0
首页 精品范文 环境监测论文

环境监测论文

时间:2022-12-21 17:31:05

开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇环境监测论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

环境监测论文

第1篇

(一)环境监测的目的。

环境监测的主要目的是通过环境监测工作为专业的环境保护部门提供准确、及时、全面的环境质量反馈数值,为环境管理、污染源控制、环境规划等工作提供有效的科学依据。

(二)环境监测的过程。

环境监测的过程主要包括:接受任务、现场考察、收集资源资料、检测计划进行设计、合理布点、采集样品、运输样品、预处理样品、分析测试、数据处理、综合评估等。

二、环境监测的分类

环境监测的分类有多种鉴定标准,根据目前比较常用的方式,我们分为以下几类:

(一)按目的性分类。

按照目的性分类,环境检测主要分类特定目的性检测、研究性检测、检测性检测三种。目的性检测主要是根据相关部门的要求来执行,研究性检测往往属于环保科研方面的应用范围,检测性检测针对的主要是一些特定环境下的检测工作。

(二)按照检测对象来分类。

按照检测对象来分类,主要分为震动和噪声检测、固体废弃的物品检测、水质、土质、空气、热、光等检测。通过细化的检测对象来确定本次检测的目的,根据这些检测对象反应出来的数据来鉴定环境的状况。根据时代的发展,随着一些新物种的出现,环境监测的对象种类也越来越丰富。

(三)按照检测的场所来分类。

按照检测的场所来分类,主要按照检测区域面积大小来划分,可以分为厂区、单位、部门等的检测,这种环境监测主要用来监督企业单位的环保工作,以此来颁发排污许可证和征收对应的排污费。也可以对较大的户外场地和环境进行检测,比如海洋、城市水体、大气、个别景区等,这种环境检测工作综合考虑的是整个地球的环境变化因素,比如近期比较热门的北极冰融化的现象等。

三、环境检测对环境治理的促进作用

环境监测是一项细致繁琐的检验过程,通过环境检测可以尽快得知环境变化的趋势,依靠专业的数据来治理被污染的环境,从而达到人与自然的和谐发展。环境监测对于环境治理工作具有重要的作用,主要体现在:

(一)严格环境管理的制定标准。

环境监测工作的各种检测都以人类生态居住为标准,各项环境检测都是为了人类身体的健康打基础,通过严格的环境检测工作可以督促各种环保部门,在实现一定时期内的环境保护目标中可以更积极主动的依靠真实的数据分析来制定环保工作的标准,进而制定一些更有效、更实际的环保制度和规定,减少以往盲目操作的误区,将环境保护工作落实到实处。

(二)环境检测工作可以控制污染源的排放。

通过各项环境监测工作,相关的环保部门会得到一个真实的环境变化数据,通过这些数据分析掌握近期本地区污染物排放的总量,进而明确这些排放物是否超过国家规定的标准,是否已经对环境造成污染,从而可以根据事实来限定一些企业单位的日常排污量,并且对一些已经造成环境污染的企业单位给予相应的惩罚措施。同时还可以根据这些排污量的分析,对一些需要审批的企事业单位进行核定,发放排污许可证。

(三)环境检测工作在排污统计和排污费征收中的作用。

环保部门给予发放排污许可证的单位,在领取允许生产命令的同时,也开始每天的排污工作,因此这些部门每天的排污量需要一个专业的统计工作。环境监测可以根据详细的仪器检测和实地检测得出这些企事业单位每天固定的排污总量,这样环保部门就可以有明确的收取排污费的执行标准,根据不同时期排污量的变化收取相对应的费用,便于环保工作的展开。

(四)环境检测辅助环境监督管理工作的进行。

定期的环境检测工作,主要内容就是对本地区的企业单位的污染物排放情况作进一步的跟踪统计和分析,实行当地环境保护的监督作用,可以督促这些企业单位时刻遵守国家环境保护工作的法规和法律条文,杜绝恶性污染环境的行为发生,减少环境污染给地球造成的损害。同时环境检测还可以反映出一个地区一段时间内的环境状况,是否属于被污染的状态,还是属于自然和谐的环境状态,这些信息提供可以为当地的居民生活提供借鉴,便于居民采取适当的自我保护手段。

(五)环境检测在纠纷仲裁中的作用。

环境检测工作可以就地取样,通过环境监测数据分析得出准确的信息,为仲裁机构提供最终裁决的依据,同时环保部门也可以根据环境检测的结果来实行及时补救的环保工作,并且对这些造成环境污染的企业进行相对应的经济处罚。

(六)环境检测对科学研究的作用。

作为环境检测也不例外,做好相对应的高科技环保方面的环境检测工作,对于环保工作的革新以及环保新产品的研发都具有一定的促进作用,只有与时俱进的掌握最先进的环境检测仪器和内容,才能将科技转化为劳动力,对于推动当代社会经济的发展,减轻环境资源的破坏都具有重大的意义。

四、结语

第2篇

1.1空间地理边界

空间地理边界包括两种,一种是自然的地理边界,另一种是管理的地理边界。自然的地理边界是根据监测区域自然地理特征划分的,如平原、丘陵、海湾、河口等。管理的地理边界是根据行政区域划分的,依据各级管辖区域,分为国界、省(自治区、直辖市)界、市界、区(县)界等。空间管理边界应采用最新的地图来确定。

1.2空间生态边界

空间生态边界是适应生态系统监测需要的,主要是根据生态系统区系划分,如森林生态系统、湖泊生态系统、海湾生态系统、河口生态系统等。由于生态系统经常会重叠,生态系统的范围往往难以精确划定,因而空间生态边界不必精确划定。

1.3动力空间边界

对于流体类环境介质(如大气、河流、海洋)的监测,有时需要划定动力空间边界。动力空间边界是根据流体动力特征划分,如海洋中的沿岸流区、上升流区、扩散型海区、沉降型海区等。在污染物排放扩散监测中,采用动力方法确定空间边界是有必要的,这涉及到结合污染源强和动力模型模拟水质或空气质量,预测影响的范围和程度。

1.4项目空间边界

项目空间边界是指工程项目的环境影响范围。在工程项目环境监测中,需要依据影响范围确定项目环境监测的空间边界。在工程项目监测技术规程中,会有相关原则性的规定。对于影响范围较大的项目,仍需要根据预测的影响范围,结合实际监测获得的结果,优化监测边界。

1.5时间期限

环境监测一般是重复性的,但任何环境监测项目都有时间期限。环境监测时间一般根据出资或任务下达者的要求,结合监测本身的技术要求确定。一般常规监测任务以年为基本时间单位,长期监测计划可能会持续很多年。建设项目的环境跟踪监测时间主要为工程建设期间。环境污损事件的监测一般持续到污染基本消除或环境基本恢复之后。

2监测参数设计

对于一般监测污染物质的项目,监测参数比较明确。而对于环境质量类监测项目(包括生态系统监测),监测参数的确定非常复杂,在此主要讨论这类复杂型监测项目的监测参数设计。这类监测项目监测参数的设计一般遵循“识别环境问题-分析受害资源-选择环境要素-确定监测项目-确定监测参数”的流程。这里实际上包含监测要素和参数两个层次。在设计中要注意,在一些监测项目中,监测参数不需要以同样的频率测量[1]。

2.1环境问题和受害资源分析

2.1.1环境问题

环境问题是环境科学面临的、政府与公众关心的,且与人类生活和生存密切相关的问题[6-7]。环境监测要针对环境问题,获得充分的、可防御的信息。管理者在决策中,一般需要环境监测者提供以下信息:①目前环境存在的具体问题,预期这些问题会造成的后果;②处理这些问题的具体对策;③解决这些问题的把握;④解决这些问题需要的资源和经费;⑤其他的建议。(1)环境问题的一般形式环境问题发生在一定的时空尺度上。要回答什么位置出现了环境问题,与位置关联的特有环境空间模式是怎样形成的,为什么会发生,未来演变趋势如何,以及采取什么样的措施和政策来解决环境问题,需要从时空角度归类环境问题(表1)。(2)常见的环境问题常见的环境问题有:①环境污染(介质上有大气、水体、土壤等,污染物有化学物质、生物、噪声、电磁波等);②生态问题(生物多样性损失、生态系统退化、外来物种入侵、栖息地丧失等);③突发环境事件(化学品泄漏、溢油等);④人类健康(水、空气、食物供应和安全等);⑤全球气候变化(全球变暖、海水酸化等);⑥资源枯竭(过度开发、不可持续开发、增长的资源利用等)。随着社会的发展和科学认识的深入,新的环境问题会不断出现或被发现、认识。

2.1.2环境中的受害资源

环境问题之所以成为问题,是因为环境问题发生后存在受损者,即受害资源[1-3]。环境是一个复杂的系统,一个环境问题作用的受害资源可能不止一个,同理,一个受害资源可能遭受多个环境问题的损害。环境中的典型受害资源一般有:人体健康、经济生物、珍稀或濒危生物、生物多样性、空间资源。(1)人体健康。人体健康是首要关注的受害资源,对于人体健康造成损害的主要是污染问题。通过食用受污染的产品或接触受污染的环境介质,人体会遭受直接或间接的健康损害。(2)经济生物。经济生物资源是生态系统对人类的重要价值所在,污染损害、栖息的破坏、过度利用、生态退化、外来物种入侵等因素,都会对经济生物资源造成损害。(3)珍稀或濒危生物。珍稀或濒危生物往往是生态系统中关注的焦点,对生态环境的退化较敏感,是环境监测关注的“热点”。(4)生物多样性。生物多样性是生态系统健康的核心体现,生物多样性的降低可能预示着生态系统在退化,污染损害、生态破坏、外来物种入侵等都可能导致生物多样性的降低。(5)空间资源。很多行业生产都需要空间资源,尤其是农业。用于农业上的土地、水域等空间,对生态环境有要求。环境问题对空间资源的不利影响主要体现在两个方面:第一是可利用的空间资源缩减或丧失,如围填导致水域丧失、建设导致耕地丧失等;第二是环境质量下降导致可利用的空间资源减少,如环境质量恶化导致养殖用水域资源缩减。

