HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 激光焊接技术

激光焊接技术

时间:2023-06-04 10:49:30

激光焊接技术

激光焊接技术范文1

【关键词】 激光 焊接技术 现状 应用

激光焊接已逐渐受到人们关注,激光焊接技术拥有高精度、高质量、低变形、高速度和高效率的特点。1970年以后,随着金属铝等焊接物质的研制成功,激光焊接技术在其他领域中也得到推广和应用。尤其是在制造业,冶金业以及生物医学方面应用较为广泛。后来,随着航天技术的发展,激光焊接技术逐渐被应用到了航天领域。

1 国内外焊接技术中激光焊接技术的研究现状

1.1 国外激光焊接技术的研究现状

目前国外的激光焊接技术已比较成熟,以美国为首的发达国家非常注重激光焊接技术的发展状况。将激光焊接技术列入国家的发展计划当中,并投入大量资金用于激光焊接技术的研究与人员的培训。发展过程中也注意传统产业的优势,做到激光焊接技术与传统产业相结合。由于发展比较早,目前发达国家的激光焊接技术存在很多优势,主要有,热影响区极小,而且焊接过程中无热损伤的现象,焊接速度比一般的烙焊要快10-100倍。焊接点极小,最大程度的避免了杂质的污染和腐蚀程度,此外,焊点的抗裂性能也非常高。

1.3 国内激光焊接技术的研究现状

国内焊接技术由于起步比较晚,发展也相对缓慢。近年来,由于政策的要求以及环保的需要,激光技术才逐渐被广泛应用。对激光焊接的研究也主要集中在激光焊接的形成机理、检测、分析、控制等。一些高校也逐渐开展激光焊接的相关课程,比如通过分析超细粒钢的焊接性及激光焊接的特点,进行了400MPa和800MPa种超细晶粒钢的激光焊接试验。目前国内对于高强度的激光焊接焊性方面的研究还存在很多不足的地方,缺少很多相关数据,还需要培训更多的专业人员进行深入研究。

2 焊接技术中激光焊接技术的应用

随着激光焊接技术的逐渐成熟,其应用领域也不断扩大。但是由于激光焊接设备的成本和维修费用比较高,除了一些大批量生产或者规模零件焊接的行业,激光焊接技术很少应用。欧美的激光焊接技术主要应用于金属加工业和汽车制造业,而亚洲地区的激光焊接技术较多的应用于半导体工业和电器工业。

2.1 制造业的应用

在国外,激光焊接技术在轿车制造中应用十分广泛,并以比较高的速度增长。日本在世界上首次成功开发了将YAG激光焊用于核反应堆中蒸汽发生器细管的维修;激光焊接技术在造船中也比较普遍,传统焊接工艺中的焊后变形是造船业面临的主要问题,而激光焊接由于具有焊后热影响区小、热损伤小、焊后抗裂性能高的特点,焊后基本没有明显的变形;由于采用激光焊接,一定程度上减轻了船身的重量,在造船业中发挥了很重要的作用。

2.2 冶金行业的应用

现如今,越来越多的粉末冶金材料走向市场,它与其他零件的连接问题逐渐显现出来,使粉末冶金的应用受到限制。而激光焊接技术由于结合强度低、焊接轻度高以及很好的耐高温性为粉末冶金材料的发展开辟了新的道路。

2.3 汽车工业的应用

汽车工业作为发达国家的重要经济来源一直就是各国研究的重点。激光焊接技术在提高车身强度的同时也大大减轻了车身重量,降低了汽车的生产成本。目前激光焊接技术在很多中高档汽车中已广泛使用。

2.4 电子工业的应用

由于激光焊接技术在焊接过程中对机械的损伤程度较小而且大都可以避免,特别符合电子行业的要求。激光技术的高精度、无污染、热影响区小等优点也使得激光焊接技术在电子工业中得到广泛的应用。目前,激光焊接技术已经逐渐被运用到电子工业中,例如,很多商家均利用激光焊接工艺生产重传感器。但激光消融、激光电镀等原理方面还在研究当中。

2.5 生物医学的应用

1970年以后,有关生物组织的激光焊接开始出现,主要应用于血管和输卵管的焊接。随着激光焊接优越性逐渐被研究人员发现,各种生物组织的激光焊接逐渐得到推广。激光焊接在生物医学中呈现出不同的焊接优势。主要有,手术部位吻合速度快。而且愈合过程中没有异物反应,修复后的组织能够按照原来的生长特点来生长。研究人员也在进一步研究激光焊机焊接在生物医学领域的应用。

2.6 航空航天领域的应用

以美国为首的发达国家在20世纪70年代初涉激光焊接技术在航空航天领域的应用。他们培训了专业的研究人员,对航天工业中的各种容器及轻量级结构立项,开展了长达7年多年的激光焊接应用研究。新的研究成果取代了原有的铆钊一,提高了机身的强度,减轻了机身的重量。我国在航空航天领域的激光焊接技术也是比较先进的,开始对航天领域中所用的各种合金进行激光焊接技术的研究,并取得了很好的成果,而且已逐渐投入使用。激光焊接由于很高的精密度以及可靠性,使其在该领域应用中显现的优势明显强于其它方法的焊接技术。

2.7 塑料加工中的应用

国外对于塑料加工中的激光焊接已经处于领先水平,而我国仍处于研究开发阶段。激光焊接热损伤小的优点使其在塑料加工方面的优势突出。焊接过程中激光束大多能够通过不同层次的材料,而且更容易通过热传导被吸收成为焊接区域。塑料加工中的激光焊接比传统的焊接工艺污染程度更小,质量更好,也为激光焊接技术的应用提供了更广阔的前景。

3 结语

21世纪以后,随着激光焊接技术耐高温、热损伤小、抗裂性能好等优点逐渐显现,激光焊接技术的研究领域也将越来越广泛。研究人员对于焊接技术中的激光焊接研究也在实践中逐渐进步。激光焊接技术发展到目前,已有逐渐取代传统焊接技术的趋势。

参考文献:

[1]郎旭元,张元钟.激光技术在汽车工业中的应用[J].机械工程师,2006(06).

激光焊接技术范文2

关键词:激光焊接技术;研究现状;未来制造业

中图分类号:TG456 文献标识码:A 文章编号:1009-2374(2014)06-0011-02

21世纪是现代科技高速发展的时代,而激光技术作为目前时展中人们所最为瞩目的可击之一,其不仅仅是应用于现代军事领域,同样随着激光技术的日益娴熟以及其本身的制造工艺和应用工艺的普遍化,未来能够在更多的行业得到广泛应用,其中就包括传统制造业。由于传统焊接本身更多是依赖于焊接人员自身的工作经验以及对于焊接目标的目测实现焊接,其往往精度存在一定的偏差性,很难实现高精度项目的作业,而激光焊接无疑能够有效解决这一难题,利用激光技术准确对现有的目标进行准确的焊接,从而大大提升了焊接的准确性和有效性。未来随着工业现代化的迅猛发展,激光焊接技术有着广阔的应用空间。鉴于此,本文主要通过对激光焊接技术的内涵以及分类出发,就目前国内外激光焊接技术研究现状进行综合性、系统性的分析,并由此结合未来制造业发展需求以及激光焊接的特点,对其未来的应用以及发展进行展望。

1 激光焊接技术的内涵及分类

激光焊接顾名思义就是传统焊接技术与现代激光科技的结合,其主要是利用利用高能量密度的激光束作为热源的一种高效精密焊接方法,利用激光本身的高度聚焦,在短时间内形成强烈的脉冲,从而对材料进行加工和切割。相对于传统焊接而言,其本身精度更高,更加的灵敏,焊接小了也更高,因而适用于在材料的微小区域进行焊接。激光焊接技术借助于特定的戒指的往复振荡,将其转化为高辐射能量,并且对这一辐射能量进行聚焦,由此超过材料的燃点,最终实现不同材料之间的粘连。

从现代激光焊接的发展现状以及特点来看,其主要分为两类,一是激光深焊接,其主要是通过将大功率激光束直接投射到材料表面,利用热能与光能的转化,从而使得材料在持续照射下软化直至融化;另一类是是热传导焊接技术,与激光深焊接的主要差异在于材料表层的热量通过热传导方式继续向材料内部传送,最终实现使焊接材料合二为一。

上述两种激光焊接其主要是利用了不同能量之间的转换从而实现了对于不同材料的粘连,即实现了焊接。由于激光焊接本身精度更高,更加容易对能量进行聚焦,因而更加容易控制,且能够实现较远距离的焊接,因此其本身的应用更多的是在现代高新技术行业,例如电子器件以及仪表器件等对于焊接精度要求较高的行业,借助于其独特的优点,目前已成功应用于微、小型零件的精密焊接中。而未来随着现代科学技术的发展以及不断进步,对于激光焊接的应用以及发展也变得更加的多元化,从而形成更多的分类,例如双光束复合焊、激光-MIG复合焊、激光-电弧复合焊等等,他们的出现无疑能够进一步拓宽激光焊接技术的应用领域,提升整体传统制造业的焊接效率和精准度。

