0
首页 精品范文 欧姆定律的推导式

欧姆定律的推导式

时间:2023-07-11 17:37:47

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇欧姆定律的推导式,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

第1篇

摘要:物理定律是对物理规律的一种表达形式。物理定律的教学应注意些什么呢?

关键词:物理定律;教学方法;多种多样

关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。

(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。

(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。

(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。

(4)机械能守恒定律这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不作功或所作的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。

(5)动量守恒定律历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以不过程物理量,使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。

(6)欧姆定律中学物理课本中欧姆定律是通过实验得出的。公式为I=U/R或U=IR。教学时应注意:①“电流强度跟电压成正比”是对同一导体而言;“电流强度跟电阻成反比”是对不同导体说的。②I、U、R是同一电路的3个参量。③闭合电路的欧姆定律的教学难点和关键是电动势的概念,并用实验得到电源电动势等于内、外电压之和。然后用欧姆定律导出I=ε/(R+r)(也可以用能量转化和守恒定律推导)。④闭合电路的欧姆定律公式可变换成多种形式,要明确它们的物理意义。⑤教师应明确,普通物理学中的欧姆定律公式多数是R=U/I或I=(1/R)U,式中R是比例恒量。若R不是恒量,导体就不服从欧姆定律。但不论导体服从欧姆定律与否,R=U/I这个关系式都可以作为导体电阻的一般定义。中学物理课本不把R=U/R列入欧姆定律公式,是为了避免学生把欧姆定律公式跟电阻的定义式混淆。这样处理似乎欠妥。

(7)楞次定律可以采用探究教学法,让学生通过实验得到的结论归纳出定律。教学时应注意:①楞次定律是确定感生电流方向的规律,同时也确定感生电动势的方向。如果是断路,通常我们可以把它想象为闭合电路。②感生电流的磁场只能“阻碍”原磁通的变化,不能“阻止”它的变化。否则就不会继续产生感生电流。“阻碍”或者说“反抗”原磁通的变化,实质上是使其他形式能量转化为电能的一种表现,符合能量守恒定律。③要使学生熟练掌握应用楞次定律判定感生电流方向的3个步骤。④明确右手定则可看作是楞次定律的特殊情况,并能根据具体情况选用定则或定律来判断感生电流的方向。

第2篇

2.理解串联电路的等效电阻和计算公式.

3.会用公式进行简单计算.

能力目标

1.培养学生逻辑推理能力和研究问题的方法.

2.培养学生理论联系实际的能力.

情感目标

激发学生兴趣及严谨的科学态度,加强思想品德教育.

教学建议

教材分析

本节从解决两只5Ω的定值电阻如何得到一个10Ω的电阻入手引入课题,从实验得出结论.串联电路总电阻的计算公式是本节的重点,用等效的观点分析串联电路是本书的难点,协调好实验法和理论推导法的关系是本书教学的关键.

教法建议

本节拟采用猜想、实验和理论证明相结合的方式进行学习.

实验法和理论推导法并举,不仅可以使学生对串联电路的总电阻的认识更充分一些,而且能使学生对欧姆定律和伏安法测电阻的理解深刻一些.

由于实验法放在理论推导法之前,因此该实验就属于探索性实验,是伏安法测电阻的继续.对于理论推导法,应先明确两点:一是串联电路电流和电压的特点.二是对欧姆定律的应用范围要从一个导体扩展到几个导体(或某段电路)计算串联电路的电流、电压和电阻时,常出现一个“总”字,对“总”字不能单纯理解总和,而是“总代替”,即“等效”性,用等效观点处理问题常使电路变成简单电路.

教学设计方案

1.引入课题

复习巩固,要求学生思考,计算回答

如图所示,已知,电流表的示数为1A,那么

电流表的示数是多少?

电压表的示数是多少?

电压表的示数是多少?

电压表V的示数是多少?

通过这道题目,使学生回忆并答出串联电路中电流、电压的关系

(1)串联电路中各处的电流相等.

(2)串联电路两端的总电压等于各支路两端的电压之和.

在实际电路中通常有几个或多个导体组成电路,几个导体串联以后总电阻是多少?与分电阻有什么关系?例如在修理某电子仪器时,需要一个10的电阻,但不巧手边没有这种规格的电阻,而只有一些5的电阻,那么可不可以把几个5的电阻合起来代替10的电阻呢?

电阻的串联知识可以帮助我们解决这个问题.

2.串联电阻实验

让学生确认待测串联的三个电阻的阻值,然后通过实验加以验证.指导学生实验.按图所示,连接电路,首先将电阻串联入电路,调节滑动变阻器使电压表的读数为一整数(如3V),电流表的读数为0.6A,根据伏安法测出.

然后分别用代替,分别测出.

将与串联起来接在电路的a、b两点之间,提示学生,把已串联的电阻与当作一个整体(一个电阻)闭合开关,调节滑动变阻器使电压示数为一整数(如3V)电流表此时读数为0.2A,根据伏安法测出总电阻.

引导学生比较测量结果得出总电阻与、的关系.

再串入电阻,把已串联的电阻当作一个整体,闭合开关,调节滑动变阻器,使电压表的示数为一整数(如3V)电流表此时示数为0.1A,根据伏安法测出总电阻.

引导学生比较测量结果,得出总电阻与的关系:.

3.应用欧姆定律推导串联电路的总电阻与分电阻的关系:

作图并从欧姆定律分别求得

在串联电路中

所以

这表明串联电路的总电阻等于各串联导体的电阻之和.

4.运用公式进行简单计算

例一把的电阻与的电阻串联起来接在6V的电源上,求这串联

电路中的电流

让学生仔细读题,根据题意画出电路图并标出已知量的符号及数值,未知量的符号.

引导学生找出求电路中电流的三种方法

(1)(2)(3)

经比较得出第(3)种方法简便,找学生回答出串联电路的电阻计算

解题过程

已知V,求I

根据得

答这个串联电路中的电流为0.3A.

强调欧姆定律中的I、U、R必须对应同一段电路.

例二有一小灯泡,它正常发光时灯丝电阻为8.3,两端电压为2.5V.如果我们只有电压为6V的电源,要使灯泡正常工作,需要串联一个多大的电阻?

让学生根据题意画出电路图,并标明已知量的符号及数值,未知量的符号.

引导学生分析得出

(1)这盏灯正常工作时两端电压只许是2.5V,而电源电压是6V,那么串联的电阻要分担的电压为

(2)的大小根据欧姆定律求出

(3)因为与串联,通过的电流与通过的电流相等.

(4)通过的电流根据求出.

解题过程

已知,求

解电阻两端电压为

电路中的电流为

第3篇

关键词:电表;示数;变化;判断

电流表和电压表是初学电学者必会的测量工具,它们分别是用来测量所在电路的电流和电压的,所以要弄清电表示数的变化情况,用到的知识是欧姆定律以及串、并联电路中电流、电压和电阻的关系。针对不同连接方式的电路以及电表所测电路部分的不同,解决思路又有所区别,这里以例题为证。

例1.在如图所示的电路中,电源电压不变,闭合开关S后,电流表的示数为I,电压表的示数为U,若滑动变阻器的滑片P向右移动,则I__________;U__________;若电压表与R2并联时,U

__________(均选填“变大”“变小”或“不变”)。

这是一个串联电路,很显然要根据串联电路及欧姆定律的有关知识去解决。

在电路中,电压表测量R1两端的电压,当滑动变阻器的滑片P向右移动时,R2增大,根据R总=R1+R2,得R总也增大,再根据欧姆定律,I=U总/R总,因U总不变,所以I变小;电压表的示数U,可直接用U=IR1去推导得出变小。而第三空就不能直接利用U=IR2去推导,因I变小,R2变大,那么I与R2的乘积将如何变化呢?这是初学者容易犯错误的地方。该怎样去判断此时电压表的示数U的变化呢?再回过头来看,因R1与R2串联,所以,我们应考虑先确定R1两端的电压U1的变化情况,这样,再根据U=U总-U1,就迎刃而解了。在这个电路中I变小,R1不变,所以U1=IR1变小,U=U总-U1,U总不变,故U总-U1的差变大,即U变大,得解了。

以上是在串联电路中常见的情况,当电路并联时,我们又该怎么判断呢?