2.2环境要素、监测项目和监测参数

环境要素即环境基质,是构成环境各个独立的、性质不同的而又服从整体演化规律的基本物质组分,如海水、大气、沉积物、生物等。监测项目是样本单元中按性质分类的现象或实体,包括物理的、化学的和生物的,如温度、溶解氧、浮游动物。监测参数是由采样样本确定的、某变量总体的函数,如溶解氧的含量、浮游动物密度、浮游动物种类数、浮游动物生物量。从监测参数的学科角度分类,监测参数可分为物理参数、化学参数、生物参数、地理参数、社会学参数等。(1)物理参数:描述环境介质物理状态的参数,例如温度、流速、流向、气压、风速、风向、放射性等。(2)化学参数:环境介质或污染物中化学物质的含量,如重金属、持久性有机污染物、营养盐等。(3)生物参数:生物物种、群落、生态系统、景观等状况参数,如生态系统类型、生物种类、生物密度等。(4)地理参数:描述地形、地貌等地理特征的参数,如海岸线、河流等。(5)社会学参数:描述区域社会经济状况的参数,如人口、生产总值、产业结构、污染物排放量等。从监测参数在监测系统中的作用考虑,环境监测参数可分成3大类:(1)优先监测参数:代表环境“热点”的特征参数,重点监测对象。(2)辅监测参数:对于评估环境问题起辅的参数,如盐度、水温。(3)可选择的监测参数:按地点、主导功能区和测定意义选用,如营养盐、重金属、有机氯化合物等。

2.3环境质量监测参数选择原则

在对环境系统了解有限的情况下,设计者可能会希望监测的参数越多越好。然而,新的环境问题会不断被发现,新的环境科学认识会不断被提出,并且实际的监测资源限制也不允许监测所有的参数,因而需要从众多参数中选择有代表性的参数。在环境质量监测中,选择监测参数一般要遵循以下基本原则。(1)监测参数必须与要回答的特定影响和受害资源紧紧联系在一起,且对变化反映灵敏。监测参数状态的变化,必须清楚地反映出受害资源的变化。两者的联系程度,要取决于对系统的了解深度和对监测过程了解的广度。(2)监测参数与要回答的特定影响和受害资源之间能给出因果关系,能描述反应的特定性和可靠性。(3)监测参数具有可靠的分辨能力,采样的代表性(信噪比)较好。好的监测参数能用最少的采样,获取最大的信息量。高度变异的参数或未知统计分布的参数往往妨碍从监测数据中得出有意义的结论,不适合作为常规监测项目的监测参数。(4)监测参数应尽可能测量方便、成本较低。监测资源总是有限的,选择的监测参数过多往往导致监测方案无力执行或不得不降低采样密度。

2.4环境质量监测参数选择方法

有限的监测资源应该分配到那些最重要,而且能对整个环境状况起关键作用的参数上。在筛选监测参数时,可采用专业判断、因果链分析等方法。(1)专业判断法。专业判断主要是基于长期积累的环境科学研究成果和设计者自身的专业技术和经验做出监测参数的选择。对于选择的监测参数,还应从逻辑分析其合理性。(2)因果链分析法。用因果链分析能深入了解问题的根本原因,该方法用于监测参数的筛选有实用价值[7]。

3结语

第3篇

1.1应用范围越来越广

随着我国计算机技术的水平不断的提高,相关的环境部门在环境监测方面也将计算机技术应用的越来越广泛,对于空气质量、土壤环境、水体环境、放射物、固体废弃物等环境的监测工作中便充分地应用了计算机技术,这样一来就使得复杂的监测工作变得简单起来;不仅如此,我国已经建成了较为完整的环境监测网络系统,因此可以方便的解决复杂而又艰巨的监测任务。

1.2使用技术越来越先进

我国的相关部门已经将网络技术、管理软件以及地理资讯等技术综合的应用于环境监测工作当中,这些先进的技术使得监测工作能够有效、精准的进行;不仅如此,相关的环境部门还利用了精确定位以及影像资料等遥感技术,保证了检测部门能够获得准确的图像资料和数据信息,全球范围内的定位系统则能够为检测部门提供最新的海洋和陆地环境的相关信息,减轻了工作人员工作时的负担。

2计算机技术的具体作用

监测部门通过使用计算机技术对相关的环境数据进行第一阶段的监测,然后对具体的环境进行模拟与分析,并将相关的环境信息进行收集和整理,将这些整理好了的信息提供给主要的监测工作人员,让管理人员对有毒、有害的物质怎样进行处理作出恰当的决策,并且对相关的技术风险、环境影响因素以及替代方案的选择作出正确的规划和决策,使其能够最充分的保护相关部门的利益。

3如何提高环境监测部门工作的质量

提高环境监测部门的工作质量,不仅能够为相关环境的保护工作提供准确的数据,提高对环境进行评价的准确性,同时还能够加强对于污染物的监察与控制,能够保证我国环境保护工作的正常进行,并且还能够推进我国的可持续发展的顺利进行。因此,要想提高我国环境监测部门的工作质量,不仅要充分的将计算机技术应用到检测部门的日常工作当中,同时还要做到以下几点。

3.1提高监测工作人员的工作素质

在进行实际的监测工作时,工作人员的专业素质是影响工作质量的最关键因素,只有正确的操作才能够保证确保监测工作的准确性,也才能保证环境监测的可靠性。我国的相关监测部门要加大对于相关工作人员的工作培训,要将工作人员的知识进行及时的更新,使他们能够掌握新的专业知识,并且能够对新的计算机技术进行的了解和掌握,这样就能够保证环境监测工作的真实性,并且还能够保证环境监测工作的整体水平和效率。

3.2增加监测部门对于监测工作的资金使用

相关的环境监测部门要想进一步的将监测的范围扩大,并且提高监测工作的准确性的话,就需要进一步的加大自身的资金投入,在第一时间内将所使用的技术和设备进行相应的更新,学习国外先进的对于环境监测所使用的方法,以此来将我国在环境监测方面的能力和水平不断的提高,促进其更好地为环境监测的工作进行服务。

3.3加强监测部门对于工作的管理

环境监测部门要加强对于相关工作的管理,要将环境监测工作的质量和相关管理人员的工作业绩进行等价挂钩,同时还要能够执行相对应的奖赏和惩罚工作,提高工作人员的工作效率,激发他们的工作热情以及工作责任心;并且还要将管理工作进行改善,从根本上提高监测工作的质量,使我国的环境监测工作能够取得更大的进步。

4结语

第4篇

关键词:煤矿安全环境监测监控系统

0引言

监测监控系统是融计算机技术、通信技术、控制技术和电子技术为一体的综合自动化产品,当将其作为一种安全预防技术设施应用到工业生产和社会生活中时,就称其为安全监测监控系统。在我国的工业安全事故中,煤炭工业的安全事故较为频发且性质严重,尤其以生产矿井瓦斯爆炸事故最为突出。为此,国家有关安全生产监督管理部门专门制定了“先抽后采,监测监控,以风定产”的十二字指导方针,由此可见,煤矿安全环境监测监控系统在煤矿安全生产中的重要地位。

1煤矿安全环境监测监控系统组成

根据所述及概念,监测监控系统的功能一是“测”,即检测各种环境安全参数、设备工况参数、过程控制参数等;二是“控”,即根据检测参数去控制安全装置、报警装置、生产设备、执行机构等。若系统仅用于生产过程的监测,当安全参数达到极限值时产生显示及声、光报警等输出,此类系统一般称为监测系统;除监测外还参与一些简单的开关量控制,如断电、闭锁等,此类系统一般称为监测监控系统。

煤矿安全生产监测控系统层次上一般是分为两级或三级管理的计算机集散系统,一般包含测控分站级和中心站级。每个测控分站负责某几路传感器信号的采集和某个执行机构的控制,实现了采集、控制分散;中心站负责数据的处理、储存、传输,实现了管理的集中。中心站与分站和计算机网络之间的通信、传感器到测控分站的数据传输、测控分站到执行或控制装置信号的传输,是通过传输信道实现的。

监测系统一般由地面中心站,井下工作站,传输系统三部分组成。地面中心站一般有传输接口装置和若干台计算机,电源,数据处理及系统运行软件,存贮、打印、显示等装置组成。为了计算机稳定工作,一般还配备了机房恒温调节,不间断电源等辅助设施。

井下分站和传感器构成井下工作站。井下分站的作用是,一方面对传感器送来的信号进行处理,使其转换成便于传输的信号送到地面中心站;另一方面,将地面中心站发来的指令或从传感器送来应由分站处理的有关信号经处理后送至指定执行部件,以完成预定的处理任务,如报警、断电、控制局扇开启等;并向传感器提供电源。

传输系统是用来将井下信息传输至地面和将地面中心站监控指令传输至井下分站的信息媒介。信道,信息传输的通道,监测系统大多采用专用通讯电缆作为信道。

传感器与分站之间一般采用直接传输方式。我国国家标准规定传感器的输出信号应满足以下几种信号:模拟量信号有三种,频率输出(5~15HZ);电流输出为0~5mA;电压输出为0~100mV;开关量信号输出一般有±0.1mA、±5mA和200~1000HZ等。

