HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 半导体的制造方法

半导体的制造方法

时间:2023-11-28 14:51:22

半导体的制造方法

半导体的制造方法范文1

关键词:半导体;光刻;图形;薄膜;沉积

DOI:10.16640/ki.37-1222/t.2016.11.038

0 引言

人来研究半导体器件已经超过135年[1]。尤其是进近几十年来,半导体技术迅猛发展,各种半导体产品如雨后春笋般地出现,如柔性显示器、可穿戴电子设置、LED、太阳能电池、3D晶体管、VR技术以及存储器等领域蓬勃发展。本文针对半导制造技术的演变和主要内容的研究进行梳理简介和统计分析,了解半导体制造技术的专业技术知识,掌握该领域技术演进路线,同时提升对技术的理解和把握能力。

1 半导体技术

半导体制造技术是半导体产业发展的基础,制造技术水平的高低直接影响半导体产品的性能及其发展。光刻,刻蚀,沉积,扩散,离子注入,热处理和热氧化等都是常用的半导体制造技术[2]。而光刻技术和薄膜制备技术是半导体制造技术中最常用的工艺,下面主要对以上两种技术进行简介和分析。

2 光刻技术

主流的半导体制造过程中,光刻是最复杂、昂贵和关键的制造工艺。大概占成本的1/3以上。主要分为光学光刻和非光学光刻两大类。据目前所知,广义上的光刻(通过某种特定方式实现图案化的转移)最早出现在1796年,AloysSenefelder发现石头通过化学处理后可以将图像转移到纸上。1961年,光刻技术已经被用于在硅片上制造晶体管,当时的精度是5微米。现在,X射线光刻、电子束光刻等已经开始被用于的半导体制造技术,最小精度可以达到10微米。

光学投影式光刻是半导体制造中最常用的光刻技术,主要包括涂胶/前烘、曝光、显影、后烘等。非光学光刻技术主要包括极深紫外光刻(EUV)、电子束光刻(E-beam Lithography)、X射线光刻(X-ray lithography)。判断光刻的主要性能标准有分辨率(即可以曝光出来的最小特征尺寸)、对准(套刻精度的度量)、产量。

随着半导体行业的发展,器件的小型化(特征尺寸减小)和集成电路的密集度提高,传统的光学光刻制造技术开始步入发展瓶颈状态,其面临的关键技术问题在于如何提高分辨率。

虽然,改进传统光学光刻制造技术的方法多种,但传统的光学投影式技术已经处于发展缓慢的阶段。与传统的投影式光刻技术发展缓慢相比,下一代光刻技术比如EUV、E-beam、X-ray、纳米压印等的发展很快。各大光刻厂商纷纷致力于研制下一代光刻技术,如三星的极紫外光刻、尼康的浸润式光刻等。目前先进的光刻技术主要集中在国外,国内的下一代光刻技术和光刻设备发展相对较为滞后。

3 薄膜制备技术

半导体制造工艺中,在硅片上制作的器件结构层绝大多数都是采用薄膜沉积的方法完成。薄膜的一般定义为在衬底上生长的薄固体物质,其一维尺寸(厚度)远小于另外二维的尺寸。常用的薄膜包括: SiO2, Si3N4, poli-Si, Metal等。常用的薄膜沉积方法分为化学气相沉积(Chemical Vapor Deposition)和物理气相沉积(Physical Vapor Deposition)两种。化学气相沉积利用化学反应生成所需的薄膜材料,常用于各种介质材料和半导体材料的沉积,如SiO2, poly-Si, Si3N4等[3]。物理气相沉积利用物理机制制备所需的薄膜材料,常用于金属薄膜的制备,如Al, Cu, W, Ti等。沉积薄膜的主要分为三个阶段:晶核形成―聚集成束―形成连续膜。为了满足半导体工艺和器件要求,通常情况下关注薄膜的一下几个特性:(1)台阶覆盖能力;(2)低的膜应力;(3)高的深宽比间隙填充能力;(4)大面积薄膜厚度均匀性;(5)大面积薄膜介电\电学\折射率特性;(6)高纯度和高密度;(7)与衬底或下层膜有好的粘附能力。台阶覆盖能力以及高的深宽比间隙填充能力,是薄膜制备技术的关键技术问题。我们都希望薄膜在不平整衬底表面的厚度具有一致性。厚度不一致容易导致膜应力、电短路等问题。而高的深宽比间隙填充能力则有利于半导体器件的进一步微型化及其性能的提高。同时,低的膜应力对所沉积的薄膜而言也是非常重要的。