例2.如图所示电路,当滑动变阻器的滑片P由中点向上移动时,电压表V的示数__________,电流表A1的示数__________,A2的示数__________,A的示数__________。(选填“变大”“变小”或“不变”)

在这个电路中,R1与R2并联,电流表A1、A2和A分别测R1、

R2和干路中的电流,电压表V看似只与R1并联,因在并联电路

中,各支路两端电压相等,且在这个电路中,各支路两端电压就等于电源电压,所以我们首先就可以确定,当滑片移动时,V的示数是不变的,再分别根据欧姆定律I=U/R判断电流表A1的示数I1与电流表A2的示数I2的变化情况,I1=U/R1,U不变,R1不变,所以I1

不变;I2=U/R2,当滑片P向上移动时,R2变大,U不变,所以I2变

小。最后根据并联电路中I=I1+I2,I1不变,I2变小,所以I也变小。题中四空答案也就确定了。

综上所述,关于电路中电表示数变化的判断,我们一般是先确定不变电阻对应的电流值或电压值的变化情况,再利用串、并

第4篇

一、电学计算题教学

【例1】 把电源(电压一定)、开关、两个未知阻值的定值电阻R1和R2、滑动变阻器R、一个电流表和两个电压表、导线连成了如图1所示的电路。闭合开关后,调节滑动变阻器R的滑片P,发现V1、V2、A表的示数都在改变,把电流表A的示数和对应的电压表V1、V2的示数记在下表中。(设电阻不随温度变化而改变)

(1)根据表格中的数据求出定值电阻R2的阻值。

(2)求出电源电压U和定值电阻R1的阻值。

(3)求整个电路消耗的最大电功率。

解:(1)从表格数据可知I=0.2A时,R2两端的电压U2=0.8V,由I=UR 得R2=U2I=0.8V0.2A=4Ω 。(2)设电源电压为U,由表中数据知,当电路电流I=0.2A时,R2和滑动变阻器R两端总电压U2=2.8V。根据串联电路的电压规律和欧姆定律有:U=0.2R1+2.8;

当电路电流I2=0.3A时,R2和滑动变阻器R两端总电压为U3=2.7V,根据上面推导有:U=0.3R1+2.7,联解得U=3V,R1=1Ω。

(3)当滑动变阻器接入电路的阻值为零时,电路消耗的功率最大则有:I最大=UR1+R2=3V1Ω+4Ω=0.6A ,

P最大=UI最大=3V×0.6A=1.8W。

这道物理计算题主要考查学生审读电路图的能力和运用串联电路的特点,欧姆定律等的知识,学生就要对串联电路及其特点、欧姆定律有确切的理解,因此在教学中教师就要引导学生从串联电路及特点、欧姆定律入手考虑。解答这道题首先要知道电路是串联电路,再根据串联电路的特点,当然也要求学生理解好欧姆定律,才能准确地解答出答案。若学生对这些知识没有掌握好,电路连接方式判断错误或者欧姆定律的运用错误,就会导致本题的大失分。

二、力学计算题教学

在初中物理的力学中,浮力计算既是重点又是难点,很多学生对这类题束手无策,其主要原因是学生不熟悉掌握浮力的求法及其受力分析能力差,教师在讲解浮力计算题时应加强解题方法的指导。

图2

【例2】 如图2甲所示,把边长为0.1m的正方体木块放入水中,静止时有2/5的体积露出水面,然后在其上表面放一块底面积为2.0×10-3m2的小柱体,如图2乙所示,静止时方木块刚好能全部浸入水中。(g=10N/kg)求:

(1)甲图中木块受到的浮力。(2)木块的密度。

(3)小柱体放在木块上面时对木块上面的压强。

解:(1)甲图中木块漂浮在水中,木块受到的浮力

F浮=ρ水gV排=1.0×103kg/m3×10N/kg×(0.1)3×35 =6N。

(2)甲图中木块漂浮在水中,F浮=G木,ρ水g×35 V木=ρ木gV木,ρ木=35 ×10×103kg/m3=0.6×103kg/m3。

(3)方法一:小柱体放在木块上面时,F浮1=G柱+G木,

G柱=F浮1-G木=ρ水gV木-G木=1.0×103kg/m3×10N/kg×(0.1)3m3-6N=4N,

小柱体放在木块上面时对木块的压强为:

p=FS =G柱S =4N2.0×10-3m2 =2×103Pa。

方法二:小柱体放在木块上面时对木块的压力等于小柱体的重力,从图甲到图乙增加的浮力就等于小柱体的重力,即:

G木=F浮2=ρ水gV排2=1.0×103kg/m3×10N/kg×(0.1)3m3×25 =4N,

小柱体放在木块上面时对木块的压强为:

第5篇

操作方法 打开笔记本,插入一台cmcc接受器,连接受网络,此时笔记本处于联网状态,这时插入300M极速雷达一体机,(其理论发射AP信号约300 m到500 m)手动做一个wifi热点,以AP信号的形式定向发射出去,此时打开摄像头,摄像头被打开后,用手机将摄像头连入由电脑发出的wifi,此时将设备装入火箭箭体,登陆摄像头客户端,只要输入IP,地址的设备如电脑、手机、平板只要是有网络的地方都便可以登陆火箭页面,等待火箭传回的映像资料。全部工作完成后,给火箭装上发动机,连上电打火设备,装在发射架上,此时无关人员远离,便可以发射出去,因为发动机采用双喷,后喷推进部分燃料燃尽,前喷开始工作,产生大量的热,由于热膨胀,将降落伞挤出箭体,摄像头便开始采集材料,直至落地,工作完成,在此过程中,数据全部上传互联网,客户端登陆IP便可以随意调动。

火箭发动机、火箭箭体的设计 发动机工作原理:与一般的化学动力火箭发动机的工作原理基本相同,模型火箭发动机也是利用自身携带的推进剂在燃烧室燃烧,产生的高温高压燃气流经喷管时不断加速最后以极高速度从喷管出口面喷射出去,从而产生反方向的推力。所不同的是,模型火箭发射机增加了用以实现箭体安全回收的延时剂和开伞剂。

工作过程如下:

a。接通电源点燃点火头,引燃推进剂燃烧产生高温高压燃气,推动模型火箭不断上升。

b。推进剂燃烧完毕后延时剂开始燃烧。

c。延时剂燃烧完毕,开伞剂开始工作,产生大量气体,气体膨胀,冲开火箭箭头,将回收装置连同头锥推出箭体筒段,从而实现箭体分离。

火箭箭体的设计原理及示意图:本火箭为影应《模型火箭安全使用准则》和保障飞行器的飞行不应对人群造成较大的伤害,模型火箭只使用纸张、木材、塑料等轻质非金属材料制作。完全没有使用金属材料制作模型火箭的头锥、尾翼或箭体筒段!因此火箭箭体,通体使用特殊纸材,质量轻,强度高,不易损坏,不易燃易爆;其它部件如头锥、尾翼则采用PP材质,以保证其飞行安全!