2煤矿安全环境监测监控系统技术指标

根据安全监测监控系统的组成,其主要技术指标,主要是以组成系统的各个子系统的技术指标为特征。

2.1测控分站容量:是输入、输出量的个数及类型。例如,模入8,开入4个接点信号、4个电流形式信号等;开出4个TTL电平、4个继电器触点输出等。

接配传感器:是指所接配传感器的种类、型号、测量范围、输出信号形式、供电电压、精度等。

检测精度:是反映分站性能优劣的主要指标之一,一般用满量程的相对误差来表示。数值越小,则检测精度越高。

另外,还有分辨率、转换时间、传输距离等指标。

2.2中心站主机型号及配置:CPU型号,内存容量,硬盘容量,软驱数量、规格,配置外设的种类、型号、数量等,另外,还有备用主机的情况。

容量:即系统可带分站的数量,例如,井下100个分站,地面10个分站。

传输速率:数字传输的波特率,例如,600bit/s,1200bit/s。波特率越高,传输效率越高。

另外,还有传输距离、可靠性等指标。

2.3系统信息管理软件开放性好:组态软件数据库提供了开放数据访问接口,可以实现数据库的二次开发。

安全性良好:所有的设计方案都充分考虑了系统的安全性,使用采集系统对监控系统的影响达到最小。

数据容量大:采用虚拟内存管理技术,理论上数据存储是无限制的(受硬盘空间和内存大小的影响)。

另外,还有响应速度、运行是否稳定、扩展性是否强、兼容性好等衡量指标。

2.4防爆及防爆标志根据国家标准的规定,爆炸危险环境用电设备分为2类。有瓦斯爆炸危险的矿井使用的电气设备为I类,除瓦斯矿井以外的爆炸危险场所使用的电气设备为II类。II类电气设备又分为A、B、C三级,这是根据使用场所的爆炸性混合物最大试验安全间隙或最小点燃电流来分的。II类电气设备还按最高表面温度的不同,分为T1-T6共6组。防爆型设备在外壳上的总标志为:“Ex”。

防爆型电气设备按防爆结构的不同,可以分为以下几种类型:增安型、隔爆型、本质安全型、通风充气型、充油型、无火花型、特殊型等等。

3煤矿安全环境监测监控系统的种类

监测系统按工作侧重点分为环境监测系统和工况监测系统两大类。每种系统又可能包含若干子系统。如环境监测系统可能配备瓦斯突出预报子系

统、顶板监测子系统;工况监测系统可能配有综采监控、胶带监控等各类子系统。

环境监测系统一般侧重于监测采掘工作面、机电硐室、采区主要进回风道等自然环境的参数,其主要功能为监测低浓度沼气(4%以下)、高浓度沼气(4%~100%)、一氧化碳、二氧化碳、氧气、温度、风量、风速、负压、矿压、地下水、通风设施、煤尘、烟雾等参数,除实时显示检测数据外,还应按《煤矿安全规程》的要求及各矿井实际情况,在一定地点及工作场所设置报警(灯光、音响)和执行装置,以便防止和预报灾害。

工况监测系统一般侧重于监测机电设备,其主要监测参数有采区产量、井下煤仓煤位、采煤机机组位置、运输机械、提升机械监控、设备故障监测及效率监测等等。但生产工况监测信息并非全部要传输到集中监控系统之中。

一些大的监控系统通常包括环境监测与工况监测两大功能,适应性更为广泛。

4煤矿安全环境监测监控系统的结构

煤矿安全生产监控系统的系统结构分为集中式和分布式。

4.1集中式集中式控制是一种中心计算机直接控制被控对象的系统。其特点是信息采集、分析处理、信道管理,控制功能均由地面中心站计算机完成。数据传输量大、负担繁重,中心站计算机是系统关键性节点,当中心站和传输通道发生故障时,将导致整个系统的瘫痪。

集中式控制系统大多为星型结构,其特点是结构简单,将多个节点连接到一个中心节点即可;增加、扩展节点十分方便。中心节点是整个系统的“瓶颈”,该系统的可靠性很大程度上取决于中心节点。

4.2分布式分布式多级计算机控制系统,简称DSSC系统,是实时控制系统中广为采用的一种控制系统。所谓分布式多级计算机系统,就是由分布在不同地点,以协作方式互相配合进行工作的多计算机系统。一般在几个地方设置执行简单任务的低档计算机,而较复杂的任务则集中由中、高档计算机去执行。

第5篇

1.1监测任务名称的标准化处理

以目前的全国业务化海洋环境监测任务为基础,对上报的监测任务进行标准化命名,如海洋生物多样监测、海洋大气监测,对不同填报的名称进行标准化处理。

1.2组织单位名称的标准化处理

各地上报的组织单位比较混乱,有的上报了监测机构名称,有的上报了其隶属的行政部门名称,不利于监测任务的考核。根据国家海洋环境监测工作任务以及各海区年度海洋环境监测工作方案,目前组织单位主要包括国家海洋局局属单位、3个分局、11个沿海省(自治区、直辖市)海洋行政管理部门和5个计划单列市海洋行政管理部门,如国家海洋环境监测中心、国家海洋局北海分局、辽宁省海洋与渔业厅、大连市海洋与渔业局,对不同填报的组织单位进行标准化处理。

1.3监测区域名称的标准化处理

由于各地方上报的监测区域不够规范,且很难表现出更多的区域信息,同时考虑到区域统计分析,因此需对监测区域进行规范化命名。监测区域命名结构为:沿海地区/海区+沿海城市/特定区域+名称,其中沿海地区/自然海区和名称字段不能省略,沿海城市/特定区域字段若无可以省略。如,辽宁葫芦岛赤潮监控区,广东近岸、福建厦门近岸、东海近海及远海,对不同填报的监测区域名称进行标准化处理。

1.4监测要素名称的标准化处理

每个监测任务里包含了不同的监测要素,且不同的任务可能会监测相同的要素,因此需对监测要素进行规范命名,以便对相同的要素进行统一分析、数据量统计等。以目前的业务化海洋环境监测要素为基础,对上报的监测要素进行标准化命名,如水文气象、海水水质、沉积物质量、浮游植物和浮游动物等,对不同填报的监测要素进行标准化处理。

1.5监测参数及单位的标准化处理

由于每个监测要素需要监测不同的监测参数,如海水水质需要监测化学需氧量、氨氮和溶解氧等。而每个监测参数的名称在写法上有不同的形式,如化学需氧量也可写为COD,氨氮也可写为氨-氮或NH4-N等,给数据的统计、评价带来一定的不便,因此有必要规范不同监测参数的名称。另外,每个监测要素的单位也需统一规范。如重金属的锌元素,有的上报其参数单位为mg/L,有的上报为μg/L。在数据统一进入标准数据库时,需将单位统一。参照国际标准、国内海洋环境监测调查规范以及各地监测机构的填报习惯等,针对不同的监测任务和监测要素,对每个监测参数的名称及计量单位进行标准化处理。

1.6站位基础信息的数据类型标准化处理

监测数据的类型包括数值型、字符型、布尔型和百分比等。对站位基础信息如站位编号、经纬度、监测日期、水深和层号等的数据类型进行规范。(1)站位编号。上报的站位编号大部分为字符型,但也有站位编号为1、2、3等,为数据库的统一管理,需统一转换为字符型。站位编号不规范主要有以下几个方面:①站位编号英文大小写不一致;②监测机构各自命名;③在站位编号上加“临”“平行样”和“空白样”等字样。参照目前海洋环境监测站位编号规则,由任务编号、海区编号、类别编号和站位序号顺次排列组成。对站位进行统一编号。对于历史站位编号的确认,可通过核查相关的监测数据、核实年度监测方案、联系地方监测机构等方式,将站位编号统一。(2)站位的经、纬度。上报的经纬度有两种形式:一个是小数形式,另一个是度分秒形式。为便于计算机的计算方便,目前统一为小数形式。由于经纬度的小数位数不一致,会导致部分空间定位有细微的差别。结合监测任务计划和实际监测情况,统一经纬度的有效位数,目前保留到小数点后6位。(3)监测日期。上报的监测日期格式不一致,主要形式为:“2011-08-20”“2011/8/20”、或为时间型等。现统一其形式为“2011-8-20”,年份:填满4位;监测月份:1—12,月信息小于10,前位无需补零。注意检查,监测年份是否为该年度;月份是否大于12;日期是否在该月的自然日以内。(4)采样深度与层号。部分地方监测机构在该填报“层号”的地方填写了采样深度,同时层号不统一,有的为中文———“表层”“中层”“底层”;有的为英文———“S”“M”“B”。《海洋监测规范》中对水深和相应的采样层次进行了规范。对层号,统一用英文表示。其中:表层为S;底层为B;若只有一个中层用M表示,若为多个中层,则分别用M1、M2、M3等顺延表示。另需检查层号与层深的匹配情况,若层号为S(表层),则采样深度应小于或等于2m;层号为B(底层),则采样深度大于3m。部分填报机构填写层号时,出现表层填写“B”和底层填写为“D”的现象,可能是按“表层”和“底层”的首拼音字母填写造成的。

