HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 土木工程智能化

土木工程智能化

时间:2023-07-10 17:33:13

土木工程智能化

土木工程智能化范文1

【关键词】土木工程;智能结构;控制体系;应用分析

近年来,由于我国土木工程结构的不合理导致安全事故频发,尤其是遭遇到地震灾害时,土木工程结构的稳定性欠缺严重的威胁了人们的生命财产安全,所以需要加强对土木工程智能结构体系的研究,把土木工程各项功能的被动控制逐渐转变为主动控制。土木工程的结构使用期限一般都可以达到几十年甚至上百年,但是因为结构长时间的负载,材料不断的老化、腐蚀使结构的抗力逐渐的衰减,并且结构中存在的损伤也会不断的扩大,影响结构安全性。智能结构体系是指利用信息技术和材料技术等对建筑结构的内部信息进行传递,当结构中某一部分出现问题时,会自动下达命令进行自行处理,实现建筑结构减震目的,保证结构安全性和稳定性。

一、土木工程智能结构体系的概念和研究现状

土木工程智能结构体系是一种仿生结构体系,让土木结构更加的智能化,土木工程智能结构体系的发展是因为人们对建筑结构的要求不断的提高。土木工程智能结构体系中包括主结构、传感器、控制器等等,土木工程智能结构中还使用了具备仿生功能的智能材料。该结构体系的环境适应能力非常强,可以对结构内部情况进行监控,并对结构内部的损伤问题进行自我修复,避免危险突发时,结构自身受到破坏。土木工程智能结构使工程的安全性和稳定性得到了保证,使土木工程的维修费用大大降低了,并且具备了预测结构危险状况的能力。智能机构体系的主要原理就是在原本的土木结构中植入的传感系统,对结构性能进行实时监测。

二、土木工程智能结构体系的组成和应用

(一)智能结构体系中控制元件的组成

土木工程智能结构体系的控制系统主要由信号处理器、传感器和控制器等几种元件组成,而且整个智能控制系统全部按照仿生学的原理进行,它可以对即将发生的安全隐患进行仿生模拟,并分析此次安全隐患对建筑结构造成的影响,积极的做出相应的结构调整。例如传感器在发现结构存在安全隐患时,会对安全隐患的相关信息进行传递,控制器接收到信息后对土木工程结构进行调整,避免结构受到影响,最终达到智能处理安全隐患的目的。智能结构体系的应用使土木工程的维修和设计都受到了极大的影响。

(二)智能材料的应用

土木工程智能结构不光使用的传感器,还应用了大量的高性能感知材料,例如光导纤维、电阻应变丝、疲劳寿命丝、压电材料、半导体材料等等,利用高性能的感知材料来制作长传感器,可以让传感器的感知性能更强;在土木工程智能结构的控制装置上应用了大量的智能驱动材料,例如形状记忆材料、磁致伸缩材料、可收缩膨胀聚合胶体等等,利用智能驱动材料可以更好的实现土木结构的主动控制,并对土木结构进行减震调节;自我修复材料在土木工程智能结构中的应用可以让土木结构的裂缝和损伤进行自我修复,例如在土木工程的钼钢结构中添加二氧化锆微利,当结构中出现裂缝时,钼钢中的二氧化锆粒子就会产生相变,对裂缝损伤进行阻止,并且混凝土中的聚丙烯纤维会对裂缝进行填充和修复,变相的对于土木结构进行补强修复,也有另一种修复方法,就是在土木结构中预埋感知元件和修复驱动,在发现结构存在缺陷或者损伤时,感知元件会发出修复信号,修复驱动会对结构进行永久性修复,保证结构安全性。

(三)土木结构损伤的智能检测

土木结构的智能检测大多应用超声波检测、X光检测等无损检测技术,对土木工程结构的智能检测能够及时的发现建筑结构中的损伤情况,使人们可以更加准确的了解建筑结构的具体情况,保证建筑结构规划的及时性,采取有效的预防措施来避免危险的发生。土木结构的智能检测会对建筑结构的相关参数进行识别,并对损伤位置进行评级和定位,确定具体的损伤位置之后,智能检测系统开始建立结构模型,并对模型损伤进行修复,确定具体的修复方法,保证土木工程结构损伤修复的可靠性。

三、土木工程智能结构未来的发展方向

(一)智能传感技术的有效提高

在土木工程智能结构体系中,智能传感技术是最为核心的技术,智能传感技术的实现主要得益于传感元件的特殊功能,传感元件的应用为土木工程智能结构体系很多环节的具体实施提供了很重要的帮助,但是智能传感能力与传感元件的大小尺寸没有任何的关系,而且智能传感材料的抗干扰能力非常强,可以与其它任何的材料进行互溶,在智能结构体系中具有非常重要的作用。想要提高智能传感技术,就要结合电磁学和仿真学等相关的学科,使传感器的传感性能有所提高。

(二)智能驱动技术的提高

在土木工程智能结构体系中最重要的就是对土木结构中存在的损伤进行自行修复,自行修复需要使用的主要技术就是智能驱动技术,所以智能驱动技术就是普通建筑结构体系与智能建筑结构体系的区别。想要提升智能驱动技术就要对自适应计算能力进行提升,方便对结构阻尼、摩擦系数以及电磁场的改变,在对智能驱动技术进行提升时,要注意结构材料本身要具备较大的弹性模量和抗冲击性,智能材料的响应速度也要快。保证在驱动过程中,材料结构能够更加容易受控。

(三)提高信息处理和传输速度

信息处理和传输是土木工程智能结构体系中主要的辅助系统,在该模块中信息处理器和传导器占据了绝大部分的功能,它可以将土木结构的受损信息及时准确的传递到控制系统中,进行智能修复。现有的信息处理和传输速度因为受到计算过程和数据线路的限制,所以在数据的处理和传输方面会存在一定的迟缓,想要提高信息处理传输速度需要将处理器和传导器的功能糅合在一起,减少了数据处理和传导的过程,进行同步处理。

(四)智能集成控制技术的发展

土木智能结构体系想要更好的提升就要促进智能集成控制技术的发展,它可以将智能结构中所有的智能元件进行集成化处理,并实现优化控制,使智能结构中的所有元件全部处于半闭合的状态,随时准备对各类隐患因素进行分析,智能集成控制技术的应用会使智能结构体系的可变性增强,并解决了控制稳定性问题,避免各类智能元件突然启动造成的结构不稳,使智能结构体系的运行可以更加流畅。

结论:

智能材料以及各种智能系统的发展,为土木工程智能结构体系的提升奠定了坚实的基础,同时也为土木工程智能结构体系的发展提供了良好的契机,目前我国智能结构体系已经有了很大的发展,所以要积极的推广土木工程智能结构体系的应用,促进土木工程的智能化发展。

参考文献:

[1]黄振育,郭敬林. 重大土木工程结构的智能检测与健康诊断[J]. 城市建筑,2013,08:43.

[2]吴海华. 现代建筑结构中智能土木结构的应用[J]. 硅谷,2015,04:139+143.

[3]陈勃彤. 土木工程智能结构控制体系的相关探讨[J]. 科技传播,2013,22:125+123.

[4]田磊. 土木工程智能结构体系的研究与发展[J]. 山东农业工程学院学报,2014,05:53-54.

土木工程智能化范文2

【关键词】土木工程涵义 特点 未来发展方向

一、土木工程的涵义

土木工程是指建造各类工程设 施的科学、技术和工程的总称。土木工程的含义可从两方面去理解。一层含义是指与人类生活、生产活动有关的各类工程设施,如建筑工程、公路与城市道路工程、局坝水电和水利工程、铁路工程、桥梁工程、隧道工程、地下空间开发利用工程等。另一层含义是指为了建造工程设施应用材料、工程设备在土地上所进行的勘察、设计、施工等工程技术活动。经过多年的发展,目前土木工程的实践和研究己取得显著成就,无论是结构的力学分析,还是结构设计的理论和方法以及结构的施工手段,都有了非常大的突破;特别是近若干年,在高层、大跨结构和钢结构方面成绩尤其惊人。但展望未来,土木工程领域中仍然有许多课题需要我们进一步探讨。

二、现代土木工程的特点

(一)建筑材料方面。高强轻质的新材料不断出现。比钢轻的铝合金、镁合金和玻璃纤维增强塑料(玻璃钢)已开始应用。但是这些材料有些弹性模量偏低,有些价格过高,应用范围受到限制,因而尚待作新的探索。另外,对提高钢材和混凝土的强度和耐久性,虽已取得显著成果,仍继续进展。

(二)工程地质和地基方面。建设地区的工程地质和地基的构造及其在天然状态下的应力情况和力学性能,不仅直接决定基础的设计和施工,还常常关系到工程设施的选址、结构体系和建筑材料的选择,对于地下工程影响就更大了。工程地质和地基的勘察技术,目前主要仍然是现场钻探取样,室内分析试验,这是有一定局限性的。为适应现代化大型建筑的需要,急待利用现代科学技术来创造新的勘察方法。

(三)工程规划方面。以往的总体规划常是凭借工程经验提出若干方案,从中选优。由于土木工程设施的规模日益扩大,现在已有必要也有可能运用系统工程的理论和方法以提高规划水平。特大的土木工程,例如高大水坝,会引起自然环境的改变,影响生态平衡和农业生产等,这类工程的社会效果是有利也有弊。在规划中,对于趋利避害要作全面的考虑。

三、土木工程的发展趋势

(一)高性能材料的发展

钢材将朝着高强、具有良好的塑性、韧性和可焊性方向发展。日本、美国、俄罗斯等国家已经把屈服点为700N/mm2以上的钢材列人了规范;如何合理利用高强度钢也是一个重要的研究课题。高性能混凝土及其它复合材料也将向着轻质、高强、良好的韧性和工作性方面发展。