4 结语

虽然,与不断更新换代的半导产品相比,半导体制造技术发展较为缓慢,大部分制造技术发展已经趋于成熟。但是,随着不断发展的半导体行业,必然会对半导体制造技术的提出更高的要求,以满足半导体产品的快速发展。因此,掌握和了解半导体制造技术的相关专利知识有利于推进该领域的发展。

参考文献:

[1] Most of the classic device papers are collected in S.M Sze,Ed.,Semiconductor Devices:Pioneering Papers,World Sci. , Singapore,1991.

半导体的制造方法范文2

关键词:半固态,浆料制备,研究方向

1 引言

所谓金属半固态加工 [1 , 2] 就是将凝固过程中的合金进行强力搅拌,使其预先凝固的树枝状初生固相破碎而获得一种由细小、球形、非枝晶初生相与液态金属共同组成的液、固混合浆料,即流变浆料,将这种流变浆料直接进行成型加工的方法称为半固态金属的流变成形(rheoforming);而将这种流变浆料先凝固成铸锭,再根据需要将此金属铸锭分切成一定大小使其重新加热至固液相温度区间而进行的成型加工称为触变成形(thixforming),流变成形和触变成型合称为半固态加工(semi-solidprocessing method),简称SSM.

2半固态浆料制备工艺的研究

半固态加工的第一步,也是非常重要的一步就是制备合金半固态浆料,浆料质量的好坏对后续工序以及铸件质量的影响很大。最早使用的浆料制备方法是机械搅拌法,经过30年发展,陆续出现了诸如电磁搅拌、SIMA、SCR、喷射沉积、液相线铸造等制备方法 [3] 。下面对一些应用较为广泛,目前研究较多的制备方法进行介绍和分析。

(1) 机械搅拌法 [4]

机械搅拌法是最早用于半固态浆料制备的方法。其原理是在合金凝固过程中,使用搅拌器对合金熔体进行强烈的机械搅拌,树枝晶由于剪切力的作用而断裂成为颗粒状结构。免费论文参考网。机械搅拌分间歇式和连续式两种,如图1. 1所示:

(a) 间歇式(b) 连续式

图1.1 两种机械搅拌装置示意图

1.搅拌器 2.合金熔体 3.加热线圈

搅拌时产生的剪切速率一般为100~300S - 1 。剪切速率受搅拌器结构,材料耐腐蚀、耐高温磨损性能的制约。浆料的质量主要由搅拌温度、搅拌速度以及冷却速度这三个参数控制。然而,由于这些工艺参数不易控制,容易发生卷气等缺陷;搅拌器和合金熔体是直接接触的,因而容易造成污染;另外搅拌器与容器间存在搅拌死角,影响浆料的质量。机械搅拌法在工业生产中应用较少。

最近几年,华中科技大学和英国Brunel大学分别采用一种新型的搅拌方法——双螺杆机械搅拌 [5] 制备出了初生 相细小、圆整的镁合金和Sn-Pb合金半固态浆料。采用双螺杆结构的搅拌器大大增大了搅拌的效率,具有强烈的搅拌效果,其剪切速率可以达到1000~15000S -1 。免费论文参考网。但是该方法不适合于铝合金半固态浆料的制备,因为搅拌器会受到熔体的腐蚀。