2 当前激光焊接技术的研究现状

2.1 国外对其研究现状

由于国外激光技术以及制造业较为发达,因此他们早在上世纪八十年代就已经逐步开始研究以及分析如何将现代激光技术应用在传统制造业中。以欧盟、美国等西方国家和亚洲的日本为例,他们借助于自身发达的科学技术实力以及良好的制造业基础,在政府合理的引导以及财政支持下,激光焊接技术发展非常快速,特别是进入新世纪以后,已经在许多的制造业和其他行业中能够看到激光焊接结束的应用,包括电子工业、造船工业、汽车工业等等,都能够看到现代激光焊接技术的应用。并且,他们为了能够对整个技术进行合理的应用,已经初步形成了焊接技术的行业标准,从而使得其能够在一个合理可控的范围内得到应用。与此同时,为了进一步提升焊接效率,使得激光焊接技术能够更好地应用于现代大型生产,特别是大型制造业以及建筑业,西方发达国家近年来在积极研究如何提升激光焊接的效率,通过大功率激光器的研究,进一步推动和实现大功率激光焊接技术的实现,由此真正将其应用到大型制造业、建筑业甚至是军事领域,进行潜艇以及军舰的制造。

2.2 国内对其研究现状

相对于国外成熟的技术而言,我国指导改革开放之后在开始逐步接触和了解激光技术,而直到上世纪九十年代末才开始逐渐将激光技术与传统焊接应用相结合。目前,激光焊接技术研究在国内走在前列的当属哈尔滨焊接研究所。近年来,其除了进一步拓宽和研发新的激光焊接种类以及设备之外,也在积极模仿以及参照国外研究的最新动向,不断寻求大功率激光焊接技术的突破与发展。而最新的研究成果显示,他们成功克服了国内大型构件的焊接难题,这无疑标志着我国在激光焊接技术领域的重大突破,也为未来大型工程重大应用奠定了基础。

除此之外,目前国内的激光焊接技术研究还集中在激光热丝焊、异种金属焊等领域,他们都是现代激光焊接技术研究的最新课题。而国外在相关研究领域已经取得了突破,特别是德国已经初步掌握了异种金属焊的技巧和方式,而未来我国要想真正熟练的应用以及掌握激光焊接技术,将其应用到更多的领域以及行业内,无疑就必须要攻破上述课题,要进一步完善以及优化激光焊接技术。

总体而言,虽然国内的激光焊接技术与国外目前的研究以及发展进度存在一定的差距,但是随着研究的不断深入,这一差距正在被逐步缩短,未来其必然会被广泛应用于实际生产和生活中。

3 激光焊接技术的发展趋势

激光焊接作为现代科技与传统技术的结合体,其相对于传统焊接技术而言,尤其独特之处并且本身的应用领域以及应用层面更加广泛,可以极大的提升焊接的效率和精度。其功率密度高、能量释放快,从而更好的提高了工作效率,同时其本身的聚焦点更小,无疑使得缝合的材料之间的黏连度更好,不会造成材料的损伤和变形,所以焊接之后也无需进行后续处理。由此,其本身主要是应用于高新技术领域,而未来随着人们对于这一技术的了解以及掌握的不断深入,必然可以应用于更多的行业以及领域。

可以说激光焊接技术的出现,实现了传统焊接技术所无法应用领域,其能够简单的实现不同材质、金属与非金属等多种焊接需求,并且因为激光本身的穿透性和折射性,使得其能够依据光速本身的运行轨迹,实现360度范围内的随意焦,而这无疑是传统焊接技术发展下所无法想象的。除此之外,因为激光焊接能够在短时间内释放大量热量实现快速焊接,因而其对于环境要求更低,能够在一般室温条件下进行,而无需再在真空环境或是气体保护状态下。

经过几十年的发展,人们对于激光技术的了解以及认知程度最高,其也从最初的军事领域逐步扩展到现代民用领域,而激光焊接技术的出现进一步拓展了激光技术的应用范围。未来激光焊接技术不仅仅能够用于汽车、钢铁、仪器制造等领域,其必然还可以在军事、医学等等更多的领域得到应用,特别是在医学领域,借助于其本身的高热量、高融合、卫生等特点,更好的在神经医学、生殖医学等临床诊治中应用。而其本身的精度优势也会在更多的精密仪器制造业中得到应用,从而不断造福人类以及社会的发展。

参考文献

[1] 刘必利,谢颂京,姚建华.激光焊接技术应用及其

发展趋势[J].激光与光电子学进展,2005,(9).

[2] 郭泽亮.激光焊接技术在舰船建造中的应用[J].

舰船科学技术,2005,(4).

[3] 徐炜,李章.大功率激光焊接技术及其工业应用

[J].机械工人,2005,(3).

[4] 宇飞.激光焊接技术进入塑料加工市场[J].光机

电信息,2005,(2).

[5] 徐志超.2003年国外舰船制造技术发展概述[J].

激光焊接技术范文3

一、机械激光-电弧复合焊接技术的发展背景

机械激光-电弧复合焊接技术是为了满足特定材料的加工焊接要求,综合利用机械激光焊接和电弧焊接的优势,将其物理性能和能量传输性能以恰当的方式融合到一起,形成的一种科学先进的技术手段。将电弧焊接和激光焊接技术取长补短的结合起来形成的激光-电弧复合焊接技术具有经济、高效的特点,解决了许多材料的加工要求,实现了优质的焊接。

电弧焊接是应用最早且在材料技术上运用较普遍的焊接的技术,将电能转换为热能完成金属之间的连接,分为非熔化极电弧焊接和熔化极电弧焊接,但是由于电弧能力分布密度特性,导致焊接速度较慢,焊接的深度和熔度较浅,造成材料容易焊接变形,并且生产效率较低。激光焊接可以利用高达107W/cm2的能量密度形成小孔和等离子体时的热加工,激光焊接速度比较快,材料变形较少,通过较少的热输入量形成深度比大的良好焊接效果,从而实现精密焊接。但是也存在着一定的缺点,即焊接接头的间隙要求较高、焊接过程的稳定性和激光能量的利用率较差、焊接厚度较高的材料成本过高。

为顺应时展,综合焊接需求,针对电弧焊接和激光焊接的优劣,在20世纪70年代末,英国伦敦帝国大学对复合焊接工艺进行了研究,提出了电弧与激光焊接结合的工艺概念,随后英国学者和美国等科学研究者利用了激光配合一定量的辅助电弧,形成了现如今激光-电弧复合焊接的技术工艺,解决了焊接熔深浅问题和生产成本过高的问题,有效的提升了能量的利用率,提高了焊接的生产效率。

二、激光-电弧复合焊接的原理

激光―电弧复合焊接技术在工作时,激光及电弧同时作用在金属表面的一点上。在激光的作用下,焊缝的上方会产生一定的等离子体云,这种等离子体云会吸收及散射进行射入过程中的激光,从而降低了激光能量的功能。在原有基础上加上电弧后,能够产生一定量的低温低密度的电弧等离子,从而起到稀释激光等离子体的作用,进一步提升了激光能量的传输效率。外加电弧还可以在进行焊接的同时实现对母材进行加热,母材温度的升高能够提升对激光的吸收效率,从而增加焊接熔深。而且激光作用能够降低电弧通道的电阻,也能够加深该项技术的熔深。

三、机械激光-电弧复合焊接技术的特点

(一)提高了焊接过程的稳定性

激光焊接时,等离子体形成较多的带电粒子,带电粒子会主动吸收电弧,压缩电弧的根部使电弧稳定燃烧,既增加了焊接的稳定性,使得电弧不随意飘逸同时提升了电弧的能量利用率。

(二)实现高效率、低成本的焊接

机械激光-电弧复合焊接技术的最主要优势和目的便是实现高效率、低成本的焊接。激光和电弧的相互作用下,使得用较小的激光和电弧能量便能完成材料的焊接,相比要达到同等效果所耗费的单独激光和电弧功率要小许多,极大程度的降低了生产成本。同时与单纯电弧或者激光焊接相比,复合焊接技术利用两种热源综合焊接的优势,输入的热量较小造成的热影响区域面积较小,导致的工艺材料的焊缝变形量较小,较少了焊接后的工序处理,提升了生产工作效率。

(三)增加焊缝熔深,改善焊接成型

熔深浅是焊接技术中易出现的问题,而在激光的作用下,电弧可以深入到工件内部,到达焊缝的深处增加熔深,并且在电弧的作用下也会增强金属的激光吸收率。形成较深的焊缝熔深改善了金属的熔化程度,避免了焊缝咬边的现象出现,同时,激光-电弧复合焊接技术还可以控制激光和电弧的输出量,根据材料工件需求,单独调节配比,获得理想的焊缝熔深和深宽比。

(四)减少焊接缺陷,提升焊接质量

在电弧和激光的复合热源焊接下,激光的作用减少了焊缝的加热时间,使得焊接材料受热面积减少,不易产生较大的晶粒,并且有效的减缓了熔池金属的凝固时间,增加了熔池相变时间,将熔池的气体充分排除,减少了诸如气孔、裂纹等焊接的缺陷,提升了焊接的质量。

(五)降低要求,提升焊接适应性

单独激光作用时,激光束直径较小,对焊接接头的间隙要求小于0.10mm要求较高。而在电弧的作用下,增加了工件材料的熔合区宽度,可以降低焊接接头间隙的高精度要求。并且更适用于一些特殊的材料,如电弧在激光焊接之前可以清洁焊缝表面,去除氧化膜,从而更有利于焊接铝合金。

四、机械激光-电弧复合焊接技术的应用

(一)应用到船舶制造业

因船舶制造业中造船所使用的钢板厚度较厚,对于焊接要求较高,而单一的电弧焊接和激光焊接都无法满足船舶制造业的需求。激光-电弧复合焊接技术具备着独特的优势,对于较大的焊件间隙可以放宽至1mm,相对于激光焊接的0.1mm,极大的提升了间隙距离,减少了焊接前的工作量和成本,使的船舶制造速度加快,成本下降,提升了制造效率。另外主要的优势在于,激光-电弧复合焊接可减少焊件的变形量,使得焊接后的整形工作量也随之减少,极大的减轻了人力成本。