1.7监测参数不规范类型的处理

监测参数的不规范类型问题,主要应注意以下几点。(1)大于号、小于号。某些监测参数如重金属、大肠杆菌数等,其监测参数值上报中含有大于号或小于号。此类数据通常不影响其评价等级的判定,但会影响该类参数最大值、最小值、均值等统计的结果。可研究该参数的理化性质并联系地方监测机构,确认该参数的具体值大小。其缺省解决方法是删除大于号、小于号,以便该参数的统计及评价。(2)未、无、“-”等字样。结合年度监测任务,联系地方监测机构,确认该监测参数是未被监测,还是低于检出限。未监测用空值表示;低于检出限用“未检出”表示。(3)空格及其他无效字符。上报的监测数据中常含有空格及其他无效字符,使得计算机在识别、归类等过程中出现异常。可核查监测数据的内容和性质,确认为无效字符后,对数据值前、后含有的空格或其他无效字符进行删除处理。对经纬度空缺,可核查相关的原始上报数据集和年度监测工作方案,或联系地方监测机构;对层号空缺,可根据水深判断,或联系地方监测机构补缺;对某些监测参数值空缺,可结合年度监测任务,联系地方监测机构,确认该监测参数是未被监测,还是低于检出限,再根据判断结果给出规范填写。

2监测数据的齐全性检验

海洋环境监测数据的齐全性检验,是以海洋环境监测方案为依据,检查监测方案中规定的监测数据是否全部上报完整。首先对国家海洋环境监测工作任务以及各海区年度海洋环境监测工作方案进行分析,对监测工作方案进行信息解析,按空间维度、指标维度和时间维度对监测任务进行细化,空间维度包括监测站位、监测区域、管辖区域等,指标维度包括监测参数、监测要素等,时间维度包括监测时间等。其中监测站位、监测参数、监测时间是空间维度、指标维度和时间维度的最小单元,通过对最小单元的数据量统计,可获得其上一统计单元的数据情况。因此对海洋环境监测方案的解析按监测站位、监测参数和监测时间3个方面进行分解。对照监测方案,检查接收的数据是否存在区域、站位或频次等有空缺监测的情况。记录缺失的原因:可能由于某些缘故未能进行监测、地方调整了监测方案或地方漏报。仔细核查年度监测任务计划,联系地方监测机构确认。

3站位基础信息数据质量控制

3.1空间位置检验

空间位置检验主要针对调查单位在站位信息汇总过程中可能出现的录入错误。将调查站位经纬度转换为十进制的单位后,通过利用GIS生成站位图的方式检查站位落点所在位置,看其是否落在规定的监测区域,对于断面上的调查站位,还要检查其是否明显偏离断面沿线。同时还需检查“相同的站位编号,经纬度不同”和“不同的站位编号,经纬度相同”等数据空间位置精度的问题。对于该类问题,可通过核查相关的监测数据、核对年度监测任务、联系监测机构确认等方法,予以更正。

3.2站位基础信息一致性的检测

根据站位基础信息一致性检验方法,即监测区域、站位编号、站位经纬度、监测日期等基础信息决定一条数据记录,根据不同的监测任务和监测要素,分析站位基础信息一致性是否符合。针对站位编号和经纬度不一致的情况,从空间位置检验是否合理,并核实监测方案进行解决。针对监测日期相同且站位编号相同等情况,判断两条记录的监测参数值是否完全一致,若完全一致则认为是重复记录;若不完全一致,可认为是平行样记录,并进一步核实。

3.3数据记录重复的处理

海洋环境监测数据的上报过程中存在很多重复的数据记录,产生这种重复记录的主要有如下原因。(1)地方上报数据时,重复上报了监测数据集,如8月份上报了5月份和8月份两份数据;年底将全年的监测数据再次上报。(2)不同监测机构报送的重复数据,如属于上下两级监测机构(省、计划单列市)重复报送。(3)地方监测机构监测人员填写报表时,将某些记录重复填写。(4)地方监测机构监测人员填写报表时,将平行样的数据填写。(5)数据集合并时,将曾经合并过的数据集再次合并。对于重复的记录数据,在建立环境监测数据库中应做剔除处理。

3.4平行样的处理

平行样数据只作为监测数据质量保证的辅助,在实际统计、评价和监测数据时需区别对待。一般来说,只有少数站位上报的数据是平行样。为了数据量统计、环境质量评价等的需要,对于平行样的记录数据,可将监测参数值进行求平均处理。

4监测参数数据质量控制

4.1值域一致性检验

在海洋环境监测中,每个监测参数有其对应的经验值域范围,通过值域检测规则对填报的监测数据按不同监测要素分别对每个监测参数值进行检验,对于超出值域范围的值,需进一步分析该区域其他站位、其他频次、周边站位的参数值情况,并结合监测任务性质以及超出值域比例,从而判断该参数值的可靠性。

4.2逻辑一致性检验

某些监测参数间存在一定的逻辑关系,即监测参数与监测参数间存在某种相关关系,有些关系具有一定的规律性,根据逻辑一致性检验方法,对于不符合逻辑一致性的监测数据记录,应进一步同监测机构进行核实。

4.3数据输出

对文件进行批量检验处理,对于检验结果,给出合理且足够详细的错误提示,并保存质检日志,使得数据便于修改。为了区别一个数据是否进行了质检、是否通过质检,以及了解质检的情况,需要对质检过后数据增加一个质量控制符号,简称质量符。综合参考“国标GB/T12460-2006海洋数据应用记录格式”以及“908海洋化学标准记录格式”等质量符格式。其中,“908海洋化学标准记录格式”中质量符2表示可疑倾向正确,3表示可疑倾向错误,本研究将这两者综合考虑,记为可疑;另外,“908海洋化学标准记录格式”中质量符8表示痕量,由于与“未检出”有一定的重叠,因此本研究只采用“未检出”。表1给出海洋环境监测数据的质量符及说明。一般来说,数值型的监测参数数据,对其质量检验出有问题的只能作为“可疑”处理,不宜随意修改或删除。除非经过专家经验检验,并经监测单位核实,可明确其为错误的,其质量符方可标注为“4”。对于监测站位基础信息,如监测日期、站位编号、经纬度、层号等,检验出有问题的,可根据检验情况,标注其质量符为“4”或“3”等。按步骤完成监测数据处理流程后,可分年度或季度对处理的文件形成数据处理报告,并制作经标准化处理和质量控制后的标准数据集。

5结束语

第6篇

境监测质量管理是确保环境监测数据准确、可靠、可比的关键。近年来,随着人们的环保意识的提高,虽然国家环保部门加强了对环境监测的重视力度,各级环境监测站的建设步伐加快,使得各级环境监测站在硬件和软件基础设施建设方面都得到了一定的改善,环境监测能力和水平也都得到了一定的提升。但由于我国的环境监测质量管理工作起步较晚,缺乏必要的经验等原因,使得我国环境监测质量管理工作在某些方面还差强人意。

2加强环境监测质量管理的必要性

环境监测质量管理是环境保护工作的重要技术支撑和环境管理的主要方法,它能够给环境管理执法和政府科学决策提供重要的科学依据,还能够提升监测站监测能力及监测技术水平。所以,作为环境监测的地方机构,我们要想提高环境监测站的环境监测能力,就要深入认识到环境监测质量管理工作的重要性,加强对环境监测质量管理工作重视力度,不仅从思想上要有准确的认识,而且还要具体落实到实际行动中去,这样才能够促使环境监测管理工作迈上一个新的台阶。

3影响环境监测质量管理的因素

在具体的环境监测质量管理工作中,存在许多这样那样的因素,严重的制约着环境监测质量管理工作的顺利开展。以下笔者就究其主要因素进行探讨:首先,是否有健全和完善且有效运行的环境监测质量管理体系;其次,在环境监测质量管理体系的具体执行过程中,领导层的重视程度关系到管理体系是否能够有效地运行;再次,环境监测质量管理工作离不开人的因素,环境监测质量在很大程度上取决于环境监测工作人员的业务素质,环境监测从业人员的素质不高,严重影响环境监测的质量;此外,日常的质量控制和保证都会影响到环境监测质量管理工作的开展。

4加强环境监测质量管理工作的具体措施。

4.1加强环境监测质量管理体系建设

促进环境监测日常工作规范化各级监测站要加强环境监测质量管理体系建设,建立健全完善的全程序质量体系并不断完善,形成满足各级监测部门工作要求的全程序质量管理体系,并有效运转。同时各监测单位要建立适合本单位实际情况的质量控制与评价体系,通过具体质量目标的提升,逐步建立可自我完善的环境监测质量体系。

4.2加强重视,确保环境监测质量管理体系的有效运行

环境监测质量管理对于环境监测结果至关重要,因此为提高环境监测质量,各个环境监测站应该加强重视力度,将环境监测管理工作抓紧抓实。具体可以从以下几个方面着手:首先,作为环境监测站的领导层应该更新质量管理观念,加强重视,参与质量手册的制定和修改,从而为环境监测质量管理体系的正常运行提供政治保障;其次,要不断地培训和宣传,促使全体职工理解并积极参与到环境监测质量管理工作中来,从而为环境监测管理体系的有效运行提供良好的氛围。

4.3必须提高环境监测质量

从业人员自身素质环境监测所涉及的知识面比较广,为了更好地完成监测工作,确保环境监测质量管理体系的有效运行,除了重视还不够,还需要有高素质的监测队伍。因此,要想开展全面的质量管理,必须加强环境监测人员的教育培训工作,不断增强他们的素质。为此,首先要加强监测人员的思想政治教育,提高其政治素质;其次,可以通过各种形式的技术培讲座和学术交流,提高监测人员的业务素质;再次,完善各种奖励和激励机制,调动环境监测人员的积极性和参与度,使他们心甘情愿的投入到环境监测质量管理工作中来。

4.4积极开展外部质量控制和内部质量保证

活动日常的外部质量控制和内部质量保证活动都会影响到环境监测质量管理工作的开展,所以各级环境监测机构,一方面要开展外部质量控制活动,完善质量管理体系,不断提高检验和监测技术能力;另一方面,也要积极开展内部的质量保证活动,这样才能不断提高环境监测质量。