(2) 电磁搅拌法 [6,7]

电磁搅拌法是应用最为广泛的一种方法。它利用旋转磁场使金属液内部产生感应电流,并在洛伦兹力的作用下发生强迫对流,从而达到搅拌的目的。产生旋转磁场的方法有两种,一种是在感应线圈中通入交变电流,另一种则采用旋转永磁体的方法。电磁搅拌所引起的对流是三维对流,剪切速率在500S -1 左右,搅拌效果较好。它最大的优点是对合金熔体没有污染,卷入的气体量少,合金不易氧化。使用该方法可以实现连铸,生产效率高。但是,电磁搅拌设备昂贵,且工艺也比较复杂。

(3) 应变诱发熔化激活法 [8]

应变诱发熔化激活法(SIMA)是对铸锭加压进行一定量的预变形,使其组织具有强烈的拉伸形变机构,然后将其加热到半固态温度保温一段时间,熔化的部分液相渗入到小角度晶界中,使固相粒子分开,树枝晶破碎,从而得到半固态组织。预变形量、保温温度以及保温时间是SIMA法中的三个最重要的工艺参数。增加预变形量以及等温温度都可以促进铸锭中 相由枝晶组织向半固态颗粒状组织转化,但是过度提高预变形量以及等温温度会使晶粒明显长大。

SIMA法主要适合于各种高、低熔点的合金系列,尤其在制备高熔点合金的半固态铸锭方面具有独特的优越性。迄今为止,该方法已经成功的应用于不锈钢、工具钢和铜合金等。然而它也存在缺点,比如需要一道额外的变形工序,而且制备的半固态坯料尺寸较小。

(4) 超声波处理法 [9]

超声波处理法由V.I. Dobatkin 等人提出,其原理为在液态金属中加入细化剂,并使用超声波处理,由于超声波的空化作用,使得枝晶组织变为半固态组织。

超声波在介质中传导的时候,产生周期性的应力和声压变化,在局部产生周期性高温高压效应,使液体产生空化和搅动。一般认为,超声波可以产生气蚀作用,促进形核,且可以使枝晶臂断裂,成为新的形核核心,促进半固态颗粒状初生相的生长,而抑制树枝晶的发展。超声波处理法的优点在于对熔体污染较小,但是其工艺较为复杂,设备投资大。

(5) 液相线铸造法 [10]

液相线铸造法是将合金熔体冷却至液相线温度附近保温一段时间后进行浇注,获得所需要的半固态组织。日本的Toshio等人利用图1.2所示的装置制备半固态铝合金浆料,装置中的水冷斜板用于降低合金熔体的过热度。实验结果表明,在A356型铝合金的流变成形过程中采用低的过热度(10℃)和低于50%固相率就可以获得较为理想的半固态组织。

图1.2 液相线法制备半固态合金浆料

然而,液相线铸造法要求严格控制工艺条件,否则得到的半固态浆料组织不均匀,一部分初生 相容易长大成为粗大的枝晶,导致浆料组织恶化。液相线铸造法具有工艺简单,适用合金范围广,生产效率高等优点,尤其对变形铝合金半固态浆料的制备具有极其重要的意义,对流变铸造的应用及发展将起到积极地推动作用。

3 前景与展望

虽然现有的半固态制浆技术在工业中有一定的应用,而且在制造业具有一定的地位和优势,但它们仍存在许多的缺陷,如工艺复杂、成本高等,制约了它们在工业中进一步的推广。我们正探索一种新的半固态浆料制备工艺---机械振动法,振动可以使处于半固态温度区间的合金熔体产生强迫对流,改变晶粒的生长方式,从而获得晶粒圆整的半固态浆料。与其它制备工艺相比,具有以下优点:

(1) 机械振动属于无接触扰动方式,因而熔体受到的污染较小;

(2) 对工艺条件要求不是特别严格,工序简单,易于操作。免费论文参考网。

(3) 设备简单,易于设计维护,成本相对较低。

如果我们能够研究探索出振动制浆的规律,制备出晶粒细小、圆整的半固态浆料,那么我们就开辟了一条半固态浆料制备的新途径,必将为降低工业生产成本作出一定的贡献。

参考文献

[1] 谢水生,黄声宏.半固态金属加工技术及其应用[M].北京:冶金工业出版社,1999.