(二)应用到汽车制造业

目前在汽车行业中,汽车设备逐渐向更轻薄发展,而汽车框架结构也引进了更多的铝、铝镁等轻质合金,既改善了汽车的机动性能,使汽车流线性速度增快,也节约了能源减少了污染。以往汽车的焊接多采取激光焊和熔化极气体保护焊,但是目前大多数采取了激光-电弧复合焊工艺的成熟焊接手段,满足了汽车制造业焊接需求。例如德国大众汽车工程公司的TGRAF等人自主研发了MIG复合焊接机头,该焊头结合电弧和激光焊接的优势,以极小的几何尺寸,安装到弧焊机器人手臂,方便各空间、各角度的焊接。

(三)应用到石油管道中

通常石油管道焊接中,由于管道壁比较厚,需要使用电弧焊在特殊的坡口处多次焊接,不仅耗费人力带来工作麻烦,而且焊接的引弧熄弧阶段易产生缺陷。采用激光-电弧复合焊融合了电弧焊接的桥接能力和激光焊接的深熔性能避免反复焊接,确保一次焊接成型,从而减少了焊接的缺陷,也提升了石油管道焊接的效率。

激光焊接技术范文4

关键词:激光焊接 激光焊接工作台 锂离子电池激光焊接 激光焊接焊接影响 应用

中图分类号:TG456.7 文献标识码:A 文章编号:1672-3791(2016)03(b)-0074-02

1 激光焊接技术概述

激光焊接的工作原理如下所示。

激光焊接工作是应用高能脉冲激光来实现,脉冲氙灯作为泵浦源,激光电源把脉冲氙灯点着,通过激光电源对氙灯放电,形成一定频率的光波,光波经过激光聚光腔照射到激光晶体上,使晶体受激辐射,再经过谐振腔之后发出波长的脉冲激光,该脉冲激光经过扩束,反射聚焦于所要焊接的物体,在控制器的控制下,移动工作台面完成焊接[1]。

2 一种锂离子电池电芯制作中激光焊接系统

锂电池激光焊接系统主要由激光器、导光系统、工作台、电池组件固定工装夹具、控制系统、冷却系统组成。

2.1 激光器

激光器的选用首先决定于所要求的波长、功率和模式,以及加工对象。同时还要考虑在工作环境下运行的可靠性,维修调整的方便性,尺寸的大小以及占用面积等因素。

2.2 导光系统

导光系统将激光由激光器引导至由聚焦光或匀光光具组成的加工头。加工头若是固定的,则导光系统固定不动,若加工头可以运动,那么导光系统也必须是可动的。

2.3 工作台

工作台用于固定电池零件工件,加工过程中确保工件与激光束的相对位置。根据加工要求,工作台能带动工件做所需的相对运动,工作台示意图见图1。

工作台功能及性能介绍如下。

(1)二轴运动模块:由两个伺服平台组合构成,每个伺服平台采用高精度电机驱动滚珠丝杆运动,线性导轨导向。伺服平台带动焊接头进行焊接。

(2)CCD监视模块:两个CCD与两个准直聚焦头同轴安装,在此工序中,CCD能够实时监控到焊点的焊接情况。

机架:由方钢钣金焊接而成,实现机器的牢固稳定、外形美观、运行稳定。

电控系统:实现对整个系统的控制(包括运动控制和传感器的检测)。

软件系统:实现各个步骤的焊接与激光焊接的配合。

2.4 夹具部分

夹具需对焊接样件进行完全防护,只漏出焊接区域,能够有效地防止焊穿现象的发生,防止焊渣飞溅落到产品表面。

(1)夹具机构:采用气缸夹紧,利用定位板定位,封闭式夹具结构防止焊渣飞溅落到产品表面。

(2)吹气机构:在不干涉夹具的情况下,使用加装侧吹方式(防飞溅气刀)吹保护气体,保证焊接表面效果;在飞溅严重的正极两侧,安装专用气刀,由压缩气体组成屏障,防止飞溅污染保护镜片。

(3)导向部分:使工件沿导向槽放入夹具中,提高装夹效率。

2.5 冷却系统

激光焊接机工作时,泵源对激光器的输入能量大部分都转化为灯、工作物质和聚光腔的热能。工作物质温度过高时,会严重损害激光器的正常工作,因此,必须采取冷却措施。一般采用闭合回路冷却系统,包括液泵、热交换器和容器等。

当前的激光器件已经形成系列化,使用比较成熟,因此,控制系统的性能就对整机功能起到重要影响。要求更加智能化和自动化[2]。

3 激光焊接技术在锂离子动力电池电芯制作中的应用

3.1 在锂离子动力电池(叠片工艺)电芯制作过程中的应用

电池盖板极柱组件极耳软连接引片厚度、材质,极耳引片(Tab)厚度、材质,焊接面积,焊印形状,焊接参数等。在使用激光焊接的过程中,要综合考虑各种因素,并进行大量实验,才能得到良好的焊接效果。

电池在制作过程中,对于层数较多的软连接,需通过超声波焊接机对多层软连接进行预焊,再将预焊后压平后的软连接与盖板极柱利用激光焊接起来。若软连接层数较少,可直接对多层软连接与极柱进行激光焊接,无需超声波预焊整形处理。

3.2 影响焊接过程因素分析

进行焊接过程,需要保证物件完全加紧压平,确保有效焦距的位置公差精度,另外焊接过程中要使用氮气保护器,对焊接位置进行保护,防护产品氧化[3]。

脉冲激光焊接机的规格参数主要为最大电功率、转换效率,最大激光功率,最大脉冲能量,峰值功率,最大光路分时分光反馈速度、决定了焊机规格的选择[4]。

在锂电池生产过程中,此项工序作为特殊关键工序规定,一定要进行首件三检和过程自检,焊接完成后,需要使用拉力设备检验焊接效果,检验产品焊接拉力和粘连面积,根据测试结果对焊接参数进行调整,直至焊接效果最佳方能连续生产,保证电池组件焊接质量一致性。针对动力电池壳体、盖板激光焊接试验,通过调整激光焊机脉宽、频率、峰值功率等工艺参数,验证不同参数对激光单点能量及焊接平均功率的影响,结合平均功率对焊缝熔深影响及不同熔深状态下与焊缝耐压强度的对应关系,进而优化激光焊接工艺参数,确保动力电池激光焊接过程的稳定性和焊接质量的一致性[5]。

4 结语

目前,与激光焊机配合的工作台及焊接工件固定夹具的精度和自动化程度,对焊接的效果及生产效率有很大的影响。在使用焊机的过程中,需要对焊机的环境加以控制。其中若出现保护镜片过脏,焦距不合适,极柱与软连接装夹不到位,存在有间隙,软连接层间未压实等因素,均会出现产品虚焊和脱焊不良,影响物件连接强度,对于电池而言,严重影响电池内阻和容量性能。激光器冷水机水温过高,光纤烧坏,激光棒爆裂等故障均为导致设备不出激光。国内的激光焊接厂家数量很多,产品的优点是设备价格适中,但焊接质量及设备稳定性与进口设备相比,仍存在一定差距,而锂离子电池制造过程对于焊接质量的一致性要求较高。

参考文献

[1] 梁艳梅.激光焊接中各参数对焊接质量影响的研究[J].价值工程,2015(30):137-139.

[2] 郝新锋,朱小军,李孝轩,等.激光焊接技术在电子封装中的应用及发展[J].电子机械工程,2011(6):43-45.

[3] 刘其斌.激光加工技术及其应用[J].北京:冶金工业出版社,2007.

激光焊接技术范文5

关键词 汽车工程;汽车顶盖;激光;焊接

中图分类号U46 文献标识码A 文章编号 1674-6708(2012)78-0081-02

1 概述

激光焊接技术从上世纪80年代起,运用于汽车车身制造领域中。激光焊技术的应用是光学与金属学的融合,在薄板焊接领域开辟了新的技术。激光作为焊接光源,具有能量密度较高的特点,并且焊接和切割速度快,它的加热范围较小,激光焊接的形变量小和深宽比大,焊缝较窄,激光加工的热影响区域窄,广泛应用于白车身制造领域。近年来,激光焊接设备成本逐渐降低,进而使白车身激光焊接技术得到了推广,在汽车制造的各个领域激光焊接技术得到广泛的应用,成为汽车激光焊接领域的新发展方向。

2 激光钎焊工艺

激光钎焊是激光焊接技术中的一种焊接方法,由于激光能量密度大,可以作为热源,将焊丝材料熔化,激光光速经过聚焦后照射在焊丝表面,在机器人的牵引下,将熔化了的焊丝材料浸润到被焊接的工业零件上,已经被激光熔化的焊丝填充到要焊接的生产工件之间,使生产工件间得到很好的结合,完成激光焊接工艺。

在激光钎焊工艺中,整个焊接系统的焊接速度很快,而且焊缝比较狭窄,对外关也有很高的要求,焊接系统对焊接参数要求精确,同时对焊接工艺中的送丝速度较精确,对平稳性要求也很高。

激光钎焊时钎料的选则也很重要,要求解约成本,符合设计要求,要结合目材的性能,达到激光钎焊的加热调件。这就要求所选用的钎料要有合适的熔点,它的成分要均匀,稳定性要好,并有良好的润湿性,钎料与目材结合的牢固,具有激光热源的性质,符合节约成本的要求。