(二)智能土木结构理论的体系构成

传统的土木结构是一种被动结构,一经设计、制造完成后,其性能及使用状态将很大程度上存在着不可预知性和不可控制性,这就给结构的使用和维护带来不便。为了解决这一问题,发展出了在线监测结构,它赋予传统土木结构以在线监测机制,从而为探知结构内部性能打开了窗口,使人员可以方便地了解结构内部物理、力学场的演变情况,这就是结构智能化的第一层次。在在线监测结构的基础上,进一步增加了监测数据的智能处理机制,使得结构具有自感知、自诊断、自推理的能力,从而使结构实现了第二层次的智能化。进一步在结构中引入自适应及自动控制机制,即根据自诊断自推理的成果,由在结构中耦合的作动系统做出必要的反应,从而实现智能控制结构,这就是第三层次的智能化。比如,对结构的开裂、变形行为,结构的锈蚀、老化、损伤行为,以及结构的动力振动行为做出抑制性控制,在更高层次上对结构起到保护和维修作用。可见,在结构智能化演化过程中,按其智能化程度的不同可划分为如下三个层次:第一层次:自感知土木结构(Self-sensoryCivilStructure),它是智能结构的最低级形式;第二层次:自诊断智能土木结构(IntelligentSelf-diagnosticCivilStructure),具有对前一层次结果的智能化加工处理,包括结构内部力学物理场的自我计算,对结构特定目标参数的自我诊断,以及以做出结构自身行为的应对策略为目标的自我推理等功能。第三层次:智能控制土木结构(IntelligentControlCivilStructure),它是智能土木结构的最高形式。

(三)发展高新技术,应用结构健康监测,实现可持续发展?

土木工程在实际使用过程中,会出现不同程度的损伤或性能退化,这将影响起承载能力和耐久性,甚至引发严重的工程事故,带来重大的人员伤亡和经济损失,产生严重的社会影响。因此,从建筑建成的一刻起,就要做好健康监测、修复和加固的准备。

随着现代传感技术、计算机与通讯技术、信号分析与处理技术及结构动力分析理论的迅速发展,人们提出了结构健康监测的概念,给土木工程的发展带来革命性的变化。

结构健康监测系统通过在结构上安装各种传感器,自动、实时地测量结构的环境、荷载、响应等,对结构的健康状况进行评估,科学有效地提供结构养护管理的决策依据,确保结构安全运营,延长结构使用寿命。

近年来,大型土木工程特别是大跨度桥梁结构的健康监测技术成为国内外工程界和学术界关注的热点,通过科研和工程技术人员的努力取得了卓有成效的研究成果。国内外近年新建的许多大型桥梁都安装了结构健康监测系统,如我国的上海徐浦大桥、江阴长江公路大桥、东海大桥、香港地区的青马大桥,韩国Seohae桥和Youngjong桥、美国Commodore Barry桥和加拿大Confedration桥等。

像这样,通过发展结构健康监测与安全预警,在第一时间发现建筑可能出现的问题,及时进行修复与加固,既避免了可能出现的建筑事故,也基本解决了建筑过快老化损坏,不得不拆去重修的尴尬局面,及由此造成的大量经济、资源、时间上的浪费,实现建筑使用的可持续发展

四、结语

此外,由于我国是一个发展中国家,经济还不发达,基础设施还远远不能满足人民生活和国民经济可持续发展的要求,所以在基本建设方面还有许多工作要做。并且在土木工程的各项专业活动中,都应考虑可持续发展。这些专业活动包括:建筑物、公路、铁路、桥梁、机场等工程的建设,海洋、水、能源的利用以及废弃物的处理等。

参考文献:

土木工程智能化范文3

【关键词】土木工程;特点;未来发展

土木工程是当今时代不可或缺的重要组成部分,它是人们在认识世界和改造世界过程中有意识地构建出的能为人所使用的,符合人们各种需求的事物。当前社会经济发展迅速,各种配套的工程需要随之建立起来;而人民生活水平有所提升,对各种建筑的需求也在不断发生着变化,从最初的要求高质量到现在要求更加适应现代人的生活,土木工程也在随着人们的需求不断向前进步。土木工程现今已经成为人们生活中的重要组成部分,成为人们日常生产和生活的基础。当前的土木工程与土木工程最早诞生时已经是完全不同的两个概念,现代的土木工程呈现出一些新的特点和趋势。

一、土木工程概述

土木工程是一个系统的学科,也是一门涵盖面极广的学科。从字面上来讲,这里的土木可不仅仅是指土和木,而是泛指一切与建筑有关的项目。传统的土木工程学科包含的内容较多,所有涉及建筑的工程都可以纳入到土木工程中去。随着时代的发展和学科的细化,很多原本属于土木工程范畴的内容已经成为独立的学科。

既然土木工程以“土木”命名,那么其最重要最核心的内容还是与建造有关,它是主要以设计、施工和结构等等为研究对象,与之相关联的其他学科包括了相关的工程管理、力学等等。土木工程本身可以大致分为道桥工程和建筑工程两类,这里的建筑工程是狭义的建筑工程,水利工程并不在其中,而是与土木工程层级相同的概念。

二、现代土木工程的特点

当前的土木工程呈现出下面的一些重要特点:

信息化。当前的时代说是计算机的时代毫不夸张,计算机技术已经应用于人们生活的每一个角落,发挥着重要的作用。土木工程也不例外,最为社会建设中重要的活动之一,计算机技术对于土木工程的影响是巨大的。信息化的设备和系统将过去设计、管理、信息交流活动变得更为便捷,将大量从事上述活动的人员从繁重的工作中解放出来,大大提升了工作效率,也进一步提升了土木工程的效率。

绿色环保化。传统的土木工程仅仅以人们的需求为第一要务,舒适和安全是人们首要考虑的因素和目标。而进入了新世纪以后,人们对土木工程的绿色环保化越来越重视,高污染、高能耗的工程也逐渐被人们所摒弃。

管理制度的进步。传统的土木工程忽视工程管理活动,工程往往没有系统的管理体系,体现出的管理特点较为混乱,也无法满足时代的需求。而先进,建筑企业越来越重视管理活动,并且管理朝着信息化、系统化的方向发展。

各种智能材料和智能设备的应用。随着科学技术的发展,大量的智能材料和智能设备应用在土木工程项目中去,给人们带来了很大的便捷,也给维护检测带来了很多的方便。不过,当今这些智能材料和设备的成本还过高,还无法大范围广泛应用。

三、土木工程未来发展

根据现代土木工程的特点,土木工程的未来发展将会呈现出下面的一些趋势:

首先,绿色环保不仅会成为土木工程的主题,其在土木工程中起到的作用将会超越人们的需求,排在仅次于工程质量的重要位置。人们当今已经意识到了生态环境因为人们改造世界的活动已经被极大地破坏了,未来的土木工程还会以绿色环保作为主题,更加符合国家生态文明建设的战略要求,也更加符合可持续发展的要求。

其次,计算机的应用将会给土木工程更多领域带来革新,技术上也会不断地进步。科学技术是不断向前发展的,未来的计算机将会更加智能,自动化也是未来计算机技术发展的趋势。在未来土木工程建设中,将会出现更多的自动化场景,将人们从繁重的劳动中解放出来,大大提升工作效率。

最后,土木工程将会不断地在空间和地域上扩展。未来的土木工程将会不限于在地面上,将会在半空中或者是水面上发展。这时因为城镇化的发展使得城市人口越来越多,城市的土地却是固定的,未来的土地会越来越紧张,人们只能向上发展而无法肆意地向周围发展。未来越来越多的既高又安全的建筑会矗立在土地上,也会出现在海洋中,甚至有可能会向着地下发展,形成立体的土木工程体系。

四、结语

之所以说土木工程是时代的缩影,是因为土木工程是人们有意识地对客观世界进行的改造,而人们对客观世界的改造所呈现出的正是时代的特色。因此我们说土木工程的特点是紧随时展的潮流和特点的。我们要分析现代土木工程的特点和发展趋势,就要对时代的特点和发展趋势有一定的了解。在未来,社会发展会朝着绿色、智能、信息等等的特点发展,土木工程也会因此变得更加注重绿色环保、更加智能化、与信息化的结合也将更为紧密。

参考文献

[1]丁大钧,蒋永生.土木工程总论[M].北京:中国建筑工业出版社,2006.