[2] 毛卫民.半固态金属成形技术[M]. 北京:机械工业出版社, 2004, 6.

[3] 闫淑芳,杨卯生.半固态金属浆料制备工艺的研究进展[J].铸造技术,2005,26(2):155-158

[4] D.B. Spencer, R.Mehrabian, M.C. Flemings.Reologicalbehavior of Sn-15%Pb in the crystallization range[J].MetallurgicalTransactions,1972,3(7):1925-1932

[5] 李东南.半固态镁合金材料及其制备技术的研究[D].武汉:华中科技大学图书馆,2005.

[6] 冯鹏发,唐靖林,李双寿等.半固态合金流变成形技术的研究现状与发展[J].铸造,2004,53(12):963-967

[7] 吴炳尧.半固态金属铸造工艺的研究现状及发展前景[J].铸造,1999,(3):45-52.

[8] W. Lapkowski.Some studies regardingthixoforming of metal alloys[J].Journal of MaterialsProcessing Technology,1998,80-81:463-468

[9] 刘政,赵素,雷蕾等.金属半固态加工技术的应用与进展[J].上海有色金属,2005,26(2):150-156

半导体的制造方法范文3

关键词:半导体;分销商;营销策略

半导体是现代科技产业的标志,大规模集成电路(Integrated Circuit,IC)出现大大改变了整个工业发展的进程,半导体器件被誉为现代工业的“血液”。从1958年第一块集成电路在德州仪器(Texas Insmtments,TI)问世以来,半导体产业已经走过了近70年的风风雨雨。

随着中国国民经济的发展和现代化进程的加快,以Ic(集成电路,芯片)为主导的半导体行业市场规模不断扩大,已经成为国民经济的重要支柱行业之一。半导体行业处于电子行业的最上游,是整个行业受经济波动影响最大的一个行业。

1半导体产业及其分销商现状

半导体器件主要是以硅为原料,制造出硅晶片,然后再加工成各种各样集成电路,俗称芯片。现在几乎所有的电子产品都有各种芯片的使用,半导体已经和人们的生活息息相关。大到飞机、航空母舰,小到身份证、交通卡,这些产品都离不开半导体产品的使用。常见的应用产品领域有:手机、PC、家电、医疗器械、电动自行车、照明、汽车电子、工业控制、机器人、新能源、航空航天等。

1.1半导体行业现状

全球半导体市场在2014年9.9%的高速增长后,2015年全球半导体市场出现下滑,根据美国半导体协会(SlA)公布的数据,2015年全球半导体市场销售额3352亿美元,同比下降0.2%。全球半体市场下滑的主要原因是PC销售下降和智能手机增速放缓。受到国内“中国2025制造”、“互联网+”等新世纪发展战略的带动,以及外资企业加大在华投资影响,2015年中国集成电路产业保持高速增长。根据中国半导体行业协会(CSIA)统计,2015年中国集成电路产业销售额为3609.8亿元,同比增长19.7%。对于整个产业来说,中国虽然目前是世界上最大的半导体购买国,但是国产半导体厂商所占的比例还很小,市场上主要还是以欧美、日本、韩国的厂商为主。

市场上欧美系的主要半导体厂商有:Intel(英特尔),Qualcomm(高通),Micron(美光),TI(德州仪器),Infmeon(英飞凌),ST(意法)等。日韩主要有Samsung(三星),SK Hynix(海力士),Toshiba(东芝),kenesas(瑞萨)等。台系的主要有:MediaTek(联发科),WINBOND(华邦半导体),HT(合泰)等。国产的本土供应商主要有:海思,清华紫光展锐,中兴微电子,华大,大唐等。