3 激光钎焊的优点

激光焊接技术中的激光钎焊具有很多优点,在工业生产中,进行激光钎焊的母体材料本身并不熔化,仅仅是使选用焊接钎料熔化,这样可以焊缝表面非常的光滑,使生产工件的外形更加美观,其密封性也比较好,使工件的焊接区域得到了大大的加强,提升了安全性能。

1)激光钎焊具有单面加工、搭边量小、焊接质量稳定、非接触式加工、焊接速度快、焊接变形小等特点;2)激光钎焊进行局部加热,不易产生热损伤,热影响区较小,加热温度较低,只在加工工件的焊缝表面产生熔化现象。同时具有自然浸润的特点,加工过程中钎料无飞溅的特点,加工工件间的焊缝的质量非常高,操作过程中不需要经常更换焊炬和喷嘴,节约加工成本;3)进行拼焊。对于造型复杂的汽车顶盖,在加工生产中要将汽车顶盖拆开,分成两部分,然后利用激光钎焊技术将分开的两部分进行拼接熔焊,使之成为一个完整的工件;4)激光作为热源,激光能量密度大,对于热输入可以精确控制和调节,缩短冷却和加热的时间,提高激光钎焊的焊接速度,在现代化生产中更容易实现自动化焊接。

4 激光钎焊的局限性

在实际工业生产中,在激光焊接过程中,工件间的焊缝质量缺陷依然会出现。它受到很多因素的影响,例如操作空间狭小,设备陈旧老化,焊接过程轨迹设计不合理等。

1)激光钎焊中容易出现气孔,例如母材表面不够清洁,镜片的损耗度大,钎焊丝与激光束交点相对位置发生改变等,焊缝表面都会出现不同状态的气孔;2)焊接过程中出现熔焊型焊缝,它要受到送丝机构稳定性的影响,受到送丝过程中钎焊丝剩余多少的影响;3)容易出现焊缝单边焊,在进行工件间的焊接前,激光束与导嘴处焊丝的相对位置发生偏移,最终只能导焊丝与板件单边接触,不能在生产工件的焊缝间隙内润湿和铺展;4)焊缝开始或者尾端,钎料没有填满焊缝,或者钎料伸出焊缝表面;5)被焊接的板件被激光烧穿,受到机器人故障的影响,冷却水温度的影响;6)容易出现激光熔焊与激光钎焊共存的现象,受送丝机构中钎焊丝剩余量多少的影响,受到送丝机构稳定性的影响。

5 新宝来汽车顶盖激光钎焊问题研究

1)激光钎焊运行参数:焊点光束直径是焊丝直径的2倍。当焊丝直径>=1.6mm时,机器人速度>送丝速度10%。当焊丝直径

6 结论

激光钎焊焊缝外观质量良好,焊缝均匀、平整光滑,外形美观,激光焊接不仅有着焊接效率高,外成形美观,热影响区域小及精度高等一系列优点,更重要的是它大大增强了车身焊接强度。提高了汽车的安全品质。

参考文献

[1]林平.激光钎焊在汽车行业的焊接应用[J].电焊机,2010,5(5):39-44.

[2]宋成.激光钎焊和激光深熔焊的应用对比[J].金属加工研究与应用,2010(22):54-56.

[3]苏彦祝,都东.PECT激光钎焊技术的研究[J].焊接技术,2000,10(5):14-15.

激光焊接技术范文6

【关键词】激光焊接 切割 汽车座椅 制造 应用

中图分类号:F407.471 文献标识码:A

一、激光焊接的原理

激光焊接采用激光作为焊接热源,通过光学震荡器利用电能、化学能等原始能量将某些固态、液态或气态介质激发,产生相位几乎相同且波长近乎单一的光束,这些光束由于相位相同且波长单一,因而差异角非常小,可以传播较长距离,所以可以被高度集中起来加以利用。当激光束的功率密度足够大时,金属表面在激光束的照射下迅速升温,在极短的时间内可以达到沸点而发生汽化。当金属蒸汽以一定的速度离开金属熔池的表面时,会产生一个附加应力反作用于熔化的金属,使其向下凹陷,产生一个小凹坑。随着加热的继续进行,逐渐形成一个细长的小孔。随着激光束的移动,小孔前方熔化的金属绕过小孔流向后方,凝固后形成焊缝(见图1) 。焊缝的深浅与激光功率密度有关,当所用激光功率密度较低时熔深浅,深宽比较小。当激光功率密度较高时熔深大,深宽比也大,这时就比较易于形成深穿透性焊缝。目前包括座椅在内很多焊接工艺都是采用这种激光焊接技术。

1、熔池2、 等离子体3激光束4 焊缝 5小孔

如图、所示,根据激光焊接原理,单一的激光焊接是一种以自熔性焊接为主的焊接方法,这种焊接方法对焊件装配间隙要求高,要达到深熔焊所需激光的功率密度较大,因而焊接成本比较高,并且存在一定的局限性。经过科研人员的不断探索,将激光和MIG焊接结合起来,形成了激光-MIG复合焊,原理如图2所示。在激光向焊缝金属输入热量的同时电弧也向焊接区输入能量,由于激光和电弧在不同程度和形式上影响复合焊接的性能,从而使焊接速度提高,焊接周期缩短,达到同样熔深所需的激光功率也大大降低,因而降低了焊接的成本。但激光-MIG 复合焊在电源设备方面的投资成本相对较高,制约了发展。随着市场的进一步扩大,电源设备价格的不断下降,激光-MIG复合焊接技术将得到更加广泛的应用。

二、激光焊接相对于普通焊接的优势

相对于电阻焊、CO2焊和钎焊等焊接技术,激光焊接技术具有以下优势。

(1)激光焊接的速度很快,最快可达 20m/min。

(2)由于激光束光斑小(0.1~0.3mm) ,功率密度高,加热范围小,速度快而且是非接触焊接,因此残余应力和焊接变形很小,这一点对于焊接质量来说很重要。

(3)焊接强度更好。由于激光焊接有很小的热变形,而且对邻近的金属没有机械扭曲作用,因此激光焊接能保证所焊产品的强度。

(4)激光焊接可以大大减少预留的焊接边缘,减少搭接宽度和一些加强用的部件,因而可以降低材料的用量,优化设计,使座椅的设计更加柔性化。

(5)激光束易于聚焦,可通过反射镜或光纤改变光的走向,也可在工件周围进行再导引,因而它的可达性好,在其他焊接方法难以接近的工件部位也能进行焊接,这一点是其他焊接方法所无法比拟的。

(6)激光焊接的非接触性也避免了易损件的频繁更换和维护,如电极帽、电极杆和电缆等,既节约了成本,又提高了效率。

(7)激光焊接还具有特殊的熔池净化功能,能净化焊缝金属。在焊接过程中,由于激光的作用,焊接部位的金属熔化并且部分汽化,因杂质吸收光能的效率高,所以金属内的杂质首先被汽化吸出,从而使焊缝中的杂质含量减少,焊接质量提高。

三、汽车座椅激光焊接工作站的组成

激光焊接工作站由安全房、激光器、光导和聚焦系统、焊接机器人、焊接夹具、PLC控制系统、监控系统及辅助系统组成。

(1)安全房安全房和其他类型的焊接工作站类似,可以使焊接在更环保、更安全的条件下进行。

(2)激光器! 激光器的功能是输出一定功率的优质光束。目前激光器主要有两大类:一类是固体激光器(又称Nd:YAG 激光器) ,波长为1.60um;另一类是气体激光器(又称 CO2激光器)10.6um 的红外激光,标准激光功率在2-5KW 之间。从输出光束的质量和功率这两方面综合考虑,CO2激光器比 YAG 激光器具有更大优势,尤其是高功率模块化系列 CO2激光器的问世,标志着大功率 CO2激光器在工作期间的稳定性问题(机械稳定性和热稳定性)得到根本解决,因而 CO2激光器得到了广泛的应用。但是,近几年来,国外在研制和生产大功率 YAG 激光器方面也取得了突破性进展,最大功率已经能达到5KW,并已投入市场。由于YAG激光器波长仅为CO2激光器的 1/10,有利于金属表面吸收,并且可以用光纤传输,使导光系统大为简化,所以 YAG激光器逐渐成为CO2激光器强有力的竞争对手。

除了这两种激光器以外,还有半导体激光器。半导体激光器具有波长短、重量轻、转换效率高、运行成本低以及寿命长的特点,是未来激光器重要发展方向之一。但其面临的最大问题是光束模式差、光斑大,因而功率密度较低,这是半导体激光器今后用于工业生产所必须解决的问题。

(3)光导和聚焦系统! 光导和聚焦系统是由圆偏振镜、扩束镜、反射镜或光纤和聚焦镜等组成,实现改变光束偏振状态、方向,以及传输光束和聚焦的功能。这些光学零件的状况对激光焊接质量有着极其重要的影响。在大功率激光作用下,光学部件,尤其是透镜性能会逐渐劣化使激光束透过率下降;其表面污染也会增加传输过程的损耗,因而影响聚焦距离和质量,影响焊接效果。所以光导部件的质量,光导部件的维护和监测,对保证焊接质量至关重要。

(4)焊接机器人! 焊接机器人的作用是实现光束与工件之间的相对运动,完成激光焊接。由于焊接机器人具有六个自由度,所以可以实现多角度柔性焊接。

(5)焊接夹具! 焊接夹具既用来保证座椅连接件的精确位置,又能起到防止和矫正部分焊接变形的作用。激光焊接夹具和传统的焊接夹具设计理念不同,如图3所示,传统的焊接夹具模块比较多,强度要求比较大,即便如此,由于受焊枪的可达性影响,局部定位受到限