5结语

第7篇

1.1具体实验中所用样本的相关污染

在环境监测的实验中,实验样本所带来的污染将会很大,并且污染的浓度也比较高。所以应当积极对这些出现污染较大的污染源进行及时处理,只有这样才能有效控制实验样本所带来的污染。细菌学是我国环境卫生学和水处理学最基本的检查,而在细菌学中最便捷、有利的方法就是进行细菌培养、繁殖,通过这样的方式可以得到最为直接的数据,便于分析和处理。只有对细菌数量进行及时有效处理,才能避免细菌排放到空气中,对环境造成污染。

1.2化学试剂相关污染

通常在具体的实验中涉及到一些质控样品,主要是用于药物分析方法的验证,是将已知量的待测样品加入到生物介质中配制而成,用于质量控制。而通常质控标样本身会含有一些污染物,如铅、铬、镉、汞、锌等,而在具体的质控研究开发和发放质控标样的时候,往往也会排放大量的污染物。在具体的环境监测中,所有的待分析样本中都会包含至少一个质控标样,纵使一个质控标样所含污染物并不多,但是环境监测却是一个长期的过程,这样必然会给环境造成很大的危害和污染。

1.3测试样品试剂污染物

在环境监测中通常会加入一些有毒、有害物质进行水质常规的分析。如测定溶解氧时就需要加入叠氮化钠有毒物质;在测定叶绿素的时候经常会用到有特殊气味的丙酮试剂;在使用红外光光度法分析测定水质石油类物质时,则需要加入四氯化碳,很容易引起中毒。无论是这些试剂本身有害有毒,或是在实际的使用测定过程中产生的污染物质,这些都会对环境造成一定的污染,从而给人们造成更大的伤害。

2环境监测实验室控制污染排放的有效措施

2.1控制好采样的量

应该严格控制好采样的使用量,这样可以有效降低实验室排放的污染物。首先采样监测人员在采样前应当查阅一些相关资料或是及时咨询相关的环保负责人员,对所要采取的样板的水质排放情况有一个清楚的了解。其次应当依据以往的经验和相关的监测内容初步预计样本的一个使用量。这样监测人员就可以参照这个估计值进行采样,同时在采样中对一些污染较大的物品可以适当减少样品的量,这样有效减小实验室污染物。

2.2采用恰当合适的其他非污染物质代表标准物质

对于常规测试中经常会用到的一些污染有毒有害物质,在实际的环境监测实验中可以依据这些物质对实验的影响程度选用一些合理的其他非污染物进行替代检测。所以应该加强对替代标准物体的研究和开发,研究出应用广泛、实用性强且环保的质控标样。同时在确保监测环境实验数据、结果准确可靠的基础上,探究出降低实验室质控标样发放的最佳数量,最大限度的减少环境的污染。

2.3优化当前的环境监测分析方法

传统的环境监测方法比较侧重检测方法的准确可靠与否,而忽略了这些方法在检测中所使用的有毒有害试剂对环境的污染,因此要对当前的检测分析方法进行优化,找出最优的监测分析方法。如在进行二氧化硫测定的时候,传统的方法是采用四氯汞钾溶液吸收盐酸副玫瑰苯胺的比色法,而四氯汞钾含汞量较高,有剧毒;而比较先进的方法则是采用甲醛缓冲液吸收盐酸副攻瑰苯胺比色法,这样不但不会影响测定结果,并且还会减少污染物的排放。因此应该不断发展、创新新的检测方法,减少污染物的排放,或是在实验中排放的物质容易分解、容易转换,真正意义上实现无毒无害排放。

2.4采用深挖土埋、稀释、或是化学中和的方法进行污染物的有效处理

在环境监测实验中,通常会产生一些很难降解或是很难转换的废弃物或是有毒物质,而这些实验室废物通常有的可以回收有的不能,因此可以将不可回收利用的废物采用深挖土埋方式进行处理,而将可以回收利用的废物根据其性能进行回收利用。如在对阴离子表面活性剂进行测定的时候,对没有受到污染的四氯化碳回收再利用,而对于多余的未使用的四氯化碳则用金属铁作为还原剂,用可溶性的无机盐作为催化剂,在室温和大气压条件下运行,这样可以避免遗留下来的四氯化碳对环境造成污染。对于细菌培养实验中废弃的细菌则采用高压灭菌的方式进行处理,从而有效减少污染物的排放。

3结尾

第8篇

随着工业的发展,水环境中有机污染日益严重,因此有机污染物监测已成为当今世界的研究热点。斯德哥尔摩会议规定禁止或限制使用12种有机物,“加强环境调查,尤其是在发展中国家”是该次会议的重要基本原则之一。受到农药和有毒物质污染的食品,禁止出口,许多国家提出了更高的卫生要求,出口食品农药残留量和有毒物质含量标准规定到了近乎苛求的地步,我国作为WTO的成员国,高效、快速地监测有机污染物已成为刻不容缓的艰巨任务。

有机污染物具有一定的生物积累性和“三致”作用,甚至有些痕量有机物的危害也是很大的,因此不断寻求痕量、超痕量污染物的监测方法是当今有机污染物监测的重要任务。随着经济社会的快速发展以及对环境监测工作高效率的迫切需要,研究高效、快速的有机污染物监测技术已成为国际环境问题的研究热点之一。

沉积物是水体污染物沉积的归属地,污染物在水和底泥的两相间存在着迁移转化行为,在一定条件下(如洪水爆发、河道清淤)又会污染水体。因此有效地分析监测河流和水库沉积物中的污染物,对于治理水体污染有重要意义。此外,沉积物中的有机污染物和水体中的生物间还存在着二次污染问题,因而世界各地开展了一系列研究课题。我国地表水环境质量标准(GB3838-2002)水源地特定监测项目中规定了68种有机污染物的标准限值,因此,迫切需要有机污染物监测的先进技术普及与推广,特别是在水利系统,对有机污染物的监测工作研究不够,急需先进的监测技术支持并指导水质监督工作的发展。

有机污染物监测主要包括样品前处理和仪器检测两部分。而样品前处理技术在有机污染物监测中起着重要的作用,快速溶剂萃取技术就是一项先进的用于固相、半固相物质中痕量有机物前处理的方法。

二、有机污染物前处理现状

固体样品有机物的前处理主要是采用液固萃取方法,即利用有机物在不同溶剂中溶解度不同,将待测有机物提取出来,传统的方法主要有索氏提取,以及后来进一步发展起来的自动索氏提取、超声萃取、微波萃取、超临界萃取等,但有机溶剂的用量仍然偏多,萃取时间较长,萃取效率不够高。

水环境监测具有采样点多、样品数量大、时效性强等特点,特别是需要一些应急监测措施,上述前处理方法不能满足水环境监测高效、经济的现代化需要。近几年来发展的全新的前处理方法——快速溶剂萃取法,是一种在提高温度和压力的条件下,用于萃取固体物质中有机物的自动化方法,与前几种方法相比,其突出的优点是有机溶剂用量少、快速、回收率高,该法已被美国EPA选定为推荐的标准方法,具有世界领先水平,是解决水环境中底泥、土壤等固相物质中挥发性、半挥发性和持久性有机物(POPs)分析、监测的有效方法。

三、快速溶剂萃取技术

快速溶剂萃取(AcceleratedSolventExtraction,ASE)技术是根据溶质在不同溶剂中溶解度不同的原理,利用快速溶剂萃取仪,在较高的温度和压力条件下,选择合适的溶剂,实现高效、快速萃取固体或半固体样品中有机物的方法。在高温条件下,待测物从基体上的解吸和溶解动力学过程加快,可大大缩短提取时间;由于加热的溶剂具有较强的溶解能力,因此可减少溶剂的用量;在萃取的过程中保持一定的压力可提高溶剂的沸点,提高萃取效率,保证萃取过程的安全性。

3.1技术原理

(1)升高温度。温度的提高有利于克服基体效应,加快解析动力学,降低溶剂粘度,加速溶剂分子向基体中的扩散,提高萃取效率。该仪器的允许温度范围:50℃-200℃。常规使用的温度范围75℃~125℃,对于环境中一般污染物常用温度100℃。

在高压下加热,高温的时间一般少于10min,实验证明热降解不甚明显,可用于样品中易挥发组分的萃取。

(2)增加压力。液体的沸点一般随压力的升高而提高,增加压力使溶剂在高温下仍保持液态,并快速充满萃取池,液体对溶质的溶解能力远大于气体对溶质的溶解能力,提高了萃取效率,并保证易挥发性物质不挥发,增加了系统的安全性。该仪器的允许压力范围:(1000-3000psi),常规使用压力一般保持在1500psi(10MPa)。

(3)多次循环。根据分析化学中少量多次的萃取原则,在萃取过程中利用新鲜溶剂的多次静态循环,最大限度的接近动态循环,提高萃取效率。常规采用2~3个循环,即可达到良好的萃取效果。

3.2工作过程

(1)样品的准备。含水样品会降低萃取效率,萃取前需通过自然风干或加入干燥剂(例如硅藻土等)进行干燥,但不要使用硫酸钠,在高温下会凝结。样品颗粒的表面积越大,萃取的效率越高,萃取前需研磨颗粒粒径小于0.5mm,聚合体样品最好在低温,例如液态氮保持低温状态下,通过加入添加剂后进行研磨。在萃取时要加入分散剂,例如颗粒较细的海砂或硅藻土,提高萃取效率。

(2)萃取剂的选择。合理选择萃取剂对于有效地萃取目标化合物有着重要的作用。除强酸(盐酸、硫酸、硝酸)外,有机试剂、水和缓冲溶剂均可用于ASE,根据相似相溶原理,萃取剂的极性应接近目标化合物。不同极性溶剂的混合物可适用于多类型化合物的萃取。常规使用的溶剂有:二氯甲烷、三氯甲烷、石油醚、丙酮等。