土木工程智能化范文4

关键词:土木工程;信息化建设;涵义

1土木工程信息化的涵义

1.1从技术形式的分析

土木工程信息化的涵义,从技术形式层面进行分析,是指全国甚至全球的范围内,通过网络技术和通信技术等高科技的方法,实现的土木工程信息技术资源的开发和利用。这面向当今信息化方向的发展,使得土木工程能在线共享资源,随时随地的提供土木信息的支持,还能及时的互动和提供有效的问题解决方案。

1.2从行业影响的分析

从行业的影响进行分析,土木工程信息化是运用信息技术提升土木工程建设与管理的过程。其涉及的方面比较广泛,通常有勘测、设计、施工、监理、质量监督、企业管理、政府监管等方面的工作。土木工程信息化建设,能有效解决工程建设量大和信息知识资源存在分布不均衡的问题,这是提升了行业的整体技术层面。

1.3从实现过程的分析

从土木工程信息化的实现工程可以发现,土木工程信息化的动态过程有六个要素,即信息人才、信息网络、信息技术、信息资源、信息法规环境、信息产业。土木工程信息化的动态过程还有三个层面,第一个层面是土木信息产品制造业的持续发展,指要发展一批科研机构和企业单位进行土木工程信息的开发和研究,这给信息化建设提供有力的支持。第二个层面是对土木信息技术的开发和利用,即借助互联网等信息技术,制定土木工程信息的网络传输标准。这个网络传输标准包括软件和硬件方面。而信息建设的基础是大力研发土木工程信息的传输终端。第三个层面是土木工程信息资源的开发和利用过程,信息化建设的核心和关键,是建设好国家土木工程信息公众网,并完善企业局域网的建设工作。

2土木工程信息化的特点

土木工程信息化的特点主要有智能化、网络化;实时性、远程性、互动性;具有知识经济性;还有核心动力是人力资本等特点。土木工程信息化的这一系列特点,体现了向信息技术方向的提升。

①具有知识经济特点。土木工程信息化是通过互联网这一工具,实现核心生产要素。即土木工程的技术知识、信息,均通过互联网的功能来实现。而土木工程信息化主要表现在土木信息资源的生产、传输以及应用方面。

②实时性、远程性、互动性。土木工程信息化的三大特性是实时性、远程性以及互动性,这也是信息化必须要具备的特点。这三大特点突破了地域和时间等方面的限制,即是在任何地方、任何时间都能互动的为土木工程行业提供所需要的信息服务。

③智能化、网络化。土木工程信息化的另一个重要特点是智能化、网络化,这个特点能对土木工程管理人员的思维形式产生深刻的有意义的影响。土木工程信息化中的智能化与网络化特点,能够使工程从业人员及时的在线交流,并提升了信息管理工作的科学性。

④核心动力是人力资本。土木工程信息化的核心动力主要是人力资本,这也是当今时代土木工程从业人员所要具备的重要能力。基于信息时代中,这就对土木工程的从业人员提出了要保持终生学习技能的态度,要认真把握专业知识、信息识别技术、理技能力和IT技能等。

3发展土木工程信息化的途径

3.1土木工程设计信息化

随着近代科学技术的快速发展,土木工程的信息化建设也有了进一步的发展。尤其是建筑材料钢筋与混凝土的突破性发展,大大改善了耐久性、可靠性,而且强度成倍的提高,材料性能方面也更加优质、轻质、高强的实现了过去实现不了的工程结构。人们已经能有效的利用土木工程设计的信息化特点,解决复杂超静定结构的内力和位移计算。土木工程设计信息化,是对繁杂的手工绘图的突破,而建筑施工机械的使用,提高了施工自动化的程度。

3.2土木工程施工信息化

自动化控制技术在施工过程中的广泛运用,提升了工程的施工效率的同时也解决了很多高难度的施工项目。比如应用到大体积的混凝土的施工质量的控制方面;对沉降进行观测和相应数据的采集工作等。信息化技术的推广应用,势必会对设计技术和施工技术进行全面的革新发展。土木工程信息化的运用的领域逐渐加大,将会提升建筑工业水平的发展。

3.3土木工程管理的信息系统

信息化技术作为一种高新技术之一,适用于众多行业的发展。进一步制定土木工程信息化的运用标准,并完善相关的信息管理系统,这样能有效的推进信息技术在土木工程施工中的规范和高效作业。信息技术促进了工程的数字化,使工程的管理进入到一个全新的阶段。

参考文献:

[1] 曹燕.浅析土木工程的信息化建设[J].网络财富,2009(17).

[2] 彭建国,王晶.土木工程的信息化建设[J].黑龙江科技信息,2009(11).

土木工程智能化范文5

关键词:智能结构;应用现状;现代建筑;

中图分类号:B83文献标识码: A

经济的快速增长,人民生活水平的不断提高,在推动建筑行业的发展的同时,也对其发展提出了更高的标准。目前在我国大型建筑物日益重要,像高层建筑、大型水坝、地下工程等都需要有一个高强度的骨架作为支撑,才能使建筑物的安全性、实用性得到保障,此时智能土木结构应运而生,并担当了“土木工程界的知识经济”。现今,智能土木结构在现代建筑中发挥重要作用的同时,也开辟了土木工程快速发展的新天地。

一、智能结构简介

在社会高速发展的信息时代,土木工程师把视野转入信息材料上,开始了将传感器、驱动材料应用于建筑结构中的探索,以求建筑结构本身稳固性的同时,还能对建筑结构内部进行及时的感知,使人们能及时对建筑物的安全性与稳固性做出更确切的分析,从而做出对该建筑物是维修还是报废的判断,这也是人们对智能结构最初的尝试。现在书籍中对智能结构进行了定义,是指在基体材料中融入具有仿生功能的材料,是最终的材料或者构件满足人们对其智能化的需要,这种结构就是智能结构。智能土木结构按其材料可分嵌入式智能土木结构和基体、智能材料耦合结构两种类型。现在建筑工程对智能架构的应用是十分广泛的,建筑结构中安装使用智能结构,使建筑物能准确应对外界环境的变化并对自身作出及时的内部调整,特别在遭遇强风或地震时,智能结构对整个建筑物尤其重要。在地震幅度不是很明显时智能结构实现结构控制一体化的优势更能充分发挥其作用,此外,智能结构对提高建筑结构的抗震性也发挥着很重要的作用,智能结构在建筑领域的应用对建筑设计、建筑施工及建筑检测都起着至关重要的作用,智能土木结构保障建筑物的稳固的同时,也保证了人民的生命财产安全。

二、智能结构应用现状

智能建筑与我国可持续发展观中生态和谐理念高度契合,所以和其他国家相比,目前我国智能建筑主要功能更加凸显了环保、节约、可持续发展利用等特点,在运用智能化结构对建筑结构进行设计时更加注重节能减排以及高效低碳能否实现。智能建筑随着经济的发展已经成为未来建筑的主要发展趋势,智能结构作为智能建筑的重要支撑在建筑智能化发展中被广泛应用,智能结构与传统的建筑结构有着密切的联系,智能土木结构以传统结构为基础,并以此为依据对传统结构做了改进,因此对智能结构的应用离不开对传统结构的理解与掌握。目前,建筑工程中对智能结构的研究有建筑结构的检测与监控、建筑结构抗震抗风降噪的自控制等,利用智能结构使建筑设备自动化、办公化,最终实现建筑物全面的拟智能生命化也是今后智能结构在建筑领域的发展方向。

(一)智能传感元件的应用

土木工程中对建筑物健康检测时常将传感元件埋入或粘贴在建筑结构中,在保证检测结果的准确性的同时,对建筑物的安全性与稳固性作出更确切的评价,得到最精准的数据,从而决定建筑物是维修还是报废。对于重大土木工程建筑结构,由于修建时间较长,设备一般比较陈旧,传统的传感器不能适应此种建筑物的内部环境,这时就需要采用性能较高传感器对其进行结构及健康的监测。利用光纤、智能材料等制成的传感器的应用在土木工程发展史上具有划时代的意义,开辟了土木工程发展史的新篇章。

(二)建筑工程的健康检测

智能结构在建筑工程结构损伤及健康检测方面也发挥着重要作用。在土木工程中对建筑物检测通常采用目测法,此外还常利用超声波、声发射、x 射线等技术进行无损检测,利用这种方法检测是有很多弊端的,如建筑物内部结构的破损情况、建筑物的实时动态等都不能准确的被监测,不能满足人们了解建筑物整体状况的需求,检测结果往往会失真、检测效率也低,甚至会出现完全错误的检测结果。现在利用光导纤维、压电材料、半导体材料等制成的检测器材,在建筑物内部的传感器能及时感知建筑物自身状况,检测损伤并根据建筑结构损坏过程进行损伤定位,例如建筑物发生损伤,内部出现裂纹,裂纹在外界作用力作用下损伤力度加大,并以声速失稳扩展,这些都会被由这些特殊材料制成的传感元件所感知,使人类能准确及时的了解建筑物内部状况,及时对建筑物进行整体规划、采取必要措施避免事故发生。

三、智能结构关键问题总结及建议

(一)提高智能传感技术

传感元件在建筑工程中的应用离不开纯熟的传感技术,因此提高智能传感技术势在必行。从仿生学来看,传感器相当于建筑物的感觉器官,提高智能传感技术必须增强传感技术的系统性,提高传感器感知、处理与识别能力,在此基础上提高传感系统的可靠性和灵敏度实现传感技术的智能化。在建筑工程中要求传感元件不影响建筑物的结构外形,与建筑材料具有很好的相容性,使对建筑结构的强度影响降到最低,此外还应具有对信号的抗干扰能力,在此基础上对建筑物的整体状况能准确感知。

(二)提高智能传感技术

智能结构系统中主要有传感元件、驱动元件及乙级控制元件,它们在对整个建筑物内部损伤情况进行定位时常会有一个计算的过程,在计算过程中常采用小波分析技术、时间有限元模型等对连接网络、数据总线进行定位,最终使传感器的信息处理和数据传输融合。

(三)发展智能控制集成

智能控制系统相当于人类的中枢神经系统的最高级部分大脑,不仅决定着运动系统、感觉系统的有序运行,还担负着整个脑神经高级功能的运转。在土木工程内部安装智能控制集成系统,能使建筑物在遭遇风暴、强降雨等恶劣自然灾害情况下,迅速采取应急措施,使损失降低到最小,因此发展智能控制集成技术也是十分重要的。

(四)发展智能驱动技术

驱动在计算机中的应用十分广泛,所有的硬件设备都需要安装相应的驱动程序才能正常工作。智能驱动技术能够对智能结构的形状和力学原理加以控制,便于对智能结构的管理与规划。驱动相当于一个入口,只有通过这个入口操作系统才能实现对整个部件的控制,在土木工程中驱动技术发挥着不可小觑的作用,发展智能的驱动技术,才能实现建筑物整体的控制,才能使建筑物的性能更加稳固。在建筑工程中要求所使用的驱动系统材料自身机械性能要高,保障其具有很强的抗冲击性;再次,驱动材料与建筑材料本身要有很好的兼容性;最后,还应提高驱动速度,便于及时掌握建筑物的状况。

四、结束语

我国建筑业产值的持续增长推动了建筑智能化行业的发展,目前我国处于智能建筑行业的快速发展期。科学技术的不断进步,经济水平的不断提高,人们对建筑安全性、舒适性、便利性等有了更高层次的要求,者为智能建筑的发展提供契机的同时,也给智能建筑的发展提出了新的挑战。

土木工程智能建筑结构作为智能建筑的灵魂与支撑,在未来智能建筑的发展中不可或缺,因此,我们在今后智能结构的发展道路上必须用发展的眼光、科学的手段,与时俱进,开拓创新。

参考文献:

[1]李沁羽. 智能土木建筑技术的发展与应用[J]. 科技创新导报,2013,(19).