制,因而焊后变形也不容易控制。而激光焊接夹具(见图4)则不需要考虑预留较大的焊接空间,可以均匀的对工件进行支撑压紧,对一些用点焊和弧焊不方便定位焊接,即便是能焊也很难对变形进行控制的部位,激光焊接的优势就非常明显了。

(6)PLC控制系统! 系统整体采用PLC控制,悬臂上外置触摸屏,人机交互性好。

(7)监控系统! 激光焊接过程的监测与控制一直是激光焊接领域研究的一个重要内容。激光熔焊的监控系统主要由摄像头、显示器和控制系统组成。如图 5 所示,利用工作站内的高速摄像机,通过外置悬臂上的显示器可观察控制整个机器人的运动,进而对激光焊接过程进行全面监控。

(8)辅助系统! 激光焊接工作站的辅助系统包括排尘装置、PFO固定台和编程工作台等。

四、结语

以上介绍了激光焊接的基本原理、优势和汽车座椅焊接工作站的组成。激光焊接是一个有着广阔发展空间的焊接技术,随着激光焊接技术的不断发展,激光焊接标准化的问题也越来越突出了。该问题集中体现在设备的连接接口和不同焊接设备零部件的通用方面。标准化问题的解决将会使激光光学设备、激光零部件的生产和制造在世界范围内得到简化,最终将推动激光焊接技术在各个领域更广泛的应用。

参 考 文 献

[1]游德勇,高向东.激光焊接技术的研究现状与展望[J].焊接技术.2008(4)

[2]杨春燕.激光焊接技术的应用与发展[J].西安航空技术高等专科学校学报.2008(5)

激光焊接技术范文7

关键词:激光技术;金属材料;加工工艺;应用

引言

随着科技水平的进步,工业制造过程中对高精度金属材料的需求越来越高。如何快速有效地加工出具有特殊结构的金属材料成为摆在金属加工领域的一道难题。激光是一种特殊的光,与普通的光源相比具有单色性、相干性和方向性。近年来激光技术得到了迅速的发展,已经广泛应用到科学研究及工业实践中。激光加工技术是一种先进的材料加工技术,经过长期的发展和经验积累,激光加工技术已经逐渐成熟并得到广泛的应用。

1激光材料加工技术的原理

激光材料加工时利用激光的单色性、相干性和平行性的特点,将激光聚焦到需要切割或焊接的点上,在材料的局部形成高温[1]。激光材料加工通常需要利用一组透镜或者反射镜片将激光束聚焦到需要加工的弓箭表面上,达到所需要的功率密度。通过合理地选择和调节加工透镜对激光功率进行调控。为了达到要求的几何形状的激光光束,可以相应地选择特定的加工透镜进行调节。通过改变光束的特性可以实现简单的加工形状例如点状、环形灯;而复杂的几何加工形状需要通过全息照相成像系统来进行调节。功率密度是激光材料加工工艺中一个非常重要的工艺参数,它决定了材料加工的质量和速度,不同的加工要求需要选择不同的功率密度参数。较低的功率密度适用于对材料的热处理,例如退火、表面合金化和焊接等。而较高的功率密度则适用于对材料的切割、打孔及表面非晶质化的加工。

2激光材料加工技术在金属材料加工中的具体应用

2.1激光切割激光切割技术是利用聚焦镜将激光束聚焦在被加工材料的表面,利用激光产生高温使材料融化。同时利用与激光光束同方向的压缩空气将熔化材料吹走,使激光束在被加工材料上沿着一定的轨迹运动,形成具有特定形状的切缝。激光切割技术是应用最广泛的一种激光加工技术,可以应用到多种材料如有机玻璃、木材、塑料、合金钢和碳钢的加工。在计算机程序控制下,通过脉冲使激光器放电,从而形成高密度的能量光斑,瞬间熔化或气化被加工材料。激光切割的切割精度很高,定位精度可以达到0.05mm,重复定位精度0.02mm,同时切割速度可以达到70m/min,远远大于线切割的切割速度[2]。2.2激光焊接根据焊接对象的不同激光焊接分为深熔焊接和传导焊接,它们主要用于机械制造和电子电气行业的焊接工作。激光焊接技术在汽车制造领域得到了大规模的应用,为整个行业的发展提供了有力的支撑。激光焊接技术可以满足汽车传动系统中70%的零部件的焊接需求,与其他传统的焊接方式相比,激光焊接的工作成本低廉,焊接效果较好。此外,激光焊接还可应用于组合件的焊接工作中。通过组合件的焊接,不仅提高了零部件的性能,还可以降低汽车的重量,优化汽车的整体性能。此外激光焊接还广泛应用于刀具、刃具等器材的制造中。

3激光材料加工技术的优势

3.1加工速度快在激光材料加工技术中,激光切割的应用最为广泛。在汽车工业当中,激光加工技术广泛应用于钣金零部件的加工。随着大功率激光器的开发应用,激光切割的应用对象几乎包括了所有的金属和非金属材料。利用激光加工技术可以快速地对复杂及三维零部件进行快速有效地切割加工。激光切割技术的设置时间较短,对不同的工件和外形也有很好的适应性。激光精加工和微加工技术应用到汽车工业制造中,优化了汽车结构,提高了汽车的性能。3.2加工精度高激光焊接技术将非常细小的高强度激光照射到工件表面,使工件在局部高温融化,达到焊接的目的。与传统的焊接方式相比,激光焊接具有很强的方向性和针对性,并且在实施过程中不会有污染气体的出现,有效地保护了工作人员。对高强钢的加工来说,3D激光切割技术是最常用也是最经济的加工方法[3]。激光切割技术使材料只会在局部形成较高的温度,避免了材料因大面积受热导致性能出现破坏的现象。与电阻焊接相比激光焊接可以有效降低焊缝的宽度,提高了焊接质量。

4结语

综上所述,激光技术是一项新兴的技术手段,激光技术以其独特的特点在材料加工领域得到了广泛的应用。激光材料加工时利用激光的单色性、相干性和平行性的特点,在材料的局部形成高温,达到对材料进行加工的目的。激光切割和激光焊接是最为常见的两种激光材料加工技术,这些技术在汽车制造、特种产品制造领域起到了独特而无法替代的作用。激光材料加工技术具有工作效率高,加工精度高等优点,在金属材料加工中起到了独特的作用。

参考文献:

[1]田延龙.激光技术在金属材料加工工艺中的应用探析[J].科技创新与应用,2013(10):25.

[2]黄翔,徐君,张永良.金属材料加工工艺中激光技术应用分析[J].城市建设理论研究(电子版),2014(23).

激光焊接技术范文8

关键词:活塞,激光焊接

中图分类号:P755.1文献标识码: A 文章编号:

引言

发动机的活塞是发动机系统的重要组成部分,而大中型发动机的活塞又具有活塞基体和活塞顶环两部分。其活塞基体与活塞顶环需要在过盈配合的基础上进行焊接。随着材料加工技术的发展,为了获得更好的金相组织,获得更美观的焊缝,人们逐渐从传统的焊接技术转向了具有高能束特点的激光加工技术。同时,作为大批量生产的对象,系统对于机电光一体化的要求也极为严格。本系统采用了激光焊接方式,配置了一套发动机活塞激光焊接装备。系统具有数控加工机床主体,一台8kW光纤激光器通过光纤将激光输出到激光焊接头YW52上。系统配备了焊接头的CCD系统,用于TCP点校正。由西门子828D-SL数控系统进行统一控制,带有四个工位,分别为人工上料工位、预热工位、焊接工位、下料自动搬运工位。

该设备主体为直角坐标激光加工数控机床,X,Y,Z轴由数控系统进行控制,采用滚珠丝杠、线性导轨驱动。激光加工机床直线轴具体指标如下:

行程: X:300mm,Y:300mm,Z:100mm;最大速度:X:24m/min,Y:24m/min,Z:24m/min。重复定位精度: X:±0.01mm,Y:±0.01mm,Z:±0.01mm。

系统功能部件特点

激光器及光学配套设施

本系统集成IPG 8000W多模掺镱光纤激光器,是目前世界上最为先进的固体激光器,激光束模式为多模,适合于金属焊接、切割、快速成形等。IPG高功率光纤激光器是采用阵列若干个光纤激光器模块的模式,这些模块输出的激光通过合束器合束,最终得到一束高功率的激光。光纤激光器模块中的泵浦源为单芯结半导体模块,它具有高功率、高效率、高亮度的特点。

本系统的激光焊接头采用的是德国Precitec公司生产的YW52激光焊接头系统,该系统由光纤准直镜连接系统、聚焦镜、保护镜、气刀等机构组成。它具有高效率、可支持大功率激光光源等特点。利用高质量的透镜,以及适当的保护气体供给,来完成高质量的焊接;利用独特的气体横吹,来延长保护窗口的使用寿命;灵活性便于不同配置的模块设计。

激光加工机床系统

本系统的机床主体采用数控系统进行控制。系统为西门子828D,机床部分共驱动了3个直线运动伺服轴,1个工件旋转伺服轴,1个凸轮分度轴。加工机床主体示意图如图2.1所示。

图2.1 加工机床主体示意图

Fig. 2.1 The layout of the main body

该设备使用了西门子828D-SL系统,此系统适于各种复杂加工任务的控制,具有优于其它系统的动态品质和控制精度。为机床的自动化提供了全方位的解决方案:全数字化的系统、革新的系统结构、更高的控制品质、更高的系统分辨率以及更短的采样时间,确保了一流的工件质量。控制能够实现任意四轴插补联动,伺服轴都能实现伺服精确定位,828D-SL可支持PROFINET 总线协议,通过增设PN-COUPLER 与S7-315-2 PN/DP 进行通讯,再由S7-315-2 PN/DP 可以任意添加DP 协议第三方设备,具有中英双语操作界面,具有中文报警显示,安全门、急停安全回路设计,激光出光安全联锁,具有远程诊断功能,具有DNC 功能。