1.2半导体产业渠道

对于半导体行业,其产业链有很多种分类方法,根据多年从业经验,我认为以下分类是最具代表性和概括性的。半导体产业的一般渠道分类,传统的供应链系统即:

0阶渠道:半导体制造商 -->代工厂或终端客户(电子产品制造商)

1阶渠道:半导体制造商 -->授权分销商 -->代工厂或终端客户

2阶渠道:半导体制造商 -->授权分销商-->IDH-->代工厂或终端客户

非授权渠道:半导体制造商 -->授权分销商-->贸易商-->代工厂或终端客户

1.3半导体分销商简介

普通消费者几乎每天都离不开包含有半导体器件的电子产品,但是普通消费者也几乎不会直接购买任何半导体器件,而是购买电子产品制造商的产品。可以说,半导体产品的直接购买者就是电子产品制造商,其销售的流程是企业对企业(组织对组织)。

作为带给产业最新元器件及半导体技术的忠实伙伴,分销商在促进电子芯片行业的进步上也是功不可没的。正是有了分销商的不懈努力,不断的将芯片厂商的最新产品和技术推向市场,才更进一步的推动了整个电子产业的繁荣,推动了很多产品在市场上的普及。半导体分销商是电子业中的重要一环,分销商连接了半导体厂商和电子产品制造商,充当了剂的角色。由于国际上电子信息产业发展的不平衡,国际上一些半导体厂商在进入中国的时候,为了避免风险,都不约而同的使用的/分销制度。

半导体产业的终端客户为电子产品制造商,终端客户是由规模及采购量与实际营业额贡献来分类,半导体制造商通常会为第一级大型客户提供各项技术支援,投入现场应用工程师(FAE)、销售/业务(sales)、客服人员/助理(CSR)等。

主要半导体分销商的类型如下:

(1)授权分销商,又称授权分销商、分销商、店等,其英文名称为Distributor。针对半导体全球品牌制造商来说,其授权分销商,比较著名的公司有:艾睿(ARROW)、安富利(AVNET)、易络盟(Elementl 4)、富昌(Future)、武汉力源(P&S)、大联大(WPG)、易登(Edom)、全科(Alltek)、科通、北高智等。其中艾睿、安富利都是全球性的分销商(Global Distributor),而易络盟、富昌、武汉力源则是目录分销商(Online Distributor),大联大、易登、全科、科通、北高智则是专注于亚洲的分销商。这些授权分销商组成了世界半导体大厂在中国市场绝大部分的半导体元器件的商业活动及交易。半导体制造商通常以签订合作协议及合同方式建立授权分销商,知名分销商通常也会为多个世界级大厂分销各种产品,以达到投出产出的最大化。

(2)方案公司(IDH,Independent Design Housel,有些又被成为增值服务商(Value Added R.eseller,VAR),其主要为电子产品制造商设计应用方案,方案商主要和半导体制造商或者指定的授权分销商合作,从方案设计至定单、交货、技术支持、售后服务等提供一条龙服务,适合没有自主研发能力的中小客户或者需要外包研发的品牌电子产品制造商。

(3)贸易商。贸易商因规模小且专注于低买高卖从中获取利润,不会投入应用工程师等资源,通常面向的客户多为中小型客户,并专注于通用器件的交易,服务稳定性差,对市场价格以及品牌形象有较大的影响,是半导体制造商不愿合作的对象,所以通常为非授权渠道。

2半导体分销商所面临的新挑战

随着竞争越来越激烈,分销企业内外环境不断出现新的变化,市场利润不断摊薄,分销商自身也要不断研究自身的营销策略。对分销商来具体说,针对中国大陆的电子产品市场营销有诸多挑战。