[2]淡丹辉,何广汉. 智能土木结构理论初探[J]. 四川建筑科学研究,2001,27(4):7-9,12.

土木工程智能化范文6

    关键词:现代土木结构;智能控制;技术分析

    现代土木结构的概念现代材料技术的发展进步促使了人类社会进入了信息时代,信息材料的生产业已实现设计制造一体化。各种具有信息采集及传输功能的材料及元器件正逐渐地进入土木工程师的视野。人们开始尝试将传感器、驱动材料紧密地融合于结构中,同时将各种控制电路、逻辑电路、信号放大器、功率放大器以及现代计算机集成于结构大系统中。通过力、热、光、化学、电磁等激励和控制,使结构不仅有承受建筑荷载的能力。还具有自感知、自分析计算、自推理及自我控制的能力。具体说来,结构将能进行参数如应变、损伤、温度、压力、声音、化学反应)的检测及检测数据的传输,具有一定的数据实时计算处理能力,包括人工智能诊断推理,以及初步改变结构应力分布、强度、刚度、形状位置等能力。简言之,即使结构具有自诊断、自学习、自适应、自修复的能力。这就是现代土木结构概念的形成过程。

    现代结构是传统结构的功能的升华。现代结构在土木结构中的应用便称之为现代土木结构。

    现代土木结构技术分析.

    结构智能化传统的土木结构是一种被动结构,一经设计、制造完成后,其性能及使用状态将很大程度上存在着不可预知性和不可控制性,这就给结构的使用和维护带来不便。为了解决这一问题,发展出了在线监测结构,它赋予传统土木结构以在线监测机制,从而为探知结构内部性能打开了窗口,使人员可以方便地了解结构内部物理、力学场的演变情况,这就是结构智能化的第一层次。在在线监测结构的基础上,进一步增加了监测数据的智能处理机制,使得结构具有自感知、自诊断、自推理的能力,从而使结构实现了第二层次的智能化。

    现代土木结构分类现代土木结构按其材料可分为两种类型,分述如下:

    嵌入式现代土木结构在基体材料如钢结构、钢筋混凝土结构中嵌入具有传感、动作和控制处理功能的材料或仪器,并集成进现代计算机硬件软件技术,由传感元件采集和检测结构内部信息,由计算机对这些信息进行加工处理,并将处理结果通知控制处理器,由控制处理器指挥、激励驱动元件执行相应动作。

    属于这种类型的智能结构只需对传统土木结构加以改进即可,无须额外研究结构的传统力学性能,易于做到传统结构与智能结构的平稳过渡,故而成为研究的焦点。

    基体、智能材料耦合结构某些结构材料本身就具有智能功能,它们能够随着自身力学、物理状态的改变而改变自身的一些其它性能。如碳纤维混凝土材料能随自身受力情况而改变其导电性能,只要探测到这一改变,便可以间接获得结构的内部力学信息。

    按照结构智能化目的的不同,又可将其分为如下几类:a.具有裂缝自诊断和自愈合功能的智能混凝土结构;b.具有应力应变状态自诊断功能的智能混凝土结构.c.具有变形、损伤自诊断功能的智能混凝土结构;d.具有疲劳寿命预报能力的现代土木结掏.e.具有监测钢筋或钢构件锈蚀状态能力的现代土木结构;£具有感知和自我调节功能的智能减振(桥梁)结构。

    现代土木结构的研究内容.

    智能化设计现代土木结构的首要研究内容就是对传统结构智能化的概念设计策略性研究。需要针对结构类型及其重要性的不同,以及现有工艺技术水平和经济资金情况等多个方面因素,合理地确定智能化目标,在兼顾技术先进性、实用性和经济 省的前提下采用合理功能层次的现代土木结构。确定了智能化目标以后,就需要着手做一些准备工作,它们是:对结构在使用中可能发生的各种行为进行预测,对结构在力学物理环境下出现的各种反应进行预估,以确定结构中需要实现智能化监控的部位,确定整体监控方案。

    由传感元件实现智能控制另外一项重要研究内容就是传感元件。感觉是现代土木结构的基础性功能,它利用在传统建筑材料中埋入传感元件(或利用传感、结构耦合材料)来采集各种信息,经过处理分析,才可实现自诊断、自驱动等智能控制功能。有鉴于此,应对传感元件提出一些特殊要求如。F-a.尺寸细微,不影响结构外形;b.与基体结构耦合良好,对原结构材料强度影响很小;c.性能稳定可靠,耐久性好,与基体结构有着相同的使用寿命;d.传感的覆盖面要宽Ie.信号频率响应范围要宽; 能与结构上其它电气设备兼容;g.抗外界干扰能力强;h.能在结构的使用温度及湿度范围内正常工作。

    可列人研究范围的元件有:光导纤维,压电陶瓷,电阻应变丝,疲劳寿命丝,锈蚀传感器,碳纤维等。

    作动材料分析现代土木结构的最终目标是实现结构的智能控制,而控制是由作动材料实现的。利用某些存在物理耦合现象的材料,尤其是机械量与电、热、磁、光等非机械量的耦合材料,作为结构的作动件。可以通过控制非机械量的变化来获取结构特性(形状、刚度、位置、应力应变状态、频率、阻尼、摩阻等)的改变,从而达到作动目的。对它的要求主要有:a.与基体结构耦合良好,结合强度高;b.作动元件本身的静强度和疲劳强度高.c.驱动方法简单安全,对基体结构无影响,激励能量小;d.激励后能产生高效稳定的控制,反复激励 F性能稳定.e.频率响应范围宽,响应速度快,并可控制;常用的作动材料有记忆型合金、压电材料、记忆聚合物以及聚合胶体等。目前有关作动元件的研究正在一些领域展开,如董聪、等人评述了几种常用作动,传感材料的性能。

    智能结构信息处理现代土木结构要成为有机的整体,还须借助于信息的流动控制及加工处理。只有使信息在环境、结构、传感器、信息处理中枢及作动系统之间有序地流动,并同时进行加工处理,方可使结构具有智能功能。其信息流动可如下图所示:

    由此可见,应首先对数据采集予以研究。

    这包括各种传感器信号的A/D转换以及数据处理通讯接口软硬件的研制。作为一种尝试,利用传统结构实验装置,实现了单片机应变仪与微机在线通讯的硬件组建及计算机数据接受软件的开发,初步的结果表明,建立土木结构在线监测是完全可以做得到的。

    其次。应着重研究输入到计算机中的数据的智能化处理算法,以及相应软件的开发。算法的核心目标应为对结构内部力学、物理场的全面计算。在此,应注意算法的快速性,避免因算法过于复杂而失去了智能结构的机敏、实时特性。

    接着,应对结构的健康诊断及安全评定方法予以研究。包括结构的数学建模,参数空问的模式识别,损伤评定,体系可靠性分析,以及人工智能的应用。

土木工程智能化范文7

【关键词】:土木工程;施工技术;创新;发展分析

【导言】:随着人们对于物质生活要求的不断提高,建筑企业应顺应时展和社会发展的需要,重视土木工程技术的不断创新以及改善,保证建设工程的质量,力求为人们打造一个舒适的生活环境,满足人们的要求,提高建筑施工企业的经济效益,促进建筑行业的快速发展,推进国民经济的进一步发展。

1土木工程施工技术

1.1地基施工技术

在土木工程施工技术中,地基施工技术是最基础的一环,也被称作桩基施工。在这一环节中,依据国家标准的《桩基施工规范》,一般分为两种类型,即端承型和摩擦型。端承型桩基指的是在地基施工环节中,采用端庄侧阻力来承载垂直方向的负载。摩擦型指的是采用桩磨阻来承载垂直方向的负载。

1.2钢结构施工技术

在钢结构施工技术中,一般主要的技术环节实在装载钢结构构件前,首先需要对施工现场进行清理,从而做好钢结构构件吊装准备工作,运输中需要保证运输道路的通畅。建筑钢结构组件的位置时,需要精确控制提升力量,确保平衡起重机的过程中。起重机钢结构组件平台时,需要确保整洁的建设平台。

1.3混凝土施工技术

在传统的混凝土施工技术,混凝土浇筑方法的最主要环节。一般包括两个方面:第一个是原位方法,这是一个铸造方法是最常用在中国,是指混凝土搅拌完成后将混凝土浇灌在建筑领域,第一次,并突出了混凝土浇注的实时性能。第二,预制法,顾名思义,指的是提前将混凝土搅拌好以备使用,这需要在事前对混凝土需求有着明确的了解,从而提前进行。

2土木工程施工技术的创新

2.1在预应力技术方面的创新

在土木工程施工技术创新中,预应力技术创新是极其重要的一部分。预应力技术创新是指在预应力钢防护之后通过使用环绕包裹的方法对混凝土构件实施保护,通过相关设备的使用,实施预应力技术。预应力技术创新时,相关技术人员应首要考虑其在极限状态时的表现,然后以其负载情况为依据,进行预应力的创新设计工作,以保证土木工程的构件不会发生变形甚至产生裂缝的情况而影响土木工程施工的进度,以便保证建筑工程的质量。