本系统采用工件旋转的方式来完成环形焊缝的焊接,并设置了旋转焊接工位。

旋转焊接工位采用工件始终在同一水平高度、旋转工位直接进行旋转驱动、在夹具和小旋转台共同保证旋转精度的基础上适度进行数控补偿的方法。

预热及缓冷系统

本系统配备了中频预热系统。预热系统可起到降低焊前温度梯度的重要作用,从而防止出现裂纹和焊接缺陷。该系统采用了固态中频预热机。固态中频感应加热电源,采用IGBT构成并联型逆变器,主要包括整流器、滤波电路、逆变器、槽路、加热变压器及相应控制保护电路。除了预热之外,还配有缓冷系统,起去除应力的作用,也对金相组织的质量保证起着重要作用。

焊接结果及结论

系统经过实际的焊接实验后,可达到如表3.1所示焊接结果。

表3.1 焊接实验结果

Tabel 3.1 Welding experimental result

激光焊接技术可有效适应大批量活塞生产的需求。作为活塞生产线,除了焊接过程工艺的控制、夹具及加工头运动的特殊考虑、焊接质量的在线监控外,还应加入焊前预热、焊后缓冷过程,从而优化材料的金相组织,抑制飞溅,减小焊接应力。最终达到工件焊缝成形良好,无飞溅、凹陷、气孔、裂纹等缺陷,并能连续稳定生产的目的。

参 考 文 献

1.K Partes,G.Sepold.Modulation of power density distribution in time and space for high speed laser cladding[J].J.Mater.Process.Technol.,2008,195(1-3):27~33

2.杜晓明,,常雷.集成化的交互式电子技术手册技术研究[J].装备指挥技术学院学报,2006(3):77-88.

3.王金凤.机械制造工程概论[M].北京:航空工业出版社,2005.

激光焊接技术范文9

关键词:制造业;机械;焊接技术

中图分类号: P755.1文献标识码: A

一、我国当前焊接技术的发展现状

焊接是一种将材料永久连接,并成为具有给定功能结构的制造技术。几乎所有的产品,从几十万吨巨轮到不足1克的微电子元件,在生产中都不同程度地依赖焊接技术。焊接已经渗透到制造业的各个领域,直接影响到产品的质量、可靠性和寿命以及生产的成本、效率和市场反应速度。目前,钢材是我国最主要的结构材料,在今后20 年钢材仍将占有重要的地位。然而,钢材必须经过加工才能成为有给定功能的产品。由于焊接结构具有重量轻、成本低、质量稳定、生产周期短、效率高及市场反应速度快等优点,因而焊接结构的应用日益增多。与世界工业发达国家一样,我国焊接加工的钢材总量比其他加工方法多。因此,发展我国制造业,尤其是装备制造业,必须高度重视焊接技术的同步提高。

当前,随着电子信息化时代的到来,人们也将许多先进的科学技术应用到了焊接加工技术当中,从而实现了焊接技术的自动化。这不仅有效地加快了焊接施工的工作效率,还大幅的提高了焊接质量。目前,我们也已经将焊接技术应用到各个行业当中,并且还充分的利用了计算机技术,来对焊接过程中产生的应力变形进行相关的控制。如今,在我国焊接技术创新发展的过程中,人们已经开始全面的对焊接介绍的内容展开了全面的分析,进而有利于我国焊接技术的发展。

二、焊接技术的历史发展进程和应用

(一)焊接技术的历史回顾

焊接是一种使工件的原子相互之间发生结合的工艺技术。它通常采用加压或者加热的方法。随着金属的发展使用,焊接工艺最早出现在我国的战国时间。直至十九世纪初科学家发现了氧乙炔焰与电弧之间能产生高温热源,焊接技术才有了迅猛的发展机遇。发展至今天,各种电子束焊接、离子束焊接以及激光焊接术等出现在了大众的视野中。

(二)焊接技术的工艺特点及分类

焊接技术的发展离不开科学技术的创新。焊接技术指的是在高温、高压环境下,用焊接材料将焊接件连成整体的一个过程。如今焊接产品能够达到没有缺陷、机械性能超强的程度。根据焊接过程中金属的熔融状态可以将焊接分为熔焊、压焊与钎焊三种类型。熔焊是将待焊接件的接头处的高温融化之后所采用的加工方法。压焊是通过对待焊接件施压的方法来实现的。钎焊是选用比母材熔点低的材料作为钎料,然后将待焊件和钎料同时加热到一定温度,通过钎料与木材处于液态时的相互流动来实现焊接的方法。

(三)焊接技术的应用范围广

焊接技术已经渗透到了各个行业、各个领域里面。金属、非金属材料的连接几乎都应用到了焊接技术。焊接技术随着科学技术的飞升有了十足的进步空间。尤其是近三四十年以来,各种的新技术、新材料与焊接技术融合实现了技术的提升。红外线、真空、声学等一些科学技术扩大了焊接技术的适用范围。焊接技术已经扩展到了航空领域、能源领域、化工领域等等,这将促使焊接技术更快发展。

三、机械焊接技术

(一)电子束焊接 电子束焊接首先应用在德国,之后逐渐发展成熟。较之传统的焊接工艺,它的能量密度更高,并且热变形较小,应用的范围也较为广泛。

电子束焊接的工作原理是:用电子枪中聚集的高速电子束对工件的接缝处进行轰击,在轰击的过程中,会发生机械能的转变,即动能转化为热能。这样就产生了焊接所需要的热源,利用这些热能,完成焊接工作。

以前,电子束焊接主要被应用于国防、军工工业中。近些年来,这种焊接技术开始在民用工业中推广使用。比如汽车工业的齿轮、电站锅炉等。

(二)激光焊接技术

激光焊接技术是激光加工技术中的重要部分,它是一种高能束的热传导性技术。与传统的焊接工艺相比,激光焊接技术更加快捷方便,同时焊接的质量和稳定性更高,工件产生变形的可能也小,因此被大量投入工业生产。

激光焊接技术主要是利用抛物镜或者凸透镜汇集周围的热量,这时的激光就是一个高温度的热源,将其应用于工件接缝的表面,能够起到焊接的作用。根据工件的不同,激光焊接的方式也有所不同,常用的激光焊接方式是传导焊接和小孔焊接两种。

在航天航空工业中,经常会利用激光焊接技术来进行工件的修复;在汽车制造领域,激光焊接技术被广泛应用于散热器、传动轴等零部件的制造中。随着激光加工技术的不断发展,激光焊接技术的应用领域必然还会扩大。

(三)搅拌摩擦焊接技术

搅拌摩擦焊接技术,顾名思义就是利用摩擦力产生的热量进行焊接,这就决定了它的使用范围,即低熔点的金属焊接。这种焊接技术的自动化水平更高,接头的质量和稳定性更好,并且节能低碳。 在进行搅拌摩擦焊接过程中,会将一个搅拌针焊缝中,利用摩擦力对金属进行加热,让其呈现一种塑性状态,同时金属会形成旋转的空洞,随着搅拌针的不断前移,旋转空洞和塑形金属各自向相反的方向移动,金属在冷却之后,焊接的缝隙密度会更高。

搅拌焊接技术主要用于造船业、航空航天业、建筑业、交通工具等领域。在造船业中,它主要被用来焊接甲板上、船头上的部件;在航空航天业中,飞机的机身、油箱都会用到它;而交通工具领域,火车、高速列车等的车身、交换器等都要用搅拌摩擦焊接技术。

(四)电渣焊接技术

电渣焊接技术是一种利用电阻热进行焊接的技术。它能够一次性焊接钢材、铁基金属等质地较厚的工件,同时生产成本也较低,焊接质量较高。

电渣焊接技术依据的原理是:把电热组作为一种热源,用来熔化金属和木材,之后冷却凝固,使各金属原子之间相互连接。常用的电渣焊技术主要有熔嘴、非熔嘴电渣焊技术,丝极电渣焊技术,板级电渣焊技术等。 电渣焊技术主要被应用于一些特殊的地方或行业,比如铁路各个站点的焊接;鼓风炉壳等厚壁容器的焊接等等。

(五)等离子弧焊接技术

等离子弧焊接技术是一种基于等离子弧切割工业的新型焊接技术。它是一种较为及其精密的焊接技术。 等离子弧焊接技术准确地说应该是“压缩电弧焊接”,它是焊炬将整个电弧进行最大限度的压缩,促使其中的等离子效应加剧,之后电弧就变成了一个具有稳定性、单向性的强大射流热源,温度高达16000K~33000K,然后可以直接进行金属的焊接。通常企业较为常用的等离子弧主要是转移型的和非转移型两种。

(六)超声波焊接技术

超声波焊接技术主要是进行热塑性塑料制品焊接的高科技技术,这种技术焊接出来的塑料制品档次和质地较高,同时生产的成本和效率也就高。 在超声波进行焊接的过程中,发生器会释放出20KHz或者15KHz具有高压性、高频性的信号,通过能量转换系统,可以将这种信号转化为一种高频的机械振动,用于塑料品的工件中。然后通过摩擦力是接口的温度升高,当温度达到工件的熔点时,工件会自动融化来填充接口处的缝隙。冷却定型以后,整个焊接工艺就顺利完成。 超声波焊接技术因为其本身的特性,所以在塑料品加工行业中应用较为广泛,而在机械类加工工业中,应用较少。