(3)技术特点。溶剂被泵入填充有样品的萃取池,加温、加压,数分钟后,萃取物从加热的萃取池中输送到收集瓶中,经净化、脱水、浓缩处理,供色谱分析用。加速溶剂萃取仪的构成和工作程序如下图所示(如图1)。

ASE有机溶剂用量少,10g样品只需15mL溶剂;快速萃取,完成一次萃取全过程的时间一般需15min;基体影响小,对不同基体可用相同的萃取条件;萃取效率高,选择性好,已进入美国EPA标准方法,标准方法编号3545;便于方法的开发和发展,已成熟的溶剂萃取方法都可用于加速溶剂萃取法的开发利用;使用方便、安全性好,可达到12个样品连续自动萃取,全程自动化。

3.3适用范围

ASE可用于底泥等固体物质中酸性、碱性和中性物质的萃取,尤其对水环境中的有机氯和有机膦农药、氯代除草剂、多氯联苯类物质、二恶英、多氯二苯呋喃,总石油烃、柴油和废油等的萃取十分有效。

四、ASE与其它前处理技术比较

4.1与各种传统萃取技术比较

ASE方法可以完全取代人们所熟知的传统的液固萃取方法,如索氏提取、自动索氏提取、超声萃取等。表1是几种传统的萃取方法与ASE方法的对比情况。

从上表的对比数据可见,ASE萃取同样的样品量所用的溶剂最少,溶剂样品比仅为1.5∶1;其它方法的萃取时间用小时计算,ASE仅需12-20分钟。ASE是一个节省时间、节省溶剂、高效率的全自动萃取技术。

4.2与超临界萃取技术比较

ASE技术比超临界萃取技术具有更多的优势,二者比较情况见表2。

由上表可见,ASE技术操作更简便,适用范围更广泛。由于ASE萃取池最大为100mL,故一次可处理大量样品,更适合于痕量、超痕量污染物的萃取。ASE已列入美国EPA标准方法,符合标准化要求。

4.3与索氏提取技术比较

索氏提取是传统的萃取方法,也是目前大多数实验室普遍使用的方法。ASE可以完全取代索氏提取,并有非常明显的优势,二者比较见表3。

采用ASE技术可在较短的时间内获得更好的萃取效率;萃取溶剂的用量明显减少,从而使得单个样品的提取费用也显著降低;由于采用密闭系统,大大降低了有机组分的损失,提高了回收率。

五、问题与展望

ASE是近年来发展的现代化萃取技术,由于其突出的优点,已受到环境污染监测工作者的极大关注。ASE技术在处理底泥等固相物质中具有强大的优势,但仍具有其局限性,它不适于水中有机污染物的监测,因此在水环境监测中应进一步提高水中有机物监测技术水平。

水中挥发性有机污染物监测也应改变传统的顶空气相色谱法,发展吹扫捕集气相色谱法;对于水中半挥发和难挥发、难降解有机物的监测,应发展固相萃取技术,促进水中有机污染物监测现代化技术的发展。

ASE技术的高效萃取性能及其仪器高度自动化的完美结合大大改善了环境污染物监测工作质量和效率,对实现环境监测的现代化有重要的现实意义。在水环境监测中,应系统地发展吹扫捕集、固相萃取、快速溶剂萃取(ASE)技术,这三种前处理技术的结合可对水环境中有机污染物进行较完整的处理,再与色谱技术的联合使用,即可较全面地监测水环境有机污染状况,为进行污染趋势分析及研究控制对策提供可靠、全面的科学依据,从而促进水利现代化的可持续发展。

参考文献

[1]张景明.水样中痕量有机物分析的前处理方法.中国环境监测,2001,17(3):31~33

[2]牟世芬.加速溶剂萃取的原理及应用.环境化学,2001,20(3):299~300

[3]刘晓茹.我国水环境有机污染现状与控制对策.水利技术监督,2002,5:58~60

第9篇

1.1对监测数据的综合管理

在环境监测信息管理中,计算机技术的运用主要是实现对收集到的相关信息进行数据的录入、修改以及查询、处理等,形成对环境监测数据的备份、恢复等存储管理,在对数据进行初级的处理之中,形成自带软件的数据计算、统计以及简单的数据分析,从而为数据计算的准确性提供有效的帮助,可以有效地提高环境监测中数据运用的整体效率。

1.2实现监测数据的共享

通过计算机技术的融入,形成对数据共享的管理模式。尤其是在建立局域网的情况下,可以通过内部网络系统的方式,将监测到的环境指标与数据,通过文件共享、远程控制等方式,增强对数据共享的使用能力。不同部门可以形成对数据的共享模式,增强整个数据交流与处理的能力,并实现计算机操作模式下的无纸化办公模式。

1.3数据的有效性

通过计算机信息技术的融入,环境保护部门对于监测到的环境相关数据,环保部门通过网站、新闻媒介以及其他的方式,将环境信息进行有效的。从而有利于大众对环境监测信息的摄取,对于环境质量数据信息,在计算机技术的处理下,形成整理、分析、定期向环保部门传输的方式,能准确地传达有关的环境信息。

2计算机技术在环境监测信息管理应用中存在的问题

2.1监测数据处理能力相对较低

在对环境监测中收集到的信息内容,不管是在有计算机运用的部门,还是部门完全实现计算机管理,在数据的类型、格式、结构、存储方式还没有形成规范化的运用,虽然在局域网的操作模式中,还是不能对整个监测数据形成有力的运用。譬如,在水质检测中,对于某一个监测断面的监测数据通过文本形式存放,在进行质量控制的过程中,要对断面污染状况进行分析,就不能从中获取准确的数据,要重新录入,这样就增加了整个工作量,不能充分发挥出数据的有效性。

2.2计算机综合管理还存在弊端

在计算机技术的管理中,有些计算机网络还存在一定的安全隐患,由于在操作过程中,对于硬盘数据的访问相对频繁,在使用文件设置的过程中,就不能对整个硬盘数据形成共享的模式。这样可以在没有权限的情况下,对数据进行复制、修改等,造成网络管理的安全不强,容易造成网络病毒甚至是黑客的侵入,从而导致监测数据的丧失或者相关数据的泄密,产生更大的不良影响。

3计算机技术在环境监测信息管理中的应用

3.1整体技术的控制因素

由于生态环境质量与人类生活息息相关,开展区域生态环境质量评价要求快速、准确、合理。同时由于生态环境质量与植被、大气、水、噪声等多种因素密切相关,需要一种快速有效的技术计算出生物丰度指数、NDVI指数、植被覆盖度指数、水网密度指数、环境质量指数、污染负荷指数和生态环境质量指数来描述生态环境质量状况,并制定相关的对策。所以,根据《生态环境质量评价规范》,采用遥感和GIS技术,开发一个生态环境质量评价业务化运行系统势在必然。然而,经过调研,国内外虽然已经大规模的应用GIS和遥感技术进行生态环境质量评价,但成熟的、业务化运行的生态环境质量评价系统却寥寥无几。即使有也过分偏重于GIS,功能相对比较单一,大部分仅限于生态环境信息的查询与统计以及一些基本的GIS功能,不具备如图像裁剪、镶嵌、图像变换、几何纠正、分类等遥感数据加工和信息提取功能,而数据加工和信息提取在生态环境质量评价业务中必不可少,它为生态环境质量评价业务提供了有效的数据信息保障。

3.2数据一体化管理与共享

3.2.1数据互操作

遥感图像分析功能可以被用来作为一个核心组件和GIS的集成,我们必须解决数据在两个平台之间的互操作性问题。要注意两个方面的问题:首先,遥感数据和GIS数据存储都支持的标准格式。由于需要借助标准文件格式,处理过程变得复杂;其次,两种系统都支持对方的文件格式。这种方式不需要对已有文件进行格式转换,处理起来更方便。

3.2.2栅矢数据集中和分布式管理

遥感数据通常以栅格数据存放,而GIS数据通常为矢量格式,在一体化存储方案中,同时支持两种文件格式,并支持分布式管理。

3.2.3基于服务的企业级共享

遥感影像获取成本相对较高,且需要占用较大的存储空间,如果为每一用户都单独配备相应的影像将需要花费较大的代价。而遥感影像的使用特点是多个用户经常在同一幅影像上进行相应操作,也就是以共享方式使用影像。因此基于WebServices的共享方式能集中利用服务器的软、硬件资源,方便终端用户的使用。

3.3栅矢数据集中和分布式管理

ArcGIS的核心数据模型Geodatabase,它是按照一定数据规则来存储空间数据或属性数据,并实现多源空间数据的放缩式管理;它也是一种较好的遥感与GIS数据一体化储存模型;它分为三个层级:FileBasedGeodatabase、PersonalGeodatabase、Enterprise(SDE)Geodatabase。其中Enterprise(SDE)Geodatabase支持分布式管理与储存,如图1所示ENVI完全支持ArcGISGeodatabase各个级别的读写,在ENVI、ENVIZoom、ENVIEX中都可以通过菜单RemoteConnectionManager打开相应的面板,也可以通过SavetoArcGISGeodatabase菜单将数据保存到Geodatabase。