本火箭在设计时,充分考虑到,火箭首到底空气流的扰动,破坏其平衡状态的情况下,自动恢复到其原来平衡状态,特把CM(质量中心)设定在CP(压力中心)前,从而自动修正航道,确保其稳定飞行。

[TP12GW89。TIF,X,BP#]

火箭无线电遥控 该无线遥控电子起爆器电路由无线遥控发射电路和无线接收起爆电路两部分组成。无线遥控发射电路由控制按钮S1、电池GBI、无线编码集成电路IC1、无线发射集成电路IC2、电阻器R1、发射天线A1和电容器U1、C2组成,如图所示。 图3是无线遥控发射电路。 图4是无线接收起爆电在下落过程中,圆环受到安培力的方向向哪里。学生在分析这个问题时首先要用楞次定律、右手螺旋定则判断感应电流的方向,而后用左手定则判断安培力的方向,由于这里不是直导体棒用左手定则时还得先在圆环上取一小段来分析,再合成。用常规方法判断出安培力的方向要花费很大的力气。此时教师提出“来拒去留”这个二级结论,通过对比从而使学生产生深刻的印象。

2 WHAT――科学表述二级结论的内容

二级结论不同于物理中常见的概念和规律,很多结论在课本、教师用书等资料中不会有统一的说法。由于缺少统一标准的表述,教师一般会借用一些参考资料或自己归纳出二级结论的内容。这个时候科学表述出二级结论就比较重要。如关于摩擦生热的“Q=f・s相对”的表述,有人将它表述为:当一个物体在另一个物体上发生相对滑动时,由于摩擦产生的热量等于滑动摩擦力做的功。表达式f・s相对虽然和功的表达式很相像,但很明显不是功。功的定义式里面的s通常指相对于地面的位移,另外功有负值,而求热量时是不会有负值出现的。所以这种表述是错误的。还有人将它表述为:当一个物体在另一个物体上发生相对滑动时,由于摩擦产生的热量等于滑动摩擦力乘以物体相对滑动的位移。这里将s理解为位移就不是很准确,我们知道这种模型中物体有往返运动也是可以的。如果物体相对于另一物体返回到原来位置,则此时相对位移为零。此时由表达式算出热量为零。但是此过程中产生的热量不可能为零。科学的表述是:当一个物体在另一个物体上发生相对滑动时,由于摩擦产生的热量等于滑动摩擦力乘以物体相对滑动的路程。如果一开始二级结论表述就是有问题的,那么学生应用二级结论时会出现各种各样的问题。

3 WHEN――何时提出二级结论

教师需要在恰当的时候提出二级结论。平时教学过程中,有时为了赶教学进度,有教师在某部分内容学习的一开始就给出一些二级结论,然后让学生做题巩固。这种方法看似短时间内提高了学生学习成绩,其实不利于学生能力的培养。例如在学生学习闭合电路欧姆定律后,常常需要对动态电路进行分析。有这样一个常见的问题:

如图2所示的电路中,电源电动势为E,内电阻为r。开关S闭合后,电灯L1、L2均能发光。现将滑动变阻器R的滑片P稍向上移动,下列说法正确的是[TP12GW31。TIF,Y#]

A。电灯L1、L2均变亮

B。电灯L1变亮,L2变暗

C。电流表的示数变小

D。电流表的示数变大

本道题如果用二级结论“串反并同”来分析,则很快可以得出正确的结果。因此有教师主张讲完闭合电路欧姆定律后就立即告诉学生“串反并同”这个二级结论。然而在学生刚学完闭合电路欧姆定律后,练习这道题的的目的更主要的是培养学生对串并联电路的分析能力,加深对闭合电路欧姆定律的理解。学生过早地应用二级结论来解题,会使学生失去练习的机会,会削弱对闭合电路欧姆定律的理解。当然不是说不可以用“串反并同”来解题,我们完全可等学生学完了这一章知识,对闭合电路欧姆定律有着较深的理解后再提出。可见对于这类二级结论,教师需要选择好合适的时机提出,不宜过早也不宜过迟。

4 WHERE――关注二级结论的使用条件[HJ1。55mm]

很多二级结论是在特定的物理情境中推导出来的,因此就有比较严格的适用范围。学生在学级结论时,教师一定要让学生理解其适用范围,否则解题就会出现错误。如下题:

美国《大众科学》月刊网站报道,美国明尼苏达大学的研究人员发现,一种具有独特属性的新型合金能够将热能直接转化为电能。具体而言,只要略微提高温度,这种合金就会变成强磁性合金,从而使环绕它的线圈中产生电流,其简化模型如图3所示。A为圆柱形合金材料,B为线圈,套在圆柱形合金材料上,线圈的半径大于合金材料的半径。现对A进行加热,则A。B中将产生逆时针方向的电流

B。B中将产生顺时针方向的电流

C。B线圈有收缩的趋势

D。B线圈有扩张的趋势

加热后线圈B中磁通量变大,学生如果此时没有仔细思考,依然应用二级结论“增缩减扩”来解题就会选择错误的C选项。事实上由于磁感线是闭合曲线,当线圈B收缩时线圈里的磁通量是变得更大,要阻碍磁通量的变化,线圈有扩大的趋势。所以本道题应该选D。在这种条件下,应用这个二级结论就出现了问题。为此在学生学习这类二级结论时教师就应该限定其使用范围,在哪里、在什么条件下才可以使用此类二级结论。

5 WHO――明确学生的主体地位

建构主义学习理论认为学生学习的过程是学生自我建构知识的过程。学生在学习一般的概念规律时,教师大都能注意到这点。在学级结论的过程中教师也应明确学生的主体地位,重视学生的建构过程。二级结论通常是由概念规律推导出或由一些物理问题在典型的物理情境中归纳推导出来。因此二级结论建立的过程也是学生对概念规律深化理解的过程,是能力得到提升的过程。例如在学习万有引力定律时,有这样一个二级结论:行星绕太阳运动时,轨道半径越大,运动越慢。学生若要理解这个结论中“慢”字,就需要对运动过程中线速度、角速度、周期、频率等物理量,应用万有引力定律分别进行分析,而后归纳出轨道半径越大,运动越慢这个结论。这个过程需要学生自己建构,教师如果直接告诉结论,学生缺少了自我建构的过程,能力无法得到提升,也是无法深刻理解这个结论的。

6 HOW MUCH――有多少二级结论

二级结论究竟有多少个?这个问题恐怕不容易回答。但教师在教学过程中一定要知道准备在这学期或者这个单元中,让学生学习多少个二级结论。哪些要详细讨论,哪些不宜提出。如关于功能关系有这样一个二级结论:克服安培力做的功等于产生的电能。这个结论使用比较复杂,应用时限制条件比较多,对于它的正确与否很多教师还在发表文章进行讨论。因此目前就不宜对全体学生提出。

7 HOW TO――我们如何得出二级结论的

第6篇

1 一道试题

1。1 试题呈现

2015年苏锡常镇二模卷第10题:将两个金属电极锌片和铜片插入一个水果中就可以做成一个水果电池,某兴趣小组欲测量水果电池的电动势和内阻。

(1)甲同学用多用表的直流电压(0~1 V)档估测某水果电池的电动势,稳定时指针如图[TP12GW39。TIF,Y#]1中A所示,则读数为[CD#3]V;用多用表的欧姆×100档估测水果电池的内阻,稳定时指针如图1中B所示,则读数为[CD#3]Ω。上述测量中存在一重大错误,是[CD#3]。

(2)乙同学采用如图2所示电路进行测量,并根据测量数据做出了[SX(]1[]I[SX)]-R图象,则根据图3,该水果电池的电动势为[CD#3]V,内阻为[CD#3]Ω。(结果保留两位有效数字)

[TP12GW40。TIF,BP#]

答案如下:(1)0。84;3。2×103;不能用多用电表电阻档直接测电源内阻;(2)0。96±0。02 (1。6±0。1)×103

1。2 试题分析

本题围绕一个重要的电学实验――“测量电源电动势和内阻”展开考查,具体涉及多用电表的读数及操作、实验电路的设计、图象法处理数据等内容。如表1所示。

[JZ][HT6]表1

[BG(!][BHDFG2,WK3,K10,K17W]

序号[]考查内容[] 易错点解析 [HJ*3]