四、焊接技术的前景展望

(一)新焊接材料是焊接技术的发展动力

新的焊接材料无疑对焊接技术发起了挑战, 促使焊接技术不断要对新材料实现是的工艺要求。新材料的形式是各种各样的,包括耐热的热合金、陶瓷材料、钛合金金属等等,它们的出现使焊接技术有了长足的发展。尤其是一些异型材料的相互之间的焊接,假如采用常规焊接方法往往是不能实现的。因此新的焊接工艺亟待出现。焊接届的新热点整逐步向扩散焊与摩擦焊的方向转变。固体连接技术将会是新时期发展的重要连接工艺技术之一。

(二)焊接工艺自动化

提高焊接件的产品质量, 提高焊接劳动生产率是焊接技术发展过程中一直存在的一对矛盾问题。这种矛盾要求对焊接工艺须尽快实现自动化控制, 打造工艺过程的自动化进程工艺。随着计算机技术领域的扩展,控制技术的前进以及人工智能方面的发展,焊接自动化有了实现的可能性。有的工艺技术已经渗透了焊接领域中,例如焊机由程序进行控制或者由数值控制等等,在这些方面均取得了一些成绩。焊接自动化无疑是以后焊接技术发展的重要方向和生长点。焊接自动化必将是时代召唤的产物。

结语

由此可见,焊接技术在当前我国社会发展的过程中,已经被人们广泛的应用到了各个领域当中,这不仅有利于我国社会经济的发展建设,还给人们的生活带来了便利。而且为了提高焊接加工工艺的水平和工作效率,人们也将许多先进的科学技术和理念应用到了其中,从而有效的推动我国制造行业的发展。

参考文献

[1]邢万里.浅析我国焊接技术的现状与未来发展[J].科技与企业,2013,22:9.

激光焊接技术范文10

关键词:激光加工;机械制造;应用;优势

工业生产加工技术是国家科技发展水平的代表,机械制造业的良好发展能给各行各业带来积极的促进作用,而如今科学水平和技术水平仍然是我国工业发展的主要制约因素,而我国的工业想要发展就需要制造业开发和引进更多新的先进技术,激光加工技术作为新型加工手段应用于制造业,有利于提高机械制造行业整体的技术水平,给我国的机械设计、制造工艺以及加工观念带来巨大的改变,激光加工可以以独特的方式完成普通机械加工难以完成的成型及精密加工作业,为工业中关键精密部件的生产提供了有力支持,将成为未来工业加工技术发展不可或缺的方式。

1使用激光加工机械零件的优势

在机械加工行业中最常见的加工材料即为钢材,无论是型材还是板材,采用先进的激光加工技术进行加工都比传统的机械加工方式有更明显的优势,其主要表现如下:(1)采用激光加工所获得的零件尺寸精度更高,相对于等离子加工或手工加工而言,激光加工能够快速的获得需要的零件形状及尺寸,其尺寸精度能控制在0.1mm以内,且采用激光加工的零件断面效果好,表面光滑,方便拼接及较精密的配合,而且不需要打磨及其他处理即可进行焊接作业。(2)从长久效益来看,激光加工相对于传统的机械加工成本更低,尽管购置激光加工机的成本较高,但在后期的使用过程中,激光加工机就会体现出加工速度快、能耗低、零件合格率高,且寿命长、维修成本低的特点,这都是等离子切割机及其他机械加工所难以达到的。(3)激光加工不仅能用于零件的成型加工,其在金属表面热处理、金属激光焊接、金属表面精加工等众多方面都发挥着重要且高效的作用,为提高生产效率和生产质量、开发新工艺、提升机械设计能力及创新能力提供了有力保证。

2机械制造中激光加工的形式与种类

激光加工在机械行业中的作用很多,下面主要介绍常见的激光加工及处理方式。

2.1激光切割加工技术

激光切割加工技术是利用聚焦后的高功率密度光束来照射工件,被照射的工件大量的吸收了激光的能量,导致局部温度快速升高,当材料表面出现了熔化及气化现象时,将氧气吹入以起到助燃的作用,此时激光束与工件产生一定速度的相对运动,工件上也就形成了切缝。此外吹气还能将熔渣除走以起到保护和冷却镜头的作用。为提高工件材料对激光的吸收系数,在激光加工之前应对工件表面涂黑色墨汁进行黑化处理。通过激光切割制作的零件具有切割断面光洁、表面应力小、热影响范围小、加工速度快、易于加工复杂的平面形状等优点,且能够切割特脆、特硬以及特软的材料。

2.2激光热处理技术

采用激光对零件的表面进行淬火处理,主要是利用激光能够快速的对需要热处理的零件表面进行扫描,导致零件表面一定范围内的极薄厚度层因吸收激光的能量而温度快速上升,再利用金属对热能传导快的优良特性,表面所吸收的大量热量会快速的传导至零件的其他部位,进而在极短的时间内完成零件的自冷淬火,进而达到零件表面硬化处理的目的。此技术在我国主要应用于汽车发动机缸体修复领域,近年来很多激光淬火生产线纷纷建立,但应用的范围还比较局限,没有大范围的发展起来。

2.3激光焊接技术

激光焊接以激光束为焊接能源,光束直接打在焊接接缝处,是熔融焊接的一种。在激光焊接过程中,激光束可以通过镜子等光学元件进行引导,完成指定路径后再通过聚焦镜头将光束投射到焊缝上。激光焊接属于非接触性焊接,在焊接过程中不需要对焊接件施加额外的压力,但在焊接过程中应使用惰性气体以防止熔化金属氧化。激光焊接的特点是能够将焊接所需要的能量降低到最小值,对被焊接件的金相变化范围产生的热影响小,不易产生焊接变形,整个过程对焊接机具的损耗很小。激光束由于可被光学元件引导路径,因此可将其放置在与工件适当距离之处,通过路径引导完成一些普通焊接空间上难以完成的任务,激光焊接可加工的材质范围很大,可以对两种不同材质的材料进行焊接。

2.4激光珩磨技术

激光珩磨技术主要是应用到汽缸缸体加工领域的一项新技术,它主要是利用高能量的激光束,在汽缸内壁上进行微观几何的加工,以达到汽缸内壁性能的要求,以保证在有油的工作情况下,能够稳定的形成具有一定厚度的动态油膜。激光珩磨技术对零件内壁的加工时间段,工件所产生的热应力小,且采用非接触式加工,避免了传统加工过程中刀具损耗及断裂等问题,且激光珩磨可以在表面的微观结构上形成与性能相匹配规则的储油沟槽,能够很大程度的延长零件的使用寿命。

3结束语

激光焊接技术范文11

关键词:汽车车身;高强度镀锌钢板;激光搭接焊工艺

镀锌钢板材质构建下的激光搭接焊工艺是一项技术的新突破,进行施工的时候,必须保证具有防腐性、力学性能和外形美观性。但是经过人们多年的研究,焊缝问题仍是现今必须解决的问题。

一、激光搭接焊工工艺

汽车的发展方向是低耗油、安全、耐气候,所以进行汽车工艺的时候,必须减轻汽车的重量,提高材料的强度,从耐腐蚀、耐大气等方向进行研究。相关研究发现,在汽车钢板厚度减少0.5毫米的时候,汽车自身的重量就减轻20%左右。对于汽车车重减轻的研究方向,应该从减少钢板的厚度开始,进一步提升钢板的化学性能。

美国和加拿大国家早在2000年时,就开始对汽车车重的减轻制定了五年的研究计划。他们使用的汽车材料主要是DP钢和TRIP钢,利用焊接性和冲压性进行车重减轻技术的研究。经过研究,钢板的厚度成功减少了0.7到1毫米。为了保证汽车具有良好的防腐性,这些钢板材料通常使用热镀锌钢板和镀锌热钢板制造。但是进行镀锌后,会对汽车的焊接性产生严重影响,导致汽车生产中使用的电阻工艺不能得到保证,影响了焊接的质量。产生此种现象的主要原因是锌可以通过铜电极对电极造成损坏;焊缝中的锌还会因为蒸发产生金属飞溅现象,一定程度上影响了焊缝性能的稳定。经过对接头焊接拼焊技术的研究发现,激光焊的热区域受到的影响较小,可以提高焊缝性能,还可以减少开裂现象。所以,高强度镀锌钢板激光拼焊技术在汽车的车门等零件的焊接和冲压得到了应用。激光拼焊技术对车身装备质量要求特别高,很多车辆的车身结构始终采用塔接结构。当激光焊接进行高强度镀锌钢板塔接焊缝的时候,由于激光具有很高的加热速度,很容易导致板缝贴合面的接缝层迅速蒸发,在大气压力的作用下,一旦上板形成融化,高压力的锌蒸汽就会迸发,容易造成金属飞溅、焊接外观质量差等特点。

为了解决解决高强度镀锌钢板塔接产生的金属飞溅现象,在施工的时候,可以利用下面几种技术进行施工:

第一,机械装备法。进行塔接接头装备的时候,可以给焊接的部位垫片和筋,让焊接部位留有0.1到0.2毫米的缝隙,使蒸汽从缝隙处逸出。但是此种方法只能应用于厚板。

第二,Keyhole焊接法。利用Keyhole焊接法,让蒸汽可以从Keyhole缝隙逸出,但是如果蒸汽产生的压力较大,经常会将锌旁边的金属液体带走,容易让焊缝出现孔隙。