2.2在灌注技术方面的创新

灌注技术方面的创新在土木工程施工技术创新中有着重要意义。一般来说,灌注技术可以分为钻孔技术创新和完善灌注技术两个方面。由于钻孔技术在灌注施工环节的基础性地位,因此建筑企业应该重视钻孔技术的创新工作。钻孔技术工作的具体要求表现在,需要施工人员提前做好清理工作,确保钻孔桩周边环境能够满足施工条件,再通过精准严密的测量工具,确认钻孔的位置,保证钻孔的一致性。同时施工人员还应注意做好施工前的钻孔机调试,确保钻孔工作进展顺利。一旦发生卡钻或者坍塌的状况,必须立即停止钻孔工作。并分析发生卡钻或者坍塌状况的具体原因,解决对应的深层问题,以便保证土木工程质量。而完善灌注技术方面的主要体现是,施工人员在进行灌注施工时,应不断完善灌注技术,保证在钻孔灌注泥浆时,能够及时补充孔内泥浆,达到填充充足的效果,从而保证桩基稳固。

2.3深基坑支护技术方面的创新

建筑施工企业应不断发展创新深基坑支护技术。深基坑支护技术具体是指,技术人员在土木工程施工前,应详细了解施工现场的地质环境,在地质环境较差的情况下,通过灌注桩和预应力锚杆来保证土木工程施工质量。技术人员应充分考察施工现场周围地下管道、光缆等的埋设分布,并考察岩土与地下水的分布情况,考察深基坑施工中可能会遇到的阻碍,为深基坑施工奠定基础。与此同时,还应在设计支护结构时,充分考虑其与深基坑施工方案的吻合度,保证深基坑支护工程顺利进行。

3土木工程施工技术的发展趋势

3.1科技化含量更高

科技是第一生产力,因此,我国未来的土木工程施工技术发展方向中,首先就是科技化方向。土木工程科学技术的发展也是一个有效的方法来提高建设单位的效率,也是一个项目,以确保质量的技术,土木工程行业的发展具有极其重要的指导作用。科技发展越来越多的应用在民用建筑技术科学和技术的成就,例如,在早期阶段的施工准备,需要使用方法的科学成本核算项目和资金,需要使用更高级的科学测试工具检查施工环境,需要使用更好的技术来解决施工技术问题和障碍。科技化发展的必然结果是人力资源的解放与施工周期的进一步控制,而且在更高效的科学体系化施工下,可以将原本存在故障的设备剔除,将存在问题的材料予以排除,要做到这一点,就必须增强检测设备科学性,从而让一切问题设备和材料无处可藏。

3.2生态化趋向明显

生态发展是我国产业发展的必然趋势。当前由于资源的日益短缺,环境,能源,节能减排是每个行业追求的目标,也是一个必要的方式实现我国的可持续发展。因此,在土木工程施工技术的发展,生态发展趋势也很重要。主要用于建筑材料的优化,以最大限度地节约资源,和依靠科技进步实现建筑设备,包装材料,如环境保护的发展,以促进绿色工程的发展。

3.3智能化发展要求

智能化发展是当下乃至未来发展的必然,目前已经存在一些机械领域智能化技术应用,通过信息技术的应用,让施工作业更加简便化。智能发展主要反映在土木工程施工技术在高层建筑施工起重机械运输的控制参数,更准确的运输材料,减少施工事故原因的开销。第二,智能的发展趋势也反映在工程设备管理,以便他们能更加统一和有效的施工设备的管理,高智商的基础上首次发现,施工设备故障问题,确保施工质量。

结束语

总之,随着我国经济的不断发展,建筑行业的发展也在不断加快,为国民经济的发展及人们生活质量的提高起到了积极地推动作用。由于土木工程在建筑工程中的基础地位,不断创新发展土木工程施工技术,是社会发展的必然要求。因此,土木工程施工企业及工作人员,应重视创新土木工程施工技术,提高土木工程施工质量,从而促进建筑行业的不断发展,推动社会进步。

【参考文献】:

[1]刘水才.现阶段土木工程施工技术探究[J].工程技术研究.2016(06).

土木工程智能化范文8

【关键词】智能混凝土;研究;问题;应用

在科学技术日新月异的今天,材料科学也获得了很大的发展,作为建筑重要材料的混凝土不断向高性能、多功能和智能化方向发展。用它可以建造大型化和复杂化的混凝土结构。因此,研发具有主动、自动地对结构进行自我诊断、自我调节、自我修复、恢复的智能混凝土已成为混凝土的主要发展趋势。

一、智能混凝土的定义和研发过程

1、智能混凝土的定义

智能混凝土是在混凝土原有成分的基础上复合智能型的建筑材料,它使混凝土具有自我感知和记忆能力,能自己适应和自我修复特性的多功能型材料。依据它的这些特性可以有效地感知混凝土材料内部的损伤,满足结构自我安全检测需要,防止混凝土结构潜在的危险性破坏,它能根据检测结果自动进行修复,明显地提高混凝土结构的安全性和耐久性。总而言之,智能混凝士是自我感知和记忆、自我适应、自我修复等多种功能的综合体,缺一不可,但是以当今的科技水平制备完善的智能混凝土材料还相当困难。但近年来损伤自诊断混凝土、温度自调节混凝土,仿生自愈合混凝土等一系列智能混凝土的相继出现,为智能混凝土的研究打下了坚实的基础。

2、智能混凝土的研发过程

智能混凝土的基本材料与一般的混凝土没有什么区别,都是水泥和砂子。但是智能混凝土中还含有石英砂和各种加固的材料、纤维。这种石英砂和其他大量混在砂子中的石英砂是不同的,它的纯度很高,高达100%。依据它的特点,伊朗的土木工程师把智能混凝土应用到从修建水坝到铺设污水管的各个领域,并且不断地完善其应用技术。哈马丹布-阿里大学的穆哈穆德・尼力教授在智能混凝土中配入了聚丙烯纤维和石英粉,使其韧性大大提高,抗爆能力比普通混凝土高出数倍。卢合拉・阿里扎德的改进更加完善。萨韦省伊斯兰阿萨德大学阿里・纳扎里教授及其同事发表了多篇论文,研究使用各种氧化金属纳米粒子改变混凝土内部结构的方法。他们使用过氧化铁,氧化铝,氧化锆,氧化钛及氧化铜。材料经过纳米粒子处理后会呈现出极佳的属性。尽管只有几件小样品呈现出了这种属性,但至少证明了这个方法是可行的。使用这样的纳米粒子,有望制造出比拉法基混凝土强度高出四倍的混凝土。2008年,德黑兰大学发表了一份研究报告,研究的是智能混凝土抵御钢弹冲击的能力。一般情况下,这些在地震时都不是问题。研究发现,加有大量长钢质纤维的混凝土性能最佳。随着智能混凝土的研发过程的不断推进,其工能也在不断完善和强化。

二、智能混凝土的研究现状,及其研究中应注意的问题

1、智能混凝土的研究现状

对于具有自诊断、自调节和自修复功能的混凝土只是智能混凝土研究的初步阶段,它们不是具备智能混凝土的全部特征,而是只拥有它的某一个特征,所以说它们是一种智能混凝土的最初形成的简化形式。因此有人把它们叫做机敏混凝土。显然这种功能不完整的混凝土不能代替发挥智能混凝土的作用,当今科研工作者们正努力于将两种以上的功能进行混合组装在一起,这就是我们知道的智能组装混凝土材料的研究。智能组装混凝土材料是将具有自我感应、自我凋节和自我修复组件材料的功能,混凝土基材复合可以做到依据结构的需要进行排列,以此来达到混凝土结构的内部损伤的自我诊断、自我修复以及抗震减振的智能化。

2、智能混凝土研究中应注意的问题

在建筑房地产飞速发展的今天,智能混凝土具有非常广阔的前景,但是作为新型的功能材料,在运用到实际的工程中,我们还有一些问题需要进一步地加强探索和研究:例如碳纤维混凝土电阻率的稳定性、电极布置方式、耐久性等方面的研究;光纤混凝土的光纤传感阵列的最优排布方式研究;自愈合混凝土的修复粘结剂的选择研究,自愈后混凝土耐用和持久性能的完善等。这些问题的解决将对智能混凝土的进一步发展产生深远的影响。为进一步为促进智能混凝土的研究工作我们可以从以下几点着手。

首先,要用针对性地进行开发研究。研究的针对性是指要针对混凝土的性能发生恶化以及结构发生破坏等具体情况,采取不同的智能方法,例如可以针对这些情况,进一步缩小智能化范围,以某一种具体功能为对象,然后研究出相对应的方法。

其次,注重其实际应用中的可行性。浇注混凝土要在工程现场进行,因而应以原有工艺为基础开发相应的较为简单的方法。选用的材料应具有化学稳定性,要有利于安全施工,不挥发任何有刺激的气味以及其它有害物质等,并且还能够能大量使用而且成本较低。

再次,注意研究设计的综合功能性。采用智能化,虽能够提高材料的耐用和持久性,但是也存在一些负面影响。例如因为采用了某种材料虽可以对某种恶化情况进行控制以及进一步改善,但是否会对其它性能会产生,面对正反两方面的问题都在判断和设计时进行综合而全面的考虑和衡量。

三、智能混凝土的应用前景

智能混凝土是科学技术日新月异时展的结果,它的运用对重大土木基础设施应变的实量监测、损伤的无损评估、及时修复以及减轻台风、地震的冲击等诸多方面有很大的意义,对保证建筑物的安全耐用和持久性都具有十分重要的作用。而且随着现在建筑发展的智能化趋势,传统的建筑材料的研究、制造、缺陷预防和修复等都面临着强烈的挑战。智能混凝土材料作为建筑材料领域的高新技术,为传统建材的未来发展注入了新的内容和活力,也提供了全新的机遇。它发展可以使混凝土材料的应用具有更广阔的前景,相信也会带来巨大的社会经济效益。

四、结束语

综上所述,随着科学技术的创新运用到建筑材料领域,随之就产生了智能混凝土材料,智能混凝土材料的出现以及运用将会革新我国土木工程的建设,其意义重大。

【参考文献】

[1]马成松.信息化背景下的新世纪土木工程[A].土木工程与高新技术――中国土木工程学会第十届年会论文集[C].2002.