2.1市场需求有向弱趋势。

受宏观经济影响,2015年全球半导体市场出现增速下滑,比2014年增速同比下降0.2%,全球半导体销售额为3352亿美元。全球不少半导体厂商感到压力。受此影响,2015-2016年业界出现了并购潮。2015年全球半导体并购交易额达到1200亿美元,是2014年的3.2倍。例如著名的德国半导体厂商英飞凌Gnfineon)以30亿美元收购国际整流器公司(IR),高通(Qual-comm)以470亿美元收购恩智浦(NXP)。

2.2产品利润逐年下降。

下游的众多电子厂商,利润微薄,已经处于微利阶段。分销商在竞争激励的市场中,分到的利润越来越微薄。

2.3库存压力越来越大。

电子产品的生命周期越来越短,不断涌现新的创新产品,而且业界有不断压缩供应链长度和灵敏度的趋势,这就要求分销要有更充足、丰富的库存才能满足电子制造商的需求。另外,制造厂商的账期要求也是逐渐加长,分销商的货款压力也是不断加大。

2.4市场变化快。

产业因为创新和消费者偏好变化比较快,而分销市场更是竞争激烈,分销商也在比拼各自适应市场的速度。

2.5获得渠道资源难。

由于原厂不断在并购重组,渠道管理也在跟着进行整合、优化,对分销商来说,获得优质的供应商资源的难度也越来越大。

总之,分销商早已不是简单的中g商。原厂和客户对分销商的技术支持要求也在不断提高,分销需要投入更多的人力、物力资源去建设技术队伍、累积技术经验,才能使适应市场变化。

3半导体分销商的营销对策的优化

本文基于经典的4P营销理论:即产品(producc),价格(price),渠道(place),促销(promotion)营销组合对目前半导体厂商面临的挑战,提出营销对策优化方案。

基于以上理论,和半导体企业面对的新的挑战,笔者提出以下营销对策来应对此挑战。

3.1重构产品线组合。

采取按照市场中的客户群分类的业务分类,加强专业领域的深耕,有针对性的深入开发整体解决方案(solution),最大限度挖掘客户需求潜力和增加客户粘性,以期增加销售额。

根据不同客户群进行分类,可以根据产品应用大类分为消费类市场、工业品市场、汽车电子市场。消费品市场的特点是研发速度快、器件供应量大、对器件的小型化要求高、供应链反应速度快,此市场利润率低但销售额比较大。工业品市场的特点是量相对比较小,研发周期相对比较长,产品生命周期也相对稳定且比较长,对供应链的要求没那么高,此市场是利润率高但销售额相对比较小。汽车电子市场特点是研发周期超长、对产品的质量要求非常高、产品更新换代很慢、要求供应链要有持续的稳定性,此市场主要的特点是销售低但是利润丰厚。

针对这些细分领域,把业务和业务支持部门按照产品应用(Applica-tion)进行划分,打破以前分销商都是按照品牌或者产品线(ProductLine)进行划分的架构。分销商在每个领域形成一个业务组(Team),包含现场应用工程师(FAE)、销售(Sales)、产品经理(Product Marketing)、业务助理(Assistant)、系统应用工程师(AE)。应用工程师针对每个市场研发对应的解决方案(Solution)和参考设计(Reference Design);产品经理负责协调原厂资源、划定市场及客户范围,并驱使销售来寻找对应客户销售相关产品;业务助理和现场应用工程师负责协助销售对客户进行销售

3.2丰富产品线价格档次。

产业发展迅速,电子产品面临快速降价的压力,为了避免因为价格问题而失去客户,应为客户提供不同价格档次的产品,维持的合理利润空间。

由于不同类型的客户对不同的产品定位不同,对元器件的需求也有所不同。对分销商来说,要提供给客户不同品质、不同价格档次的产品供客户选择。这就要考虑产品的档次搭配,对同一类型的产品考虑不同特色的产品线,以求最大限度满足客户需求,提供给客户价格上的一站式服务。一般来说欧美、日韩半导体产业发达,拥有技术优势,但是其产品定位比较高端,价格比较高。而台系、国产的产品相对来说价格比较优惠,但是其技术不够领先、产品质量可靠性也不是很高。