3.4生态环境质量评价

经过图像裁剪、增强、几何纠正、图像变换、图像分类以及分类后处理几个步骤后,获得研究区域图像分类图。结合数据库中各个地类匹配关系、侵蚀度级别以及各个指数归一化指数,分别计算NDVI指数、生物丰度指数、环境质量指数、水网密度指数、植被覆盖度指数、生态环境质量指数和污染负荷指数,并将计算结果以专题图的形式表现出来。生态环境质量评价菜单包括以下子菜单,分别是新建评价区域图层、归一化系数配置生态环境状况指数、生物丰度指数、水网密度指数、植被覆盖指数、环境质量指数等。

4结语

第10篇

环境数据管理系统的数据输入方式有多种,既可以用格式的方式,也可以用浏览和单项目的方式进行数据的输入。系统提供的数据录入界面比较灵活,可以方便人员进行对列表框及代码和名称的选择。同时数据的读入方式也有多种,用户可以根据自己的需要选择要读入的数据。而数据的输出方式也有多种,包括屏幕输出、打印输出和文件输出。其中的屏幕输出是将数据以表格或图形的方式展现;打印输出则是按照用户要求将数据以报表形式在纸上体现;文件输出则是将数据以文件的格式存储到磁盘上。

2数据的检查与修改

环境数据管理系统具有数据检查与修改的功能。在数据存储时,系统就会进行对关键词语以及关键字段的检查工作。同时系统也设置了有效数据个数检查等多种类的检验方式,以避免错误信息被系统录入。不过数据的正确性不能完全依靠系统的检查功能,还需要管理人员进行检查。在发现数据出现错误或丢失的情况下,就可以通过系统的修改功能进行修改。系统的修改功能包括了记录修改、替换修改和条件修改等功能。其中不同的功能有着不同的数据修改效果,比如替换功能则可以实现多条记录的同时修改。

3数据的备份

系统的备份功能是为了保证环境监测数据的安全。数据的备份可以通过数据的存档来实现,将备份存放至指定的软盘内。数据的备份是为了防止一些文件的人为删除,也可以防止系统遭到病毒感染后造成的文件丢失。

4数据的查询

系统的查询功能可以帮助数据管理人员迅速的找到需要的数据,从而帮助数据管理人员尽快的将数据提供给其他环境保护工作者。数据的查询功能是非常强大的,管理者可以根据数据需求进行任意条件的查询。这些条件可以是数据的监测时间和地点,也可以是污染的类型和指标。总之,数据的查询功能具有一定的灵活性,可以将需要的数据迅速的提供给管理者。

5数据的统计

数据的统计功能并不是指单纯的进行原始数据的输入和排列。系统的数据统计功能可以进行常规统计和用户自定义的条件选择统计。一方面系统会将监测地点数据的日均值等多方面的内容存储在系统数据表格中。而另一方面,系统可以根据用户对某一地点、某一时间段以及某个监测指标的选择进行数据的统计工作。在统计完成后,系统可以将统计结果存放至数据库,以便用户随时进行查询。

6数据的监控和使用权限设置

系统的监控功能和权限设置功能是数据安全的保障。一方面系统通过监控日志记录下数据修改的时间和用户等内容。在数据出现问题时,管理人员可以根据日志进行修改明细的查询,找到修改的内容进行恢复。另一方面,通过对系统权限的设置,掌握可以进行数据读取和修改的人员名单,从而降低数据遭到人为破坏的可能性。因此,系统的监控和权限设置功能可以为环境监测的数据提供更好的保护[3]。

7结论

第11篇

通过计算机技术的融入,形成对数据共享的管理模式。尤其是在建立局域网的情况下,可以通过内部网络系统的方式,将监测到的环境指标与数据,通过文件共享、远程控制等方式,增强对数据共享的使用能力。不同部门可以形成对数据的共享模式,增强整个数据交流与处理的能力,并实现计算机操作模式下的无纸化办公模式。

通过计算机信息技术的融入,环境保护部门对于监测到的环境相关数据,环保部门通过网站、新闻媒介以及其他的方式,将环境信息进行有效的。从而有利于大众对环境监测信息的摄取,对于环境质量数据信息,在计算机技术的处理下,形成整理、分析、定期向环保部门传输的方式,能准确地传达有关的环境信息。

2计算机技术在环境监测信息管理应用中存在的问题

2.1监测数据处理能力相对较低

在对环境监测中收集到的信息内容,不管是在有计算机运用的部门,还是部门完全实现计算机管理,在数据的类型、格式、结构、存储方式还没有形成规范化的运用,虽然在局域网的操作模式中,还是不能对整个监测数据形成有力的运用。譬如,在水质检测中,对于某一个监测断面的监测数据通过文本形式存放,在进行质量控制的过程中,要对断面污染状况进行分析,就不能从中获取准确的数据,要重新录入,这样就增加了整个工作量,不能充分发挥出数据的有效性。

2.2计算机综合管理还存在弊端

在计算机技术的管理中,有些计算机网络还存在一定的安全隐患,由于在操作过程中,对于硬盘数据的访问相对频繁,在使用文件设置的过程中,就不能对整个硬盘数据形成共享的模式。这样可以在没有权限的情况下,对数据进行复制、修改等,造成网络管理的安全不强,容易造成网络病毒甚至是黑客的侵入,从而导致监测数据的丧失或者相关数据的泄密,产生更大的不良影响。

3计算机技术在环境监测信息管理中的应用

3.1整体技术的控制因素

由于生态环境质量与人类生活息息相关,开展区域生态环境质量评价要求快速、准确、合理。同时由于生态环境质量与植被、大气、水、噪声等多种因素密切相关,需要一种快速有效的技术计算出生物丰度指数、NDVI指数、植被覆盖度指数、水网密度指数、环境质量指数、污染负荷指数和生态环境质量指数来描述生态环境质量状况,并制定相关的对策。所以,根据《生态环境质量评价规范》,采用遥感和GIS技术,开发一个生态环境质量评价业务化运行系统势在必然。然而,经过调研,国内外虽然已经大规模的应用GIS和遥感技术进行生态环境质量评价,但成熟的、业务化运行的生态环境质量评价系统却寥寥无几。即使有也过分偏重于GIS,功能相对比较单一,大部分仅限于生态环境信息的查询与统计以及一些基本的GIS功能,不具备如图像裁剪、镶嵌、图像变换、几何纠正、分类等遥感数据加工和信息提取功能,而数据加工和信息提取在生态环境质量评价业务中必不可少,它为生态环境质量评价业务提供了有效的数据信息保障。

3.2数据一体化管理与共享

3.2.1数据互操作。遥感图像分析功能可以被用来作为一个核心组件和GIS的集成,我们必须解决数据在两个平台之间的互操作性问题。要注意两个方面的问题:首先,遥感数据和GIS数据存储都支持的标准格式。由于需要借助标准文件格式,处理过程变得复杂;其次,两种系统都支持对方的文件格式。这种方式不需要对已有文件进行格式转换,处理起来更方便。

3.2.2栅矢数据集中和分布式管理。遥感数据通常以栅格数据存放,而GIS数据通常为矢量格式,在一体化存储方案中,同时支持两种文件格式,并支持分布式管理。

3.2.3基于服务的企业级共享。遥感影像获取成本相对较高,且需要占用较大的存储空间,如果为每一用户都单独配备相应的影像将需要花费较大的代价。而遥感影像的使用特点是多个用户经常在同一幅影像上进行相应操作,也就是以共享方式使用影像。因此基于WebServices的共享方式能集中利用服务器的软、硬件资源,方便终端用户的使用。

第12篇

 

环境科学专业核心知识单元,代表环境科学各个知识领域的不同方向,知识点分核心和选修两种,核心知识单元是所有环境科学专业学生要求具有的基础知识内容。

 

其中,专业基础类核心知识单元包括:①环境问题,核心知识点包括水环境问题、大气环境问题、固体废物污染、全球环境问题,选修知识点包括土壤污染、物理性污染和污染物生物效应。②环境科学基本原理,核心知识点包括环境/生态基本规律、环境科学学科体系和可持续发展理念。③环境科学研究方法,核心知识点包括环境科学方法论体系、生态学方法论、环境体系解析方法论,选修知识点包括环境质量调控方法论、综合/系统分析方法论。

 

专业原理类核心知识单元包括:①生态过程与效应,核心知识点包括生物对环境的适应、种群及其基本特征、生态系统特征及过程分析、生态学原理的应用。②环境生物过程与效应,核心知识点包括环境污染物在生态系统中的行为、污染物的生物学效应、生物监测原理与方法、环境污染的生物净化、退化环境的生物修复。③环境化学过程与效应,核心知识点包括环境中典型化学污染物、污染物迁移、污染物转化、大气环境化学、水环境化学。④环境地学过程与效应,核心知识点包括地球环境系统的基本组成运动规律及演化过程、地球环境系统有机圈层的组成结构及其功能、各圈层的演变规律及在全球环境变化中的作用、地球环境系统中物质和能量的迁移转化及循环过程。

 

专业技术类核心知识单元包括:①水污染控制,核心知识点包括废污水的物理处理技术、废污水化学和物理化学处理技术、废污水生物处理技术、废污水的自然处理技术、污泥处理处置。②大气污染控制,核心知识点包括颗粒污染物控制技术原理、颗粒污染物的控制技术、气态污染物控制技术原理、典型气态污染物控制技术。③土壤污染控制,核心知识点包括土壤污染源与污染特征分析、土壤污染控制技术原理、典型土壤污染物控制技术。④固体废物污染控制,核心知识点包括固体废物分类与特征、固体废弃物无害化技术与方法、固体废弃物综合利用。⑤环境监测,核心知识点包括环境标准、水环境监测、环境空气监测、固体废物监测、土壤污染监测、物理性污染监测、环境监测质量保证。⑥环境影响评价,核心知识点包括项目环境影响评价、规划环境影响评价、战略环境影响评价。⑦环境规划,核心知识点包括环境规划的技术方法、水环境规划、大气环境规划、噪声污染控制规划、固体废物污染防治规划。