[2]丁勇,施斌,徐洪钟,等.基于仿生学的建筑物智能结构系统初探[J].防灾减灾工程学报,2004(04).

[3]李济泽,严世榕.智能结构及其应用问题[J].引进与咨询,2003(01).

土木工程智能化范文9

【关键词】土木工程;信息技术;发展时期;阶段特征;趋势

我国正经历从工业化向信息化转变的新时期,早在2002年,国家就确定了“以信息化拉动工业化”的新战略决策,科学施行土木工程信息化技术战略正是这项决策的生动体现。土木工程主要包括水利、公路、矿山、机场和建筑等诸多行业领域,具有行业规模大、从业人员众多、技术要求高的基本特点,更是我国重点培育的支柱性产业。近些年来,因种种复杂要素的影响与制约,土木工程行业的整体研发水平较低。根据国家推行信息化战略的基本要求,土木工程的信息技术决策便是要把当代信息科技同传统意义上的土木工程有机结合,进而整体推进土木工程的经营管理水准。

1.土木工程信息技术的特征

1.1知识经济色彩凸显

在知识经济时代下,土木工程所涉及的各项科技、信息和知识较多,这些也是土木工程生产的核心要素,它以互联网作为载体,不断整合土木工程的信息资源,促进该类资源的生产、传送和运用,从本质上更加凸显土木工程的信息化。

1.2对人类的思维方式产生极大地影响

土木工程的信息技术往往经由网络化和智能化的方式得以实现,并且信息具有高度的专业性,这便要求从业者具备扎实的专业基本功,方可对信息开展识别、处理工作。在这期间,无疑会给人类的思维模式带来极为深远地影响。

1.3打破了时空限制

土木工程的信息技术可以实时的实现远程交互,也就是说,在任何时间、地点,均能给土木工程领域提供及时有效的信息数据服务,极大地方便了土木工程技术的交流与互动,也彻底破除了时间、空间的限制与约束。

1.4对从业员工的技能要求空前提高

土木工程信息技术发展的核心驱动力便是人力资源,从这个角度看,从业人员唯有及时学习专业常识、IT技能,并掌握信息的识别、处置和管理手段,才会立足于土木工程信息化发展的实际,最终使土木工程在技术、经营和管理上达到质的飞跃。

2.新时期土木工程信息技术的发展目标

2.1为企业和政府决策服务

打造一个可靠的、高效的、便捷的政府监督管理体系是各级行政管理部门的重要改革目标,土木工程信息技术经由政务公开、远程办公等手段,为行政主管部门改进工作作风、提高决策和管理水平提供了不小的帮助。与此同时,运用土木工程信息技术时刻将企业效益的创造作为关键目标,通过信息技术的推广和普及,企业必会在提升自身服务水平的基础上,营造一个公正、合理的市场竞争环境。

2.2促使土木工程信息走向产业化趋势

当代互联网通信技术是革新传统土木工程的重要工具,运用先进的网络技术,信息的互动、共享会变得异常简便,这样一来,产业结构会得到进一步优化,各项信息资源会得到系统地整合与配置,并使新产业——土木工程信息化得以诞生。

2.3大大提高国内土木工程企业的效益,支援国民经济建设

作为我国经济社会发展的支柱性产业,实现土木工程的信息化无疑会带动土木工程的行业创新与进步,促使土木工程相关产业朝着稳健的步伐前进,进而打造新的经济发展项目。同时,运用互联网信息技术手段改造土木工程企业,不断提高企业核心竞争实力,特别是在我国入世后的今天,土木工程一经实现信息化后,会引领国内的土木工程企业纷纷“走出去”,为企业与国际间的接轨、共同利用国际国内两种市场和资源提供了必要的物质保障。

3.土木工程信息技术的未来发展趋势

3.1嵌入式系统的大力运用

随着电子计算机技术的普及与延伸,嵌入式计算机无论从应用数量还是发展规模上均超出了传统技术层面的计算机。嵌入式系统,主要指以计算机通信技术为前提技术条件,以实际运用为中心环节,软硬件可相互裁剪,满足系统对牢靠性能、成本、功率消耗、性能以及体积等需要的专门化的计算机系统。科技发展为人类进入“计算普及”时代提供了源源不断的动力条件,同时,相当规模的低成本、效益高的嵌入式系统势必成为“计算普及”时期的核心组成要素。

嵌入式系统的重要基础是“芯片”电路的设计与软件技术产品的研发和问世,相应地,推行土木工程信息化技术战略,所要面临的问题便是土木工程应用系统的开发,换言之便是嵌入式系统的研发。作为土木工程专业知识的主要承担者,嵌入式系统会成为土木工程信息化目标的重点发展项目。

嵌入式系统的实际运用集中于控制系统和各种信息采集检测设备的研发,所以说,在不久后的将来,嵌入式系统的功能会变得异常强大,极有可能会独立实现在PC上的工作任务,土木工程的流程任务分配进一步走向精细化。另外,借助于遥感和全球定位系统,信息采集能实现自动化,嵌入式系统再对这些信息加以分类、探析、加工和处理,进而把有用的信息保存下来,为开展智能监控和制定决策提供诸多便利。

虽然嵌入式系统已在土木工程领域开始大踏步的应用,但从成本和性能上仍与广泛运用的要求存在相当的差距,需要嵌入式系统的持续改进。

3.2国际互联通信技术的应用程度更为提高

通信技术发展日新月异,伴随计算机网络与通信技术的整合,互联通信技术的发展为信息在国际上的高速共享和快捷传送提供了可能性。网络技术的进步深刻地改变了人类的生产、生活方式,然而,其在土木工程领域的影响尚未深入体现,依照“光纤定律”,未来几年内,广域网的信息传播速度会与局域网信息传播速度相接近,人类无法明确地感知信息所在地域的差别,这一构想会随着技术革新而成为现实。

获得信息可采用通信网络现存信息调用的方式,也可借由网络上的信息取得仪器完成信息的采集,进而保存到网络上。运用互联通信技术,可使人类轻而易举的掌握信息加工和处理的能力,公众可远程操控工程,进而完成土木工程的智能化和自动化。除此之外,在土木工程专业领域中,基于案例推理的专家系统的研发,要求土木工程与网络技术相互交融,然而,就目前来看,该项研究在技术攻关与应用上存在较大困难,也是今后土木工程信息技术的研究方向。

3.3计算机软件技术被大量应用

土木工程的专业技术软件是土木工程实现信息化的主导表达形式,特别在信息加工过程中尤为明显。首先,智能技术的发展以及专家系统的应用可作为土木工程设计的研究依据,在运用神经网络开展土木工程的模型甄别方面,智能技术同仿真、优化技术的紧密结合会构筑空前规模的决策支援系统,通过正分析、预估分析等对各类信息加以综合判别、探析和工程比对,发现相应问题及时提出最佳方案,这类技术定会在土木工程中派上用场。其次,随着软件技术研发手段的更新,软件的产出效率获得了显著地提高,研发周期逐渐减缩,成本得到明显控制,能紧密依据用户需要快速安装软件,为土木工程专业类系统软件的推广奠定了牢固的根基。

4.结语

综上所述,土木工程信息技术的快速发展显著地提(下转第399页)(上接第395页)升了土木工程领域中信息采集、加工和处理的水平,也从根本上变革了土木工程专业的研究方式和内容,整体提高了土木工程的技术水平。 [科]

【参考文献】

[1]吴建明,于玲.土木工程信息技术的发展动态研究[J].森林工程,2012(01).

[2]杨敏,肖珂,张俊峰.岩土工程软件的发展方向[J].岩土工程界,2013(10).

[3]任秋荣,叶龙,李向召.土木工程发展现状及趋势[J].制造业自动化,2011(12).