[BHDG4*2,WK3,K10ZQ*3,K17ZQ*3W]1[]会正确进行多用电表的读数[]读电压时应注意量程(“0~1 V”),读电阻时要注意多用电表欧姆档刻度不均匀,还有读数应乘以所选的倍率

[BH]2[]会正确使用多用电表欧姆档[]用多用电表欧姆档测电阻时必须把电阻从回路中取出,因此不能直接测电源的内阻

[BHG4*2]3[]“安阻法”测电源电动势和内阻的原理[]由闭合电路欧姆定律得到1/I-R图象是线性的,且图线的斜率大小等于1/E,图线的纵截距大小等于r/E

[BHDG2]4[]图象法处理实验数据[]单位要换算成国际单位(A和Ω) [HJ2mm]

[BG)F][HJ]

1。3 试题评价

本题用水果电池代替常见的干电池、铅蓄电池、手机锂电池作为实验对象,给人一种独辟蹊径、眼前一亮的感觉。水果电池取材方便、贴近生活、变化丰富,既适合学生进行探究,也体现了“从生活走向物理”的教育理念。

2 两处不同

2。1 实验对象

本题的实验对象变成了水果电池。在平时的教学中,许多教师都会习惯性地选择干电池进行实验,这是因为干电池比较稳定,实验操作也较简单方便。实际上,学生在初中就已经接触过水果电池,在化学课“原电池”部分也学习过相关内容,所以对水果电池并不陌生。笔者在讲评课上与学生进行了交流。

师:水果电池的工作原理是什么?

生1:水果中含有丰富的水果酸,是一种很好的电解质,将不同的金属材料做成电极插入水果中,用导线将电极与用电器相连,回路中就会有电流通过。

师:如何判断水果电池的正、负极?

生2:根据原电池的工作原理,水果电池两电极必须存在金属活动性上的差异。本题中锌更活泼,所以锌片失去电子,其反应方程为Zn-2e-[FY=]Zn2+。电子经外电路流向铜片,由于物理学中规定正电荷定向移动的方向为电流方向,所以外电路中电流从铜片流向锌片,由此判断铜片是水果电池的正极。

师:水果电池的电动势、内阻与哪些因素有关?[HJ1。5mm]

生3:正负电极的活动性差异越大,水果电池的电动势越大。由电阻定律R=ρ[SX(]l[]S[SX)]可知,增加两电极间的距离,相当于增加导体长度,水果电池的内阻增大;增加电极插入的深度,相当于增大导体横截面积,水果电池的内阻减小。

2。2 实验器材和电路

由于实验对象发生了变化,实验器材和电路也需要进行相应的调整。在测量干电池的电动势和内阻时,通常选择学生电表(电压表0~3 V、电流表0~0。6 A)和滑动变阻器进行实验。由于水果电池的内阻很大(一般上千欧姆),为了便于读数和操作,选择电阻箱和微安表进行实验。

实验器材 水果,电极:铜片、锌片,MF47多用电表,微安表:量程0~500 μA,电阻箱(0~9999 Ω),带鳄鱼夹的导线若干、开关、砂纸、小刀等。

实验电路及测量原理 实验电路如图4,根据闭合电路欧姆定律E=I(r+R),整理得

[SX(]1[]I[SX)]=[SX(]1[]E[SX)](r+R)。

作出[SX(]1[]I[SX)]-R图线,若图线的斜率为k,[TP12GW41。TIF,Y#]纵轴截距为b,则电源的电动势E=[SX(]1[]k[SX)],内阻r=[SX(]b[]k[SX)]。

3 三个追问

3。1 追问1(实验误差分析)[HJ]

本题中微安表也有内阻,因此会引起实验误差。用此电路测电池电动势与内阻,测量值与真实值的关系是:E测[CD#3]E真、r测[CD#3]r真。(填“”或“=”)。

分析 若考虑微安表的内阻,不妨设其为rg,则根据闭合电路欧姆定律E=I(r+rg+R),整理得[SX(]1[]I[SX)]=[SX(]1[]E[SX)](r+rg+R)。作出[SX(]1[]I[SX)]-R图线,若图线的斜率为k,纵轴截距为b,则电源的电动势E=[SX(]1[]k[SX)],内阻r=[SX(]b[]k[SX)]-rg。与上面推导的结果相比可得:E测=E真、r测>r真。

3。2 追问2(实验注意事项)

为能较为准确地完成该实验,在仪表、导线都正常工作的前提下,请依据水果电池的工作原理,提出一些实验操作过程中需要注意的事项。(只需填写一项即可)[CD#3]。

分析 水果电池很不稳定,容易极化,因此电池电动势会明显下降,内阻会明显增大,因此实验中读数要快,每次读完立即断开开关。也可回答:用砂纸将金属片表面的氧化层磨去以增加其导电性;将所选水果切开,用小刀在其上划几刀以增加其导电性等。

3。3 追问3(实验思想方法)

某研究性学习小组对水果电池电动势和内阻可能的影响因素进行探究。成员们通过讨论,得出了以下一些可能影响的因素:水果种类、水果温度、电极种类、电极间距、电极插入深度等。在进行实验探究时,需要用到的物理思想方法是[CD#3]。

分析 本探究实验运用“控制变量”的思想方法,分别对不同影响因素进行探究。

4 四点策略

4。1 “会操作”打基础

研究近几年各地高考实验题不难发现,命题者越来越重视对基本仪器操作的考查。如2014年江苏高考物理试卷第10题的第1问,考查了用螺旋测微器测合金丝的直径。“为防止读数时测微旋杆发生转动,读数前应先旋紧哪个部件?”真正操作过的学生会比较熟悉,反之则不容易得分。

针对这一变化,教师在指导学生复习实验时,应特别关注基本仪器的使用。《考试说明》中所列的基本仪器主要有:刻度尺、游标卡尺、螺旋测微器、天平、秒表、电火花计时器或电磁打点计时器、弹簧测力计、电流表、电压表、多用电表、滑动变阻器和电阻箱等。要让学生了解这些仪器的构造、原理、用途,掌握仪器的量程、使用方法和使用规则,以达到熟练操作、正确读数。

本题中所考查的多用电表使用,还包括诸如机械调零、欧姆调零、倍率的选择等操作,假如在高考复习中让学生操作一次多用电表,完成几项测量任务,将会起到事半功倍的复习效果。

4。2 “懂原理”是关键

高考实验题的命题往往是在几个重点实验的基础上进行的,因此掌握这些实验的原理是解题的关键所在。分析近五年江苏高考物理试卷(如表2)可以发现,电学中常考的三个经典实验:探究决定导线电阻的因素、描绘小灯泡的伏安特性曲线、测量电源的电动势和内阻,以及新增考点“练习使用多用电表”分别出现在各年的试卷上。

针对上述情况,教师在进行实验复习教学时,应加强对实验原理的分析。同时,也要关注基本实验的变式,提升学生对实验原理的迁移应用能力。

本题考查的测电源电动势和内阻,可以用伏安法,也可以

[HT6][JZ]表2

[BG(!][BHDFG2,WK4,K18,K8W]

年份[]实验名称[]实验原理(操作)

[BHD]2010年[]测量电源的电动势和内阻[]“伏阻法”

[BH]2011年[]测量电阻的阻值[]“替代法”

[BH]2012年[]用多用电表探究黑箱中的电学元件[]多用电表的操作

[BH]2013年[]探究小灯泡的功率P与电压U的关系[]“伏安法”

[BH]2014年[]测量合金丝的电阻率[]“伏安法”

[BG)F]

用安阻法、伏阻法,甚至可以用伏伏法或者安安法,但是实验原理均为闭合电路欧姆定律E=U+Ir,都是在用各种方法寻找方程解出E和r。因此,在复习备考时牢牢抓住几个基本实验,确保每一个的原理都了然于心,高考解题时就游刃有余了。