 

专业管理类核心知识单元包括:①环境管理,核心知识点包括环境管理学的理论基础、环境管理的制度和政策手段,选修知识点包括企业/产业环境管理实践、区域一全球环境管理实践。②环境法律,核心知识点包括环境法基本概念原则、环境法律制度及法律效力、环境污染防治法、自然资源保护法、国际环境法。

 

专业实践类核心知识单元包括:①专业实习,核心知识点包括认识实习、生产实习、综合实习。②科研实践,核心知识点包括观察性实验、验证性实验、设计性实验、研究性实验。③毕业论文/毕业设计,核心知识点包括文献查阅、论文开题、论文研究、论文撰写、论文答辩。

 

二、建立核心课程体系

 

围绕环境科学专业各专业类别的核心知识单元,建立核心课程体系,承载核心知识点。各门核心课程围绕核心知识点组织基本理论、研究前沿、基本方法、实践案例等内容,形成系统。同时,设置先导课,为核心课程和核心知识点学习提供必要的基础知识储备。例如,“环境化学”课程,就需要无机化学、分析化学、有机及物理化学、环境科学概论、环境监测等课程作为先导课,提供环境化学课程各知识点学习所要求的基础知识储备。

 

专业基础类核心知识由“环境学基础”和“生态学基础”课程为基本载体。“环境学基础”课程坚持“起点高、容量大和观点新”的教学宗旨,系统介绍环境科学的产生与发展、人口、各环境要素污染与防治、可持续发展等内容,注重学生基本知识、基本技术、基本能力的培养,课程已经建设为国家精品课程,并积极探索慕课教学形式;“生态学基础”全面介绍生态学的基本概念、基本原理和基本应用方法,以及现代生态学的最新进展,该课程已经建设成为南开大学精品课程。

 

专业原理类核心知识由“环境生物学”“环境化学”“地学基础”课程为基本载体。“环境生物学”介绍环境生物学领域的基本理论和基本概念,结合现实环境中污染物与生物之间的相互作用,培养学生运用环境生物学技术解决实际问题的能力;“环境化学”介绍大气、土壤、水及生物相诸介质中环境物质迁移转化的基本原理,环境中主要污染物的来源及其在环境中的归趋,环境污染控制与修复过程及绿色化学中污染减量及消除的化学原理,“环境化学”课程已经被评为国家精品课程;“地学基础”课程介绍地壳的基本物质组成特征,气象要素的基本概念和表征方法、大气稳定度和逆温等与环境有关的基本知识,城市气候的基本特征,地球上水的循环过程,各种水体的基本特征,土壤的组成特征、形态特征、形成因素和成土过程,地图的基本概念、特征、组成要素、我国基本比例尺地形图的分幅和编号的基本方法,地形图的应用,遥感的基本概念、原理、遥感解释标志和方法,要求学生掌握地学的基本概念、基本规律和形成原因,以及地学基本手段的应用,该课程被评为南开大学精品课程。 专业技术类核心知识由“环境工程学”“环境监测”“环境影响评价与环境规划”课程为基本载体。“环境工程学”介绍水污染控制工程、大气污染控制工程、固体废弃物处理与处置工程以及噪声防治与控制等的基本原理和方法,该课程被评为南开大学精品课程;“环境监测”课程全面介绍根据监测的目的进行调查研究、设计监测方案、选择监测方法、进行数据处理以及测试结果的分析评价,掌握环境样品的采集、保存、制备、预处理、测定及质量控制等方法,培养学生实际环境监测问题的分析和解决能力,该课程被评为天津市精品课程;“环境影响评价与环境规划”全面介绍环境评价和环境规划的基础知识、基础理论、基本方法以及评价与规划知识的实际应用。

 

专业管理类核心知识由“环境管理与环境法学”课程为基本载体,“环境管理与环境法学”课程介绍管理学基础知识和主要原理、中国环境管理的原则与政策、中国环境管理的体制与制度、中国环境法体系及内涵、中国环境法的基本原则和基本制度以及部门环境管理、区域环境管理、工业企业环境管理等。

 

三、围绕三条主线推动环境科学专业课程教学

 

1.环境问题识别和分析主线

 

环境科学是研究环境问题及其解决途径的综合性科学体系,其核心任务是揭示人与环境相互作用规律。环境问题的产生和解决促进了环境科学的产生、形成和发展。围绕着环境问题的识别和分析,形成环境科学基本原理、技术方法、管理工具以及具体实践科学体系。围绕具体环境问题识别和分析,组织核心知识单元、核心知识点和核心课程,课程之间科学逻辑关系紧密,便于学生认知和学习。

 

另一方面,在我国当前发展阶段,资源环境限制与社会经济发展矛盾空前突出,迫切需要环境科学培养专业人才,应对污染控制、生态修复与环境建设挑战。围绕我国面对的实际环境问题,针对性培养专业人才,建立起环境问题与人才培养之间的直接联系,建立以环境问题识别和分析为主线的人才培养模式,搭建对应的知识结构和课程体系,有利于为国家培养具备解决实际环境问题能力的急需人才。

 

2.实验与实践教学主线

 

坚持“注重基础训练、强化教学实习、突出创新能力、提高综合素质”实验教学理念,围绕核心知识单元和核心知识点,搭建专业基础实验教学平台,建立实践教学基地群,严格毕业论文环节,充分发挥实践教学对理论教学的有效补充作用。

 

(1)专业课程实验。课程实验和课堂理论教学相辅相成。围绕核心知识单元和核心课程,开设专业实验课程,包括环境监测实验、无机及分析化学实验、环境化学实验、生态学基础实验、环境生物学实验、环境微生物学实验。着重训练实验步骤、实验操作、实验安全、药品管理等基础实验技能,培养环境科学分析基本方法和技术。

 

(2)专业教学实习。合理安排专业教学实习时间,既能促进核心知识的理解和认知,又能为后续毕业论文/设计提供经验。围绕核心知识点搭建专业教学实习平台,建立教学实习基地体系,配合大气污染防治、水污染防治、固体废弃物污染防治、环境管理等核心知识点和核心课程,建立环境监测中心、环保卫生管理中心、科学院、环保科技公司、垃圾处理厂等实践教学基地,形成实践教学基地群,提供直观认识环境科学专业知识在实践中具体应用的机会,培养知识运用和理论联系实际的能力。

 

(3)毕业论文。设置毕业论文环节,通过学生参与论文选题、查阅文献、开展实验或设计、结果模拟与分析等毕业论文过程,系统锻炼学生运用理论知识、实验技能的综合能力。

 

3.科研创新训练主线

 

营造制度、平台、师资环境,建立稳定的科研创新体系。通过国家级、省市级、校级、院级各级别科研立项机会,搭建“国家大学生创新计划”“省市大学生创新立项”“学校大学本科创新立项”“学院创新立项”多层次立体化环境科学专业学生创新平台,为不同水平学生提供创新立项机会,逐步提高项目研究质量,严格过程管理,保障创新立项覆盖面。通过团队协作、教师交流、项目答辩等环节,锻炼学生创新思维和创新能力,提高团队合作与交流能力,鼓励学生科研成果报奖。

 

四、核心课程质量保障

 

(1)国家级特色专业建设。2010年,南开大学环境科学专业获批为国家第六批高等学校特色专业建设点。特色专业结合南开大学环境科学多年来的本科教学特色以及相关教育、教学理念,面向国际社会发展及现实中国社会大背景下的特征需求,同时考虑到学科本身的实践特征、时代特征和应用特征,推动与现阶段校内学习相补益的数个社会实践与互动教学平台建设。

 

(2)精品课程群建设。提出并实践“精品课程群”建设的教改思路,逐步推动各门课程精品建设,形成“精品课程群”体系,有效保障环境科学专业课程教学的高质量。

 

(3)国家级教学团队建设。2010年,南开大学环境科学专业基础课程教学团队被评为国家级教学团队。

 

(4)优质教材保证。作为知识的载体,教材是本科生质量的重要保障。为了提高环境科学专业人才培养的效果,自编出版环境科学专业系列优秀教材。包括1本国家级精品教材《环境化学》,4本“十一五”国家级规划教材《环境学基础》《生态学基础》《环境化学》《地理信息系统及其在环境科学中的应用》等。

 

(5)推动天津市实验教学示范中心建设。积极推动实验教学改革和实验室建设,建设天津市环境科学与工程实验教学示范中心,为专业人才培养提供实践和创新平台。提出“培养具有创新精神的环境科学与工程现代化复合型高素质人才”的实验教学理念,搭建“专业基础实验、教学实践、创新教育”的高素质人才培养实验教学平台,探索“坚守教学神圣,转变师生角色,强化开放综合,学科建设与实验教学相融合”的实验教学模式,取得了丰硕的教学改革与建设成果,学生教学效果突出。

 

(6)推行精细化教学管理。探索精细化教学管理模式并付诸实践,制订“教学效果的双评议制度”“主讲教师竞聘上岗制度”“教学效果的双评议制度(教学督导组评议和学生评议)”等规章机制,有效实现对教师“教”的目标导向和过程管理。

 

实行环境科学专业本科教学的课程小组负责制,实现了本科教学的优质师资资源配备,有效地促进了全体教师对本科教学的关注和重视。保证教授、副教授百分之百地参与本科教学,优化教师队伍年龄结构和学缘结构,提高教学效果。

 

实行“本科生课程主讲教师竞聘上岗”。对列入核心课程群建设的课程实行主讲教师竞聘上岗办法,结合学生评教结果,根据教学能力与教学效果优选课程主讲教师。