土木工程智能化范文10

关键词:土木工程;发展趋势;展望

中图分类号: S969 文献标识码: A

1 引言

土木工程是一门将土木力学、工程地质学以及土力学基础工程三者结合在一起,用于土木工程实践的新学科。展望土木工程的发展,需要综合考虑土木工程各个学科的特点,结合工程建设中对土木工程新的要求,以及其相关学科的发展对土木工程产生的影响。土木工程所研究的对象为土体和土木。土木在其形成的漫长历史过程中,经历了各种各样的地质作用,所以有着相当复杂的结构和力学性质。土体和岩体都存在着地域性的差异,所以不同地区的工程性质也存在着差异。土和土石的渗透特性、变形特性以及强度特性均需要通过试验来测定。而由于在取样和试验过程中,都不可避免地改变了试样的边界条件、初始应力等,所以测试得到的结果难免存在误差,因此不估计。土木与土的材料以及试验特征,决定了土木工程这门学科的特殊性。土木工程学科是一门应用学科,在这门学科的运用中,想要得出满意的结果,需要应用综合的理论知识、室内外试验的检测结果以及工程师的工程经验。土木工程学的发展是紧紧围绕着土木工程中出现的岩土问题而发展的,国家建设的迅猛发展带动了土木工程的大肆发展,进而推动了土木工程的的发展;同时由于计算机电子产业的兴起,提高了土木工程的分析、计算、测试能力;新型材料和新型技术的出现,推动了土木工程的技术革命。

2测试土木技术

在现代土木工程中,钻探取样是勘测岩土性状的核心办法,钻探技术以及检测技术随着科技的进步已经取得了长足的进步。在工程实践中,运用高新科技实现钻机以及试验的智能化,尽可能节省时间、人力和物力,依然是土木工程施工的主要方向。

2.1 静力触探(CP T)

CPT 为一种电子的测试技术。试验过程中先向土体内压入锥形探头,分析土体对探头反作用所引起的电阻率变化,进而求出侧壁的摩阻以及锥尖的阻力,然后绘制出随深度变化的相关曲线,根据此曲线精确地划分出各地层,并计算各个地层的承载力和抗剪强度。这类试验在计算桩的桩端反力和侧阻力中精度很高。目前,静力触探向多功能发展,它不仅可以分层鉴别各土层,还可以测试土体的固结系数,判断砂土液化和震陷,估测土的抗剪强度、应力史、地基变形模量、单桩承载力。在新的 CPT 技术中,声波遥感技术将会取代电阻应变,进而实现无电缆操作试验。试验的贯入深度将不会受到设备和地层的限制,并将目前的 4 大功能(贯入阻力、孔隙压力、侧壁摩阻和测斜)探头变为不同功能的探头或者多功能探头。

2.2 自钻旁压仪(P MT)

在原位试验当中,边界条件最为明确的一类试验就是自钻旁压仪(PMT),但是其试验成果却很难应用于实践。近年来,由于电脑自动化控制与微处理器的发展,以及临界状态土力学的渐渐成熟,使 PMT试验的成果分析有了新的发展;自钻旁压仪和智能化钻机组合,在试验中克服了深度的限制;遥感技术的发展使得后期数据处理能够自动完成。

2.3 标准贯入试验(S P T)

目前,在国际上最常用、应用最广的勘探及原位试验仍是标准贯入试验。到目前为止,SPT仍是在世界上地震和震陷液化发生地区积累最多经验的原位试验,所以,评定液化和震陷最为权威的试验是标准贯入试验。标准贯入试验中,采用智能化钻机在标贯取样和控制自由落锤的冲击能方面得到更好的发展,使得试验数据更加准确。

2.4侧胀仪(DMT)侧胀仪也称为应力铲或者扁铲。侧胀仪可以更加快捷、经济、准确地测定土力学的各个重要参数,此方法已被列入欧洲、美国的规范。侧胀仪可用在确定不排水剪切强度 CU(黏土)、约束模量 M(黏土和砂土)、确定土的分层、计算沉降量、控制压实密度等试验中,也可以测定黏土的侧压力系数和超固结比、模拟侧向荷载下桩的荷载-位移曲线、判断砂土液化程度,还可以得到黏土的渗透系数和固结系数,确定黏土斜坡中滑移面的位置。

3 土木工程的研究方法

土木工程作为土木工程的分支,已经广泛涉及到了各行各业,研究土木工程学的方法也是多种多样的。

3.1 分析土木工程的可靠度

设计地基基础时,一般设计方向是采用以概率理论为基础的极限状态的设计方法。而由于土木工程学本身的特殊性,此类设计在土木工程应用技术上还存在着许多未能解决的问题。目前,结合土木工程的自身特点,进行土木工程问题的可靠度分析的理论研究,实现了地基基础设计方法与上部结构设计方向的统一。

3.2 沉降的设计理论

建(构)筑物的地基一般需要同时满足其极限承载力和小于变形沉降量的要求。有时满足承载力的要求后,可不验算其沉降量和变形量,这基本有以下两类情况:一类是对变形量没有严格的要求;另一类是在满足承载力之后,沉降量很小,可不验算。建筑物若建造在深厚的软黏土地基基础上,控制沉降量与差异沉降量是设计的关键。软土地基上的大部分工程事故都是由建筑物沉降所引起的,加固沉降需要加大投资,所以,合理的设计方案不仅可以控制建筑物的沉降,而且可以有效节约工程成本。

3.3 基坑工程中围护体系的变形与稳定

建筑技术不断进步,使得对地下工程的要求逐步增高,深基坑工程量也随之增加,在工程中,基坑稳定性和变形非常重要。计算变形与稳定性需要着重注意以下方面:围护结构的优化设计、土压力的计算、围护结构的变形、围护体系的形式和基坑开挖时对周围造成的影响等。基坑工程是一个非常系统的工程,要同时考虑到土的变形、渗流和稳定这3方面的问题,结合土体和结构的协同合作,作为一个综合性问题来进行考虑。

3.4复合地基

复合地基是指在处理天然地基的过程中,置换或增强部分土体,又或在天然地基中加入一些材料,因此,加固区是增强体和天然地基两部分共同组成的地基。科学技术的迅速发展,使得复合地基也得到了很多的技术支持,出现了各类型组合形式。根据增强体的方向,复合地基可分为竖向和水平两大类,同时由于荷载的传递机理,竖向复合地基又可分为刚性桩复合地基、柔性桩复合地基和散体材料桩复合地基。

3.5 土木工程的发展

土木工程的发展基础是技术创新,新技术的开发带动工程施工工艺的改进,可以进一步提高施工的质量,拓宽土木工程的涉及范围,土木工程学科的生命力也得到了加强。在不断发展新技术的基础上,应该特别重视以下几个特殊土木工程问题的研究:越海越江地下隧道中岩土方面的工程问题;水库区域由于水位的变化引起的山体边坡上的问题;超高层建筑要求的超深基础中的岩土问题;大型地下工程中土体变形、破坏问题等。

土木工程智能化范文11

关键词:土木工程;发展;建筑

1 现代土木工程的特点

适应各类工程建设高速发展的要求,人们需要建造大规模、大跨度、高耸、轻型、大型、精密设备现代化的建筑物,既要求高质量和快速施工,又要求高经济效益。这就向土木工程提出新的课题,并推动土木工程这门学科前进。它的发展趋向具体地表现在下述几个方面。

1.1建筑材料方面。高强轻质的新材料不断出现。比钢轻的铝合金、镁合金和玻璃纤维增强塑料(玻璃钢)已开始应用。但是这些材料有些弹性模量偏低,有些价格过高,应用范围受到限制,因而尚待作新的探索。另外,对提高钢材和混凝土的强度和耐久性,虽已取得显著成果,仍继续进展。

1.2工程地质和地基方面。建设地区的工程地质和地基的构造及其在天然状态下的应力情况和力学性能,不仅直接决定基础的设计和施工,还常常关系到工程设施的选址、结构体系和建筑材料的选择,对于地下工程影响就更大了。工程地质和地基的勘察技术,目前主要仍然是现场钻探取样,室内分析试验,这是有一定局限性的。为适应现代化大型建筑的需要,急待利用现代科学技术来创造新的勘察方法。

1.3工程规划方面。以往的总体规划常是凭借工程经验提出若干方案,从中选优。由于土木工程设施的规模日益扩大,现在已有必要也有可能运用系统工程的理论和方法以提高规划水平。特大的土木工程,例如高大水坝,会引起自然环境的改变,影响生态平衡和农业生产等,这类工程的社会效果是有利也有弊。在规划中,对于趋利避害要作全面的考虑。

1.4工程设计方面。人们努力使设计尽可能符合实际情况,达到适用、经济、安全、美观的目的。为此,已开始采用概率统计来分析确定荷载值和材料强度值,研究自然界的风力、地震波、海浪等作用在时间、空间上的分布与统计规律,积极发展反映材料非弹性、结构大变形、结构动态以及结构与岩土共同作用的分析,进一步研究和完善结构可靠度极限状态设计法和结构优化设计等理论;同时发展运用电子计算机的高效能的计算和设计方法等。

1.5工程施工方面。随着土木工程规模的扩大和由此产生的施工工具、设备、机械向多品种、自动化、大型化发展,施工日益走向机械化和自动化。同时组织管理开始应用系统工程的理论和方法,日益走向科学化;有些工程设施的建设继续趋向结构和构件标准化和生产工业化。这样,不仅可以降低造价、缩短工期、提高劳动生产率,而且可以解决特殊条件下的施工作业问题,以建造过去难以施工的工程。

2 未来土木工程的发展

2.1指导理论的继续发展。在可以预见的将来,土木工程工程技术理论的核心部分仍然是力学,新的分析方法和新的数值处理方法将是土木工程中力学的突破方向。在对复杂结构、流体介质等情况下的受力分析和近似上,现有的方法仍然具有很大的局限性。更加专门化的数学在将来也应该有很大的发展,用以处理土木工程技术中复杂的数值问题。更先进的电子计算机的应用,使得对复杂的情况的模拟更有把握,更接近于现实。力学也会突破宏观框架,向微观发展,控制论,虚拟现实等技术也在力学中加深影响。

另一方面,土木工程学科将向周围继续发散,与材料,环境,化学,电子信息,机械。

城市规划,建筑等相关学科进一步的交叉,融合,互相支持,互相服务。土木工程内部的次级学科也同时会在现实需要的推动下产生出新的学科,如对城市地下空间的大规模利用就使得新的地下规划学科有了产生和发展的必要。不同次级学科的理论也会相互渗透,比如现在就有一些大型体育场馆采用了类似桥梁的悬索结构。

2.2工程实现的变化。土木建筑的最终目的是建设出合乎设计要求的工程构造物,从设计到成果中间需要一个很长的工程实现的过程。这也是土木工程一个重要的组成部分。甚至可以说是土木工程最重要的方面,有了好的理论和设计,没有好的工程实践,一样不会产生一个优秀的作品。