4。3 “能分析”促严谨

实验误差的分析也是高考实验题考查的重要内容。如2014年海南高考物理试卷第12题考查了用伏安法测量一电池的内阻,其中第(4)问“在你设计的电路中,产生系统误差的主要原因是[CD#3]”。熟悉的学生知道该实验的系统误差主要是由于电压表不能看成理想表而引起的。

《考试说明》中明确指出:认识误差问题在实验中的重要性,了解误差的概念,知道系统误差和偶然误差;知道多次测量求平均值的方法可以减小偶然误差;能在某些实验中分析误差的主要来源。这就要求教师多关注误差分析,多对学生进行指导,而且笔者认为,教师不但要教会学生如何“定性分析误差的来源”,还要启发学生“合理给出减小误差的方法”,从而不断提高学生分析问题和解决问题的能力。

本题中由于微安表有内阻,会引起系统误差,由闭合电路欧姆定律分析可以得到E测=E真、r测>r真。其实,通过前面的推导不难发现,只要知道了微安表的内阻值,该系统误差就可以消除了。误差分析能培养学生科学、严谨的研究态度,很好地体现了物理学中“情感态度价值观”的课程目标,所以在复习中应引起足够的重视。

4。4 “巧设计”提能力

高考实验题中的设计性问题是对学生理解能力、创新能力的综合考查,这类试题要求高、难度大,对学生很具有挑战性。

设计性实验题一般要求学生根据题目提出的目的和要求,并结合已给出的器材或背景,设计出实验方案并完成实验。由于设计性实验题开放性很强,在平时的复习中很难遇到一模一样的题目,所以教师更应强化学生对物理概念和规律的理解,提升学生将课本中分组实验和演示实验的原理、方法迁移到新背景中的能力;同时重视基本物理语言的培养,学会用简洁明了的物理语言描述现象和阐述问题。

第7篇

所谓解题规范化,简单的讲就是:解题要按一定的规格、格式进行。书写整洁,表达清楚,层次分明,结论明确。使人看后不但知其然,还能知其所以然。具体地说,历年高考的物理试卷中所标的黑体字“解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分。有数值计算的题,答案中必须明确写出数值和单位”就是一般性说明,参考答案和评分标准是解题规范化的量化依据。

二、解题规范化的要素

解题规范化不是抽象的,它由实实在在的诸多要素组成,本文用“七有”、“四不要”加以概括。

(一)解题中的“七有”

(1)有图示,根据题意画运动示意图、研究对象受力图、电路图、光路图等,目的是方便理解物理情景、分析物理过程。

(2)有文字。用文字说明假设的物理量(包括待求量、中间过度量),交代应用物理规律的依据,并用“由…定律得…”、“根据…定理得…”用文字串联起完整的思路,目的是透析物理问题发展的前因后果。

(3)有公式。主要是物理公式(定理、定律、方程等)和与解题相关的数学公式。有了公式,既能知道你是否正确解剖了物理模型,也能反映一定的数学功底。

(4)有推导。联立解题时所列的方程式,推倒出最简的表达式,用已知量表示待求量。

(5)有数据(字母)。解题过程中要有代数据或代物理量字母环节。把已知量、假设量在化成统一国际单位的前提下代入最简单表达式,或某一物理过程中。

(6)有结果。把题目所求的结果明确地展现给读者。要有数值、有单位。如果是矢量,说明其方向性。

(7)有讨论(说明)。最好对问题的结果适当进行讨论,说明其物理意义,预测变化的可能性,指出研究问题的实用性。

(二)解题时的“四不要”

为了保证解题的规范化,我们也该注意和避免一些不规范的解题习惯。

(1)不要另用物理量字母。解题时应按试题中提供的物理量字母书写。如题目明确:支持力FN、摩擦力Ff、则作力图也好,运算过程中代公式也好,就不能随意篡改,另用N、f、表示已知物理量。

(2)不要书写不规范的物理公式。物理公式本身是一种对称美、和谐美,是前人总结出的规律沿袭使用到现在的。大家对特定的物理公式都有共识,所以就不能用数学的思维去书写物理公式。如把牛顿第二定律写成F=am、欧姆定律写成U=RI,以上书写都是不规范的。

(3)不要只写变形式。解题过程必须出现原始物理公式,由此再进行推导变换,不要只写变形式。如不能用R=mv/qB代替qvB=mv2/R等。只写变形式往往会掩盖物理问题的实质,久而久之,造成物理问题数学化,这对学好物理是很不利的。

(4)不要公式堆砌。切忌通篇只写物理公式,没有连贯的文字铺垫。毕竟物理是以物梳理,以物叙理,缺少说理(文字描述),既体现不出承前启后,也很难反映物理问题的本来面目。

第8篇

关键词:高中物理;高效;新课程理念

物理学是一门基础性的自然学科,然而传统的教学观念和方法,往往是体现“以教师为中心”或“以教科书为中心”,而对学生的学习活动、学习方法和策略缺乏必要的指导,学生只能被动地、机械地进行学习。而课程改革所体现的新教学规则要求我们的物理教学在教学方式上应该有大的突破。所以,教师要想充分发挥物理的价值,要想让学生在物理学习中不仅能够掌握基本的知识技巧,也能提高自己的学习能力和科学素养,就必须要构建高效的物理课堂,以促使学生获得健康全面的发展。因此,本文就从以下几点对如何实现高效的物理课堂进行简单的介绍。

一、搭建自主平台,培养学生良好的学习习惯

新课程改革下的高中物理课堂,将不再是教师的“天地”,应该变成学生自主学习的“乐园”。而且,《普通高中物理课程标准》还指出:“在课程实施上注重自主学习,提倡教学方式多样化。”不难看出,搭建自主学习的平台对学生的发展起着非常重要的作用。所以,要想发挥学生的主动性,要给学生自我展示的机会,以促使学生养成良好的学习习惯。

例如,在教学《机械能守恒定律》时,我采取了自主学习的模式。首先,我引导学生明确本节知识点包括动能和重力势能的转化、机械能的概念、机械能守恒定律的探究、机械能守恒定律的含义和适用条件。其中,机械能守恒定律的探究和理解是本节课教学的重点。之后,我又引导学生事先做到这些预习:(1)机械能守恒定理是怎样推导出来的?(2)机械能守恒定理的使用条件是什么?(3)机械能守恒定理与动能定理在使用范围上有什么区分?……要求学生结合教材内容进行自学,并能掌握机械能守恒定理的基本内容。但并不是说,教师在这个过程就没有事情可做了,此时教师的任务就是指导学生,帮助学生解决自主学习中遇到的一些问题。最后,教师再根据学生自学中普遍存在的问题进行点拨,以保证自主学习的效率得到大幅度提高。

二、借助物理实验,调动学生探究欲望

《普通高中物理课程标准》指出:“突出物理学科特点,发挥实验在物理教学中的重要作用。”实验是高中物理教学中的重要内容,我们可以通过观察演示实验,提高学生的观察能力,帮助学生更好地理解物理理论知识;可以通过学生自主实现,拉近学生与物理之间的距离,消除学生的畏惧心理,提高学生的动手操作能力。所以,教师要充分发挥物理实验的价值,充分发挥实验的辅助作用,让学生在形象直观的教学环境中轻松地掌握基本的物理知识,从而为高效物理课堂的实现打下坚实的基础。

例如,在教学《伏安法测电阻》时,首先引导学生明确本实验的基本原理:伏安法测电阻的基本原理是欧姆定律R=U/I,只要测出元件两端的电压和通过的电流,即可由欧姆定律计算出该元件的阻值,经常使用的方法是伏安法和半偏法。所以,为了让学生能够测量出电路的系统电阻,在授课的时候,我选择了小组自主实验的方法,首先,让学生借助电池组、电压表和电流表、开关、导线若干、待测电阻R等仪器设计电路图,之后按照教材中的实验步骤进行实验,最后,在教师的帮助下,学生得出当Rx远大于RA或临界阻值时,采用电流表内接,系统误差使得电阻的测量值大于真实值,即。当Rx远小于RV或临界阻值时,采用电流表外接,系统误差使得电阻的测量值小于真实值,即。