第三,使用双束激光焊接工艺,利用低功率的激光将板缝隙处的镀锌层蒸发逸出,保证上板不出现融化现象。然后利用大功率光束进行焊接。但是在板缝的贴合面,几乎没有缝隙,镀锌层发生融化和蒸发的时候,不能逸出在板缝后面,只是发生了简答的移动,在大功率激光束的作用下,会产生二次蒸发,发生金属飞溅现象。

第四,在铝箔中间层加入夹层。铝的熔点为660摄氏度,在锌熔点的907摄氏度以下。铝的沸点是2450摄氏度,所以,当铝发生融化时,锌就不可能发生蒸发现象,进一步形成铝锌合金液体。在合金沸点大于1500摄氏度的时候,可以防止金属飞溅。但是此种工艺的缺点是导致接头机械的性能下降。所以,目前为止,高强度镀锌钢板激光塔接焊产生的金属飞溅问题依然不能得到有效解决。目前最常使用的处理金属飞溅问题只能通过刮除镀锌层得以解决。镀锌层在刮除之后,会对汽车的防腐性能产生影响。本文在保证焊缝具有耐腐蚀、力学性能完整和外观的条件下,对高强度镀锌钢板激光塔接焊技术进行研究。

二、操作过程

本次试验采用功率为4kw,波长为10.6微米,输出模式为TEM00,焦距在150毫米焦斑直径是0.2到0.3毫米的二氧化碳激光器。钢板采用厚度是1毫米的DP600钢板。高低激光束都是利用焊接的方式实现,第一次作用的目的是让中间夹层的铝和锌融化,形成合金,第二次利用合适功率的激光束进行焊接,按照工程要求,合理的处理焊缝深度。

三、实验结果

利用表1的参数合理进展实验,对实验分析后发现,在单束激光与双束激光的作用下, 金属的飞溅失真重和夹板层的厚度关系如图1所示。

当中间没有铝夹层的时候,两种激光焊接方法的接头和拉剪力都降低了,主要由溅和孔洞,让承载面积得到了减少。

四、铝中间夹层的作用

铝中间夹层的主要是利用激光的加热作用,让铝和锌实现融合,可以防止锌的蒸发,减少飞溅和气孔的产生。此时合金铝大于等于38.4%。一般情况下,镀锌层的厚度是10微米,根据铝箔的计算工程可以计算出铝箔的厚度是:

发生融化的时候,铁会进入到铝锌合金当中,所以,实际上铝箔的厚度比26.5小。在低功率的作用下,两个板铁之间的组织就会形成良好的锌-铝-铁合金。锌的原子百分比为60%到63%,铝和铁的原则分子比可以占到37%,和钢板距离较近的很大一部分铝都会和铁形成金属化合物。因为化合物的沸点在1500摄氏度之上,进行高功率激光焊接的时候,不会造成锌的蒸发,可以让焊接的强度得到最高,拉伸剪力最大。

五、双激光的作用

双激光具有很高的速度,当加热1毫米的薄板时,两板的贴面稳定可以上升到1500摄氏度,在如此短的时间内,锌会快速的发生蒸发作用。在铝液体的作用下,锌蒸汽会被压在焊缝里面,防止金属的飞溅。使用双激光还可以保证焊缝外部整洁,降低焊缝中的铝含量,进一步增加焊接头的拉剪负荷。

结束语

本文主要从美国和加拿大两国研究的激光搭接焊工工艺进行分析,对工程存在的缺陷做了详细说明。然后从本次研究的方向、方法、过程、结果进行探索。经过分析发现,使用此种技术可以有效避免金属飞溅现象,有很好的研究价值。

参考文献

[1] 伍强.汽车用高强度镀锌钢的二氧化碳激光焊接研究[J].湖南大学,2010,(3).

激光焊接技术范文12

关键词:有色金属;铝合金;焊接方法

中图分类号:TG457 文献标识码:A

1 铝合金的分类及其焊接性

铝合金根据所含主要合金成分的不同,分为8个系。1系是含Al≧99.0%的纯铝,2系是Cu,3系是Mn,4系是Si,5系是Mg,6系是Mg-Si,7系是Zn,8系是其他合金。铝合金根据加工方式的不同分为锻造铝合金和铸造铝合金。根据铝合金是否可进行热处理强化,分为可热处理强化铝合金和非热处理强化铝合金。纯铝熔点约660℃,而焊接用铝合金熔点是560~650℃,具有较高导热性,焊接时要用能量集中的大功率热源。焊接过程中熔池没有金属颜色变化,易造成塌陷。焊接铝合金时,易出现氢气孔,因为氢在铝合金中的溶解度,会由液态时69mL/100g变到0.036mL/100g,使气体在熔池快速凝固时来不及溢出而成为气孔。合金一般有较宽的脆性温度区间,线膨胀系数大,约是低碳钢的2倍,凝固时平均收缩率约5%,因此铝合金焊接中易产生变形和热裂纹。铝合金与氧的亲和力大,暴露在空气中表面会生成一层氧化膜,熔点约2050℃,焊接时阻碍填充金属与基体的润湿,易造成夹渣。对于锻造铝合金,焊后易软化。

2 铝合金的焊接方法

2.1 钨极氩弧焊

钨极氩弧焊是目前广泛应用的铝合金焊接方法,用金属钨做电极,惰性气体为保护气,具有设备简单、价格便宜、成型好、电弧稳定等优点。西华大学的李龙庆等人,采用普通的交流TIG焊和随TIG焊旋转挤压的方法焊接2A12铝合金薄板,发现随TIG焊旋转挤压法对变形和气孔有更好的控制效果,而且焊缝的组织晶粒要细小均匀得多,有效提高接头的力学性能。拉伸试验中试样均断裂在焊缝区,而且随焊旋转挤压法的焊接接头的抗拉强度和屈服强度比普通的TIG焊高出20%。印度的S. BABU等人,采用脉冲TIG焊技术焊接AA6061铝合金,得到了更细小的熔合区晶粒和更高强度的接头。研究发现,焊接参数中峰值电流和基值电流是最重要参数,决定熔合区的晶粒尺寸AA6061铝合金焊接接头的抗拉强度。

2.2 搅拌摩擦焊

搅拌摩擦焊是上世纪90年代被英国的焊接研究所研发的,由于其属于固相焊接,能有效克服熔化焊带来的缺陷,在铝合金的连接方面越来越受到认可。湖南化工职业技术学院的吴兴欢等人,采用搅拌摩擦焊技术焊接5A02铝合金板材。以转速800r/min和120mm/min的焊速进行焊接,试验得到的焊接接头的抗拉强度最大,可达母材的91.21%,而且焊缝中无任何缺陷。法国的Vincent Proton等人,使用搅拌摩擦焊技术焊接2050铝合金,研究其接头的腐蚀性为。熔核内的晶界和晶粒易受腐蚀,腐蚀性为与微观尺度上的不均匀性有关,试件上观察到的宏观上的不同腐蚀性为是由于从顶部到底部的腐蚀行为不同造成的。

2.3 MIG焊

MIG焊以焊丝作电极,惰性气体保护下进行焊接,由于使用焊丝做电极,可以使用大电流,使得母材熔深大,变形比TIG焊小,焊接铝合金时采用反接,具有良好的阴极雾化作用。西南交通大学的江超等人对高速列车用A6005-T6铝合金进行MIG焊试验,研究其抵抗裂纹扩展的能力。热影响区的冲击功最大,焊缝的冲击功最小,通过使用CTOD和J积分两种方法分析发现,热影响区抵抗裂纹扩展的能力最好,而焊缝最差。焊缝上的气孔和夹杂较多,塑性较差,热影响区的韧性更加优越。上海工程技术大学的杨尚磊等人,采用MIG焊技术焊接A6N01铝合金,熔合区为柱状晶组织而焊缝区为等轴晶,热影响区的过时效区晶粒最为粗大,并形成了HAZ软化区。母材会析出短棒状的β’过渡强化相,热影响区会析出粗大的稳定强化相β。焊缝的显微硬度最低,接头的抗拉强度为母材的87%。

2.4 激光焊

铝及铝合金的激光焊接是最近十几年才发展起来的一种新技术,与传统的焊接方法相比,有功率密度大、热影响区小、焊接变形小等优点。天津大学的王小博等人, 以NaCl、ZnCl2 等卤化物为活性剂使用Nd:YAG激光焊接6061铝合金。卤化物活性剂能降低激光等离子体的温度,减少等离子体对激光的散射、折射以及逆韧致吸收,增大透过等离子体照射在试件表面的激光功率密度,增加激光对试件的热输入,使焊缝熔深增大,活性剂改变了熔池内金属的流动状态使熔深进一步增大。德国的J. P. Bergmanna等人,通过给脉冲Nd:YAG激光叠加二极管激光器改善了铝合金激光焊接的焊接性。通过二极管激光器的预热增加Nd:YAG焊接激光的吸收率。此外由两个激光构成的热循环模式为凝固提供有利的条件,有效减少或避免热裂纹。

2.5 激光-电弧复合焊

用激光焊接铝合金有许多优势,但仍有设备成本高、接头间隙允许度小等缺点,为有效焊接铝合金,发挥激光焊接优势,发展激光-电弧复合焊接工艺。合肥工业大学的徐晓波等人,使用激光-MIG复合热源焊接6061-T6铝合金。复合焊接接头抗拉强度为母材的57%,而焊缝区域的显微硬度为母材的65%,看出明显存在接头软化现象。焊缝中的气孔和接头软化等缺陷影响焊接结构的力学性能。意大利的Alessandro Ascari等人,使用激光-GMA混合热源焊接28mm的AA608铝合金板材,研究孔隙度和工艺参数的关系。GMAW的电流明显影响孔隙的形成,但不会影响电源间距。