和车间中试规模制备、使用格氏试剂的视频,结合视频简要介绍格氏试剂制备及反应时溶剂处理、镁屑处理、实际操作过程无水无氧条件的达成、反应引发等过程的操作细节及注意事项;在使学生掌握教学内容的同时,也让学生了解在研究和生产环节实际实现一个书面反应需要注意和考虑的问题,了解实验室和车间规模完成一个反应的区别,培养学生综合思考和解决问题的能力,从而达到工程观的培养和情景教学的目的。同时通过介绍未按操作规程对乙醚/四氢呋喃溶剂进行无水处理、制备格氏试剂时反应条件控制不好导致反应釜冲料引起火灾和爆炸事故的实例,给予学生以警示和培养学生的安全意识。
2.3精心设计习题,培养学生的科学性思维
如精心设计有机化合物合成题,以实际问题代替随意设定的习题,让学生在解决问题过程中学会综合考虑安全、经济成本、环境保护等实际因素对产品开发和生产的影响。同时选择具有几条合成路线的化合物,给出可能的合成路线,将学生分成几个小组,每个小组在充分查阅资料,综合考虑原料来源和成本、工艺条件、实际收率、目标产物分离的难易程度以及综合评价成本、安全和对环境的影响等诸方面的因素后,提出可行的和最佳的方案;并组织学生讨论,对其他小组的方案进行评价。即使学生受到工程理念的熏陶,也能培养学生的团队协作和批判性思考等综合能力。2.4在《有机化学实验》课程的教学中引入研究型教学模式改革现有实验课程固定实验项目的教学模式,在初步完成基本操作和基本技能的训练后,筛选和安排1~2个综合性和设计性的创新实验项目,将资料查阅、实验方案拟定、合成、分离提纯及鉴定表征等环节连成一体,将实验进化为微型科研项目,让学生以完成项目的方式进行实验课程的学习,培养学生的团队精神和协作精神,提高学生的工程素质和应用能力。
3结语
笔者团队根植培养应用型人才的理念,根据课程特点,积极探索化工类专业基础理论课《有机化学》的课程改革。在教学中践行CDIO工程教育理念,引入情景教学模式,优化课程内容,提出了一些具有可操作性的措施和方法,取得了一定的正面成果,使《有机化学》课程能更好地服务于高素质工程人才培养的核心任务。当然,本文只是我们在工程教育背景下实施《有机化学》课程改革的初步经验和心得,尚有诸多不完善之处。另外,基础理论课程教师普遍缺乏工程背景,制约课程的教学改革,难以完全满足工程教育的要求,如何克服这一问题也需要在今后的教学过程中继续探索和思考。
参考文献
[1]李曼丽.用历史解读CDIO及其应用前景[J].清华大学教育研究,2008(5):78-87.
[2]柯清平,唐天地,徐进,等.化学工程与工艺专业CDIO工程教育改革思路探索[J].学园,2011(9):1-3.
[3]汕头大学工学院.“2008中国CDIO工程教育模式研讨会”会议纪要[J].中国大学教学,2008(9):95-96.
[4]龚敏,孙山,谢华.地方院校工程教育综合改革探索与实践-以四川理工学院为例[J].重庆科技学院学报(社会科学版),2012(13):169-171.
[5]EdlwaldF.Crawley,查建中,JohanMalmquist,等.工程教育的环境[J].高等工程教育研究,2008(4):13-21.
[6]ZhaoF.-Q.,YuY.-F.,RenS.-F.et.al.ImprovingthePracticalEducationofChemicalandPharmaceuticalEngineeringMajorsinChinese