这样的自主操作一方面可以加深学生对基本知识的印象,另一方面也可以让学生在自主操作中不断提高自己的探究能力,培养学生的科学素养,从而保证高效物理课堂的顺利实施。

三、结合生活实际,激发学生学习热情

物理与我们的日常生活有着密切的联系,我们生活中所用的电、光、热等都与物理有着密切的联系。而且,将与物理知识有关的生活现象引入课堂不仅可以活跃课堂气氛,而且能帮助学生在熟悉的情境中理解一些抽象的物理知识,并提高学生的物理应用能力,以此来促使学生获得更好的发展。

例如,在教学《圆周运动》时,为了提高学生的学习热情,在导入课时,我借助多媒体向学生展示了圆周运动在生活中的应用。如:小球在水平面内圆周运动;地球绕太阳运动的动画以及花样滑冰视频等,目的是让学生在熟悉的情境中感受圆周运动,明白圆周运动的特点,进而将学生引入正文的学习中。俗话说:“良好的开端的是成功的一半。”形象的、生活化的展示,不仅可以调动学生的学习欲望,保持学生学习物理的兴趣,而且还可以为高效课堂的实现做好前提工作。

四、创设和谐环境,营造轻松课堂氛围

教育心理学家认为,处在积极愉快的课堂氛围中的师生,大脑皮层处于兴奋状态。学生注意力高度集中,思维活跃。那么,我们该如何创设和谐的课堂环境呢?该如何营造轻松的课堂环境呢?我认为,合理、真诚的鼓励性评价就是改善师生关系,营造和谐环境的方法之一。所以,新课程改革下的高中物理课堂,教师要改变传统终结性的评价模式,采用形成性评价;要改变只注重结果的评价方式,要对学生的学习过程、学习态度、学习动机等进行全方位的评价,让学生在教师准确的分析与评价中学会认识自己,并找准自己的优缺点,进而使每个学生都能以积极的心态走进物理学习中,最终大大提高物理课堂的效率。

总之,新课程理念下的高效课堂就是要选择适合学生发展的教学方式,充分发挥学生的主体性,调动学生的学习积极性,以促使学生获得健康全面的发展。

参考文献:

[1]郭允成.浅谈如何打造高中物理课的高效课堂[J].现代阅读:教育版,2012(17).

第9篇

关键词:小学语文;阅读;教学

中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)03-094-02

一、用数学的方法来定义物理概念。

在中学物理中常用到的比值定义法,所谓比值定义法就是用两个基本的物理量的“比”来定义一个新的物理量的方法。比值法定义的基本特点是被定义的物理量往往是反映物质最本质的属性,它不随定义所用的物理量的大小取舍而改变。如:密度、压强、速度、加速度,功率、电场强度,电容等物理量的定义。

中学物理中的许多定律,例如电阻定律、欧姆定律、牛顿第二定律、气体实验三定律,光的折射定律等都是从实验出发,经过科学抽象为物理定律,最后运用数学语言把它表示为物理公式的。这是研究物理的基本方法之一。

物理学中常常利用数学知识研究问题,以高中物理“直线运动”这一章为例,就要用极限概念和图像研究速度、加速度和位移;用代数法和三角法研究运动规律和轨迹;用矢量运算法则研究位移与速度的合成和分解等。另外,物理学中常常运用数学知识来推导物理公式或从基本公式推导出其它关系式,这样既可以使学生获得新知识,又可以帮助他们领会物理知识间的内在联系,加深理解。

二、用数学方法处理物理问题

在中学物理学习中常用的数学方法可以分为图像法、极值法、近似计算法、微元法等各类。

1、图像法。物理图像是一种非常形象的数字语言和工具,利用它可以很好地描述物理过程,反映物理概念和规律,推导和验证新的规律,物理图像不仅可以使抽象的概念形象化,还可以恰当地表示语言难以表达的内涵,用图像解物理问题,不但迅速、直观,还可以避免复杂的运算过程。

例如:如图所示,甲、乙两光滑斜面的高度和斜面的总长度都相同,只是乙斜面由两部分组成,将两个相同的小球从两斜面的顶端同时释放,不计拐角处的机械能损失,试分析两球中谁先落地。

解析:甲、乙两光滑斜面的高度相同,又不计拐角处的机械能损失,因此两球的机械能君守恒,即落地时两球速度大小相同。由于斜面的倾斜程度不同,对两小球进行受力分析可知,乙图中,小球在前部分的加速度大于甲,后部分的加速度小于甲。将乙的两部分υ─t图线合并后与甲相比,则其前部分υ─t图线斜率比甲的斜率大,后部分υ─t图线较甲斜率小。同时要使两图线与t轴围成的面积相等,则其υ─t图象应如图所示:

由υ─t图象可知,乙图中的小球先落地。

2、极值法 极值法是在物理模型的基础上借助数学手段和方法,从数学的极值法角度进行分析、归纳的数学处理方法。物理极值问题的讨论中常用的极值法有:三角函数极值法,二次函数的极值法,一元二次方程的判别式法等。

3、近似计算法。

物理计算中,常用一些数学近似公式:

如:当θ很小时:sinθ= tgθ=θ

借助上述公式结论,在物理估算中常收到一些意想不到的效果。例:在水下1m处放置一个小物块,问当从水面正上方向下看时,物体离水面深度为多少?

解析:水面下物体A所发出的光线经水面折射,其像点A’,光路如图所示。

当人眼从水面正上方往下看时,a、r两角都应接近零度。因此有:tgr ≈ sinr,tga ≈ sina

由光的折射定律,则有:

所以当从水面正上方向下看时,物体离水面深度为1/n米

4、微元法。微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。它是将研究对象(物体或物理过程)进行无限细分,从其中抽取某一微小单元即“元过程”,进行讨论,每个“元过程”所遵循的规律是相同的。对这些“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。如:用微元法推导匀变速直线运动位移与时间关系。

做匀变速直线运动的物体,其速度与时间图线下面四边形的面积可以表示其位移。这一结论的得出就需要用微元法思想。我们研究以初速度v0做做匀变速直线运动的物体,在时间t内发生的位移。物体运动的v-t图像如图所示。

把时间t分割成无数多个小的时间间隔t,在v-t图中,每一个时间间隔起始时刻的瞬时速度由相应的纵坐标表示。在每一个时间间隔内,我们认为物体做匀速直线运动。在v-t图中,各段位移可以用一个又窄又高的小矩形的面积代表。每个

小矩形的面积之和近似的代表物体在整个过程中的位移。为了精确一些,可以把运动过程划分为更多的小段,如图乙,用所有这些小段的位移之和,近似代表物体在整个过程中的位移。

三、应用数学方法来分析、解决物理问题时应该注意的一些问题

1、理解物理公式或图像所表示的物理意义

物理公式中运用数学知识时,一定要使学生弄清物理公式或图像所表示的物理意义,不能单纯地从抽象的数学意义去理解物理问题,要防止单纯从数学的观点出发将物理公式“纯数学化”的倾向。 如在电容的概念教学时笔者就发现有一大部分学生认为电容与电荷量成正比,与电压成反比。

2、表达物理概念或规律的公式都有自己的适应条件

在运用数学解决物理问题时,一定要使学生弄清物理公式的适用条件和应用范围。例如,真空中库仑定律的公式只适用于两个相对静止的点电荷。值得注意的是,如果从“纯数学化”观念来看,当r0时,F∞,但这样的讨论在物理上是毫无意义的,这时Q1,Q2的相互作用是很复杂的,库仑定律描述不了它们之间的相互作用。

3、数学的解与物理的解的统一

如果由建立的数学模型,应用数学方法解出的数学的解都不符合物理实际意义,并不能只是简单下个无解的结论,而是应该对原数学模型作仔细的分析与反思,找到其潜在的问题,并对原数学模型进行修正。

第10篇

【关键词】高中物理 培养 思维能力

在物理教学中,无论是物理概念的建立,还是物理规律的发现,物理基础理论的创立,还是对理性认识的掌握,都离不开思维能力的作用。在现阶段,如何提高物理教学质量,摆脱目前高中物理学科的困境,关键是在教学中加强对学生思维能力的培养。因此,物理教学过程既 是传授知识、训练技能的过程,又是发展学生思维能力的过程,培养学生的思维能力既是物理教学的任务,又是提高物理教学质量的保证。那么在教学中怎样培养学生的思维能力呢?