信息时代正在迎面走来,其他学科和其他方面的新观点新技术,必然的也会影响到土木工程。并且为这一传统学科注入新的活力。包括控制理论,施工技术,新材料,环境工程,经济理论等等。

2.2.1全过程信息化。信息化的特点将更深的渗透到未来的土木工程中,重点不仅仅限于CAD方面,也包含对工程进度的管理、运行中数据资料的收集,分析,整理;对建筑物结构,强度,可靠性的分析和相应对策的决策等。这些也是主动控制和智能化实现的基础。

全过程信息化对今后的土木建筑构造物的维护有很大的意义。比如可以使用植入的传感器配合电子计算机实现对建筑全方位的实时的监控,及时掌握整个建筑物的状态。我国现在正是基本建设的高潮,20~30年后,现在这些建筑物逐渐进入维护期。如果能在现在建造过程中就做好各种信息化准备工作,对今后维护也大有帮助。

信息化也成为专家系统技术的基础。程序的解题能力不仅取决于它所采用的形式化体系和推理模式,而且取决于它所拥有的知识。要使一个程序具有智能,必须向它提供大量有关问题领域的高质量的信息输入。

2.2.2可持续发展和人性化。这两个要求是与社会经济的发展相适应的,社会的发展要求更加充分合理的利用资源,社会生活水平的提高也提高了对土木建筑设施人性化的要求。

整个土木工程过程是建立在对资源和能源的不断消耗上的,在可持续发展成为整个社会的主题的时候,土木工程也必然的要面对这个问题。对资源和能源的节约,包括在建设中的和使用过程中的,成为土木工程以后的一个方向,这要求有良好的设计和有效的运作管理机制,土木工程构筑物在它的整个寿命周期,从规划,设计,建造到建成后的使用,维护,拆除都要尽量的将对环境的影响降到最小,同时尽可能大发挥它的社会经济效应。这对土木工程提出了新的要求。具体的要求包括,资源的保护,资源再利用,污染控制和全方位的质量。我国正在施工中的青藏铁路较好的体现了可持续发展的特性,从设计环节开始就注意了对青藏高原脆弱生态环境的保护,全路设计为封闭构造,杜绝了固体废弃物的污染,也严格的控制了噪音污染。施工过程中也相当注重对周围环境的影响。

2.3主动控制技术。迄今,绝大部分的土木工程建筑都是被当作一个静态的,被动的物体。对周围环境的影响,如风动,温度变化,突发事件等只能依靠自身的结构进行被动的抵御。显得缺少灵活性和应变能力。今后土木建筑设施的一个发展方向之一就是主动控制技术在建筑构造物中的应用。运用计算机技术和模糊控制技术,以及一些预设的控制结构。使得建筑物能够对各种环境因素做出适当的反应。

土木工程当今的发展是人类智慧的成果,土木工程是为了人类存在而存在.坚持可持续发展道路,努力创新,土木工程定会走向新的高峰!

参考文献

[1]杨家福.中国土木工程指南[M].1993:1-4.

土木工程智能化范文12

关键词:数控张拉;信息化;预应力

中图分类号:C37 文献标识码:A

桥梁预应力施工质量是保证桥梁结构安全和耐久性的关键工序,是结构安全的生命线。为了提高桥梁预应力施工质量,G30谢河中桥水毁修复工程在20m箱梁张拉中利用同行业桥梁预应力施工质量智能控制系统和设备,改变旧有预应力张拉施工方法,实现了张拉全过程智能控制,真正做到张拉施工质量管理的“实时跟踪、智能控制、及时纠错”,在切实保障预应力张拉施工质量的同时,大大提高了施工管理水平和效率。

1、预应力混凝土的重要性

预应力混凝土是人为地在混凝土中引入内部应力,通过对混凝土内部的钢筋施加拉(压)应力,使之建立一种人为的应力状态,以便抵消使用荷载作用下产生的拉应力,从而达到混凝土构件在使用荷载作用下不致开裂的目的。预应力筋的张拉是预应力施工中的关键环节。预应力筋张拉涉及到预应力筋的伸长值、预应力的锚固损失、孔道摩擦损失、应力松弛损失、混凝土弹性压缩损失、混凝土收缩徐变损失以及温度影响,是一个复杂的非线性的力的传递、分配过程。

预应力筋张拉力的大小,直接影响到预应力的效果。张拉力越高,建立的预应力值越大, 构件的抗裂性也越好;但预应力筋在使用过程中经常处于过高应力状态,构件出现裂缝的荷载与破坏荷载接近,往往在破坏前没有明显的征兆,这是危险的。

另外,如果张拉力过大,造成构件反拱过大或预拉区出现裂缝,也是不利的。反之,张拉阶段预应力损失越大,建立的有效预应力值越低,则构件可能过早地出现裂缝,也是不安全的。预应力张拉精度是决定预应力结构安全与正常运营的首要条件,一旦预应力张拉精度失控,轻则会引起结构出现锚固端的纵向裂纹、反拱过大,重则会引起结构出现横向裂缝、预应力筋拉断等事故,由于预应力张拉精度失控造成预应力结构的失效、破坏以及生命财产巨大损失的事时有发生。

2、国内外现行的张拉控制方法及其缺点

目前在土木工程领域中,预应力的张拉施工普遍采用的是由油泵和千斤顶组成的张拉系统。

所采用的施工工艺可概括为:

1)手动驱动油泵;

2)由压力表读数控制张拉力;

3)待压力表读数达到预定值时,用钢尺人工测量张拉伸长值;

4)人工记录。

采用传统的张拉工艺存在很大的缺点:

1)张拉力控制误差过大;

2)张拉伸长值测量不准确;

3)未能实现张拉力和张拉伸长值的双重同步控制;

4)千斤顶、张拉油泵与油压表的标定次数多,标定结果不易保持;

5)检验预应力筋实际应力很困难;

3、预应力信息化施工

随着计算机新技术在土木工程中的广泛应用,预应力张拉精度的提高势必在预应力施工中引入计算机技术。在计算机技术与土木工程的施工相结合的基础上,提出了预应力数字化智能张拉技术这一新概念,并对预应力数字化智能张拉技术的理论和应用研究非常有意义。预应力数字化智能张拉技术是指利用数字化张拉设备直接进行预应力张拉的施工工艺,这一概念属于结构工程和机电一体化相交叉的范畴,是计算机技术在土木工程建造技术方面的具体应用。数字化智能张拉技术与信息化施工既相近又有一定的差别,其主要区别在于:信息化施工利用各种施工反馈信息指导或改进施工,而数字化施工是利用数字化智能张拉设备直接进行预应力张拉的施工工艺。

预应力信息化施工就是在施工过程中,通过设置各种测量元件和仪器,实时收集现场实际数据并加以分析,根据分析结果对原设计和施工方案进行必要的调整,并反馈到下一施工过程中,对下一阶段的施工过程进行分析和预测,从而保证工程施工安全、经济地进行。该工艺将力传感器永久放置在钢绞线两端,由数据采集系统将力传感器信号采集并由计算机处理,当实际张拉力与设计要求相对误差大于5%时,由计算机提示用户停止张拉,实现张拉施工的信息化,最终获得精确的张拉结果。

4、智能张拉设备功能特点

1)精确施加张拉力

智能张拉系统能精确控制千斤顶所施加的预应力力值,将误差范围控制到±1%,降低了由于预应力施加不足或超过引起的桥梁开裂、下挠等风险,有利于保证结构安全,提高耐久性,延长使用寿命,降低养护维修成本。

2)准确测量和及时复核延伸量

系统传感器实时采集钢绞线延伸量数据,反馈到计算机,自动计算延伸量,及时校核延伸量是否在±6%范围内,实现真正“双控”。

3)对称同步张拉

一台计算机控制两台或多台千斤顶同时、同步对称张拉,实现“多顶同步张拉”工艺,消除了对称张拉不同步对结构造成的扭曲等危害。该系统实现了张拉过程控制自动化、精细化、标准化,让预应力施工质量更加符合设计与使用要求,保证桥梁结构安全和耐久性,有利于保障人民生命财产安全和降低桥梁全寿命周期成本,是一项具有重要社会和经济价值的优秀科研成果。

4)规范张拉过程,一键完成张拉

实现了张拉过程智能控制,不受人为、环境因素影响,控制停顿点、加载速率、持荷时间等张拉过程要素完全符合桥梁施工技术规范要求。通过规范张拉过程大幅度减小了张拉过程中预应力的损失,保证了有效预应力符合设计要求。

5)质量管理功能

业主、监理、施工、检测单位在同一个互联网平台,实时进行交互,突破了地域的限制,及时掌控预制梁场和桥梁预应力施工质量情况,实现“实时跟踪、智能控制、及时纠错”。自动记录张拉数据,杜绝了人为造假质量数据的可能,可进行真实的质量追溯。

6)远程监控功能

实现远程监控功能,方便质量管理,提高管理效率。

5、 结束语:

当前许多预应力桥梁运行一段时间后出现了下挠、裂缝,甚至断裂,危及结构安全,缩短了使用寿命。大量现役桥梁的调查和检测结果表明,有效预应力的建立直接影响桥梁的安全性、可靠性和长期使用寿命。桥梁预应力施工质量智能控制系统,改变原有施工方法,实现了张拉全过程智能控制,真正做到张拉施工质量管理的“实时跟踪、智能控制、及时纠错”。在切实保障预应力张拉施工质量的同时,大大提高了施工管理水平和效率。

参考文献:

[1]预应力技术及材料设备(第二版)[M] .北京:人民交通出版社,2005.