一、教会学生学习物理概念的一般思想方法

众所周知,物理概念是反映物理现象的本质属性,是掌握物理规律的基础。教师要根据物理概念形成的特点,以及物理概念的不同类型,引领学生认识抽象物理概念的一般方法,从而掌握学习物理概念的基本方法。在学习物理概念时要弄清引入某个物理概念的必要性,掌握定义这个物理概念的思维方法,能否从不同角 度去理解这个概念 的本质意义。没有理解“力”的概念,就很难理解“牛顿运动定律”;如果对力学的基本概念模糊不清,那么想学好电磁学肯定会缺乏相应的基础。

例如:在研究匀变速直线运动时,必然会涉及到速度的变化。“加速度”这个概念的形成可以通过列举实例:火车开动时,它的速度从零增加到几十米每秒,需要几分钟,急速驶行的火车要停下来,需要几分钟;汽车开动时,它的速度从零增加到几十米每秒,只需几秒钟,正常行驶的汽车要停下来,几秒钟就够了;机枪射击时,子弹的速度从零增加到几百米每秒,仅用千分之几秒,子弹射入墙壁中,千分之几秒就可停止了。

由此可知,常见的诸多变速运动,其速度变化的快慢不同,而且差别也较大。为了表示速度改变的快慢,便引入了一个新的物理概念“加速度”。让学生知道当速度的变化量相同时,速度的变化快慢与所用的时间成反比,当变化时间一定时,速度的变化快慢又与 速度的变化量成正比。运用直接概括方法,综合可得速度的变化快慢――加速度,应由速度的变化量与变化所用的时间的比值来定义,从而得出加速度的公式。

又如,在进行静电场中的电势、电势能的概念教学时,宜采取与重力场中的高度、重力势能类比分析的教学方法;再如库仑定律与万有引力定律的惊人相似、电场线与磁感线的类比。这样的教学安排,不仅在传授知识上起到了借用旧概念建立 新概念,利用旧概念深化理解新概念的作用,也在有意识地培养学生推理、类比、分析、综合等思维方法。

二、物理概念和建立物理规律的教学过程,培养学生的抽象思维能力

在物理教学中,对抽象思维的培养主要是通过在形成物理概念和建立物理规律的教学过程中完成的。

物理学是研究物质结构和运动基本规律的学科。高中物理实际上还是和初中物理一样在研究力、热、电、光、原子和原子核等物理现象,而物理概念是这些现象中某一类的共同本质属性的反映,物理规律是运用物理概念进行判断、推理得到的。因此,重视物理概念的形成和物理规律的建立过程,从而使学生的抽象思维能力得到培养,关键是抓住物理概念和物理规律的“引入”和“推导”。引入不当、推导呆板、僵化,就可能变为老师武断地把学生往前“拖”,“拖不动就可能抱着学生或背着学生“走”,从而使学生变为死记结论。所以“引入”和“推导”不是看老师说了多少,而是看是否说到点子上,切中要害。如果老师进行了科学合理的设计、引入和推导,则“话不多”而学生更能理解和掌握。

“引入”的方法有:实验引入法(实验要求明显、新奇、巧妙)、类比引入法(类比要恰当、生动形象)、现象引入法(现象要典型、充分,这种方法也叫举例引入法)、问题引入法(也叫提问法,提问要富有启发性)和逻辑推理引入法。这些方法的共同点都是从生动直观到抽象概括,经过分析、综合、抽象、概括等思维活动实现由感性认识到理性认识的飞跃和升华。

三、在物理上实现系统思维方法的迁移,让学生学会学习。

系统思维方法可以从力学中的应用,迁移到电学、热学等其它物理学分支。例如,在力学中学生学会了通过实验,用“控制变量法”研究F、m、a的关系,同样可以用到电学上通过实验,研究R、U、I的关系得出欧姆定律,用到热学上通过实验研究P、V、T的关系得出理想气体的状态方程。

在物理教学中,对学生进行系统思考训练,会改变学生思考问题的模式,给学生指明思考的方向。有了这个方向,学生就会迁移到其他学科,甚至运用到生活中去。当学生在意识中形成这样的思维方式,我们是否可以做出这样的设想:学生在今后的生活中如果遇到了复杂的事情,他就会试图找出相关联的系统,搞清楚系统中每部分的情况,把握部分与部分的联系,对系统得出正确的认识,最终制定正确的解决方案。我想,这是完全有可能的。这样做的好处是节省了大量的时间,提高了处理事务的效率,保证了决策的正确性。

总之,培养学生物理思维能力的方法很多,培养学生的思维品质是一项长期的、复杂的系统工程,需要师生的共同努力。在物理教学中我们不仅要有意识的训练学生的系统思维方法,还要训练学生的归纳思维方法、纵深思维方法和发散思维方法,不断提高学生的独立思考能力,让学生学会学习、学会思考,真正让物理教学变成物理教育。为学生走向社会,步入职场,体现个人的社会价值打下坚实的基础。

【参考文献】

第11篇

当今世界科学技术的发展日新月异,新的知识大量的涌现。人们要想跟上时代的发展,就要不断的学习新知识,以适应社会的发展。而一个人在学校得到的知识是很有限的,并且有的知识很快会老化。学生如果没有自学能力,毕业走上社会参加工作后,势必很难进一步提高自己的科学文化知识水平,也就无法适应迅速发展的时代,就有可能在社会的发展中被淘汰。因此,作为基础教育的中学物理教学,要以学生终身学习和终身发展奠定基础为宗旨,把教会学生学习作为一项教育目标。教会学生学习方法;特别是教会学生自学方法比教会学生一些知识更重要,即“受人以鱼不如授之以渔”。自学能力是一个人获得知识和更新知识的重要能力,是一个人的基本素质。在中学时代教师必须在平时的教学中,充分重视并不断地培养和提高学生的自学能力,教师不但要向学生传授知识,而且更要教给学生学习的方法;研究问题和解决问题的方法,提高学生自我获取知识的能力。

阅读是自学的重要途径。培养学生的自学能力,应从指导阅读教科书入手,使他们学会抓住课文中心,能提出问题并设法解决问题,还应鼓励学生进行课外阅读。可是在当前不少师生仍然不重视对课本的阅读,一年过去了,课本还是新的,很少翻开看一看。因为教师强调学生课上记笔记,课下看笔记。实际上大部分学生课上记的只是教师的板书,对于完整的知识而言那只是一些重点并不系统。特别是学生往往只凭课堂上听老师讲的定律、公式,不通过自己阅读、思考和消化就忙于做题,生搬硬套搞题海战术,结果造成基础知识不牢,缺乏分析问题和解决问题的能力,遇到问题依赖教师,没有教师的讲解就学不会知识的不良后果。

在中学要培养学生独立思考、分析问题和解决问题的能力,指导学生阅读是一个重要的环节。学生到学校来读书,而不是到学校来“听书”,而教师在学校是教书,而不是“讲书”。教就是引导学生怎样读书,怎样思考分析问题,解决问题,使学生的能力得到提高是教师教的目的。指导学生阅读课文,培养学生的阅读兴趣和提高学生的自学能力要从以下几个方面入手

一、教师要为学生阅读教材创造条件

一方面要经常对学生进行自学能力重要性的教育,使学生充分认识到,有了自学能力才能不断地充实和更新自己的知识,才能适应迅速发展变化的社会,才能不断攀登科学的高蜂,另一方面在平时要多为学生阅读课本创造条件,学生自学必须要有时间的保证。

现在中学的科目繁多,各科作业也很重,学生每天平均自习的时间只有2至3小时,学生感到做作业都来不及了,哪有时间去看书啊!这就要求我们教师一方面必须改革教学方法,改变那种填鸭式的“满堂灌”,一堂课如果一讲到底,学生便始终处于被动状态连思考的余地都没有,有些问题即使上课讲了,学生也做了练习了,但一考查起来还是不懂,这说明只有教师的讲是不行的,还必须有学生的独立思考,自己消化才行。另一方面,作业题应少而精。题目是永远做不完的,重要的是精选典型习题指导学生深入探讨,独立思考,在分析习题过程中探索其规律,使自己在解题的实践中逐步地掌握其思路和方法。

总之,教师在教学中要尽量少灌输,多启发,使教学过程成为学生在教师的指导帮助下自己学习和钻研问题的过程。例如在上《欧姆定律》这课时,教师只通过演示实验讲清电流跟电压的关系,至于电流跟电阻的关系以及归纳得出定律,就可以让学生自己通过实验进行分析比较、归纳和阅读课文后得出结论,然后教师加以小结.这祥既可以在课堂上有时间让学生阅读课本,又可使学生自己实验、思考、讨论和研究问题,更促使学生去认真阅读教材。

二、根据物理教材的特点,加强阅读指导。

物理课本中既有对现象的描述,又有对现象的分析和概括。既有定量的计算,又有要动手做的实验。在表述方面,既有文学“语言”,又有数学“语言”(公式、图象)还有图画“语言”(插图、照片)。看这样的书,既要懂得文字表述的意思,又要理解数学的计算及其含义,有时还要画图。学生刚开始不易读懂课文,也不习惯这种学习方法,因此,一开始教师就必须耐心的加以引导。要要求学生整章节的阅读,并给予指导,必要时,在课堂上还要边读边讲。重要的句子、结论要求学生用笔划出来,对一些叙述较复杂的段落还要给予分析解释。学生入门以后,再对他们提高要求。例如:《阿基米德原理》这一节,学生通过阅读课文后,对课文提出的概念、定义和原理就有了一个初步的认识,对实验过程和现象也有所了解,并能作大致的分析。这时教师可通过谁是受力物体,浮力的大小和方向以及在什么情况下才有浮力等提出问题,帮助学生进一步理解“原理”的实质,而不致于去死背条文。物理公式是用数学“语言”来描述物理规律的一种数学表达式。初中学生不易看懂,往往把它当作代数来看待,这就可能出现一些很严重的错误。例如通过欧姆定律推导出电阻R=U/I,这只是电阻的计算式,不能说电阻和电压成正比和电流成反比。同样密度ρ=m/v也不能说密度和质量成正比和体积成反比。因为在物理中有一些物理量只由其自身的因素决定,而和外界的因素无关。这就需要教师一开始就要帮助他们去弄清其含义。在大多数情况下,数学“语言”和文字“语言”是一致的,因此,先要训练学生当“翻译”,经常要求他们将某一物理语言或数学语言“译”成文字语言或将文字语言“译”成物理语言或数学语言。例如将“钢的密度比铝大,比铅的小”,“译”写成“P铝<P钢<P铅”;又如将欧姆定律I=U/R公式“译”写成“导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比”等等。同时还须要求学生了解掌握公式的物理意义、适用条件、各物理量的单位以及单位公式的变形等,经常通过这样的训练,就能逐步的提高他们的阅读能力。此外,物理课本中还常有一些物理术语,如“属性”、“竖直”、“状态”、“过程”“相对”“变化”等等,初中学生也是不易理解的,也需要教师通过讨论和比较,帮助学生去认识和了解。

三、引导学生养成预习的习惯,逐步培养自学能力。

第12篇

物理实验是研究物理学的重要方法和手段,加强实验教学,不仅可以提高物理教学的效果,还可以提高学生的实验素质,有助于培养学生的创造性学习能力。初中阶段的物理实验包括三部分:演示实验、学生分组实验和课外小实验。它们都是很好的素材,只要教师做实施素质教育的有心人,在课堂教学中对它们加以合理应用,一定会收到良好的效果。为了搞好实验教学,应着重抓住以下三点:

1. 使学生形成辩证唯物主义世界观和严谨的科学态度

初中物理教材中,许多重要的定律、概念、公式都是通过实验推理出来的,具有很强的客观性,如光的反射定律、二力平衡条件、欧姆定律等。学生由于亲身经历和学识限制,对教材内容不可能一听就懂,并且会怀疑其客观性。而实验就起了帮助学生发现规律,掌握规律,理解获取知识的桥梁的作用。所以,教师应尽最大努力做好一切演示实验和学生分组实验,并尽量让学生自己动手做实验,切忌不做实验或少做实验而讲实验。因为单纯的讲实验,不仅贬低了定律、概念的客观真实性,学生也难以理解和接受。

教师在做演示实验时,必须把准确无误的物理现象清晰的展现在学生面前,让每个学生看清楚,使学生确信定律、概念的客观性。所以,教师必须是一个坚定的唯物论者,要具有严谨的科学态度。在学生分组实验中,要以得出的数据来验证或推导出定律、公式,绝对不允许涂改实验数据,使之与物理定律、公式相符。而应协助学生找出错误原因,重做实验,直到得出正确的结论为止。只有这样,才可使学生逐渐形成辩证唯物主义世界观和严谨的科学态度。

2. 培养学生识别和应用实验仪器的能力

学生识别和应用实验仪器的能力,不仅是学生正确完成物理实验的保证,也是学生以后在工作和学习中必需具备的最基本的能力,如生活中测量工具的使用就需要这方面的知识。

开始几次学生分组实验,实验仪器都是学生首次接触,如刻度尺、温度计、电流表等,教师要着重指导学生识别仪器的规格和性能,查看说明书。弄清: 转贴于

①测量范围;②最小刻度;③零点及其调节方法;④使用方法。

只有掌握以上四点,才能保证实验准确完成和仪器、人身的安全。

3. 培养学生的实验操作能力

学生的实验操作能力的高低,对他们今后的工作和学习有着重要影响。生活中小到照明电路的安装,各种物体质量的测量,大到交通运输和生产劳动都需要这方面的能力。所以新课程标准把培养学生的实验操作能力作为素质教育中很重要的一个方面。物理实验本身就是一个操作过程。学生分组实验,每个人都有操作机会;在演示实验中,可让部分学生配合教师一起完成实验,条件允许时,将演示实验改为学生实验;课外小实验更是学生操作的天地,如在学习量筒、弹簧秤、天平等知识后,可布置小实验自制天平、量筒、橡皮测力计等,学生的积极性一定会很高,效果一定会很好。总之,应尽量多给学生亲自动手动脑的机会,这对提高学生的操作能力是很有帮助的。

在学生分组实验中,教师要加强主导,既不能管得太死,又不能放松,努力创造一个活跃、快乐、紧张、有序的良好氛围。教师的主导作用表现在:

(1)加强示范操作。学生对教师所做的示范操作的模仿是形成动作技能的最初阶段,可减少实验的盲目性。示范可采用投影、挂图、示教板等形式。

(2)指导学生操作。实验操作可采取不同的形式,如独立操作、小组协作操作、放开式讨论操作等。采取何种形式,要视实验内容而定。在实验中,教师要巡回指导,发现问题,及时纠正,好的及时肯定表扬,使每一个学生都掌握物理实验的基本操作方法。