3.3拓展互联网营销渠道。

近年来,伴随着电子产业的发展,互联网商业也迅猛发展,电子商务已成为企业供应链中的重要一环。为了顺应市场形势变化,半导体分销商也应该发展网络营销手段。例如可以大力发展元器件电商,提供给客户小批量互联网购买渠道,同时以在线技术培训、在线技术研讨会、专业网站宣传等手段广泛选择企业产品,推广产品解决方案。

3.4提升客户服务体验。

由于半导体产品高技术含量产品,客户对芯片的需求,不但有质量、可靠性、功能性等硬件(Harware)方面要求,还要求配合相应的软件的要求,例如开发工具、开发环境、开发软件平台、源代码、算法等。因为快速的市场变化,这就要求电子产品制造商也要相应的提高研发速度、创新速度。半导体分销商要紧跟客户的步伐,提供客户不单单是一个半导体硬件产品,还要提供对应软件服务,以及对创新产品应用的市场敏锐度。

具体来说,半导体分销商一方面要建立强大的软硬件工程师支持团队,随时解决客户客户研发中出现的新问题、新需求;另一方面也要关注新兴市场,透过各种渠道宣传新产品、新应用,及时甚至是超前提出创新产品解决方案。例如汽车电子行业的高级驾驶员辅助系统(ADAS),目前市场的主流的技术通过摄像头、图像拼接技术来实现,未来随着对汽车安全性要求的提高,就需要目前市场上刚刚兴起的毫米波雷达技术来试产。这就需要半导体分销商提前关注这个市场,宣传这种技术,并推出自己特色的软硬件解决方案,这样才能在市场上抢得先机。

半导体的制造方法范文4

ESD(Electrostatic Discharge)即静电释放:两个带不同静电的物体,通过直接接触或静电电场的作用会使两物体的静电电荷发生位移,当静电电场达到一定能量,物体之间的介质被击穿而产生放电,这就是ESD的全过程。由于生活中静电无处不在,所以ESD也经常发生,大到电闪雷鸣,小到脱毛衣时迸出火花,都属于此列。

随着科学技术的飞速发展,电子、通信、航天、航空等高新技术产业的迅速崛起,尤其是电子仪器仪表和设备等电子产品日趋小型化、多功能及智能化,高密度集成电路已成为电子工业对上述要求中不可缺少的器件。这种器件具有线间距短、线细、集成度高、运算速度快、低功率和输入阻抗高的特点,因而导致这类器件对静电越来越敏感。静电放电是导致元器件击穿危害和对电子设备的运行产生干扰的主要原因。ESD持续影响半导体制造业、半导体组件和系统。本书介绍了静电放电ESD、过电应力EOS、电磁干扰EMI和电磁兼容EMC的基本原理,同时概述了半导体的制造环境及最终的系统组装,并通过特定技术、电路和芯片的实例,提出了静电防护网络的一种新方法。

全书由7章组成:1.静电学原理:以富兰克林、法拉第、麦克斯韦等几位著名的科学家为例介绍了静电学的基本知识和发展历史,然后谈到了当今静电学的热点问题;2.制造业和静电学基础:讨论了生产环境中的静电放电控制问题;3.详细地阐述了静电放电、过电应力、电磁干扰和电磁兼容的概念;4.系统级静电放电防护:简要介绍了服务器、笔记本电脑、手持设备、手机、磁盘驱动器、数码相机、汽车和空间应用中的静电问题,讨论了系统级ESD测试问题;5.组件级静电放电问题和解决方案:重点讨论了芯片上的ESD保护网络、ESD电路示意图和半导体芯片布图规划;6.系统级静电放电问题和解决方案:重点是系统级解决方案,同时对系统级电磁兼容扫描技术等新概念进行了讨论;7.静电放电问题的未来:重点讨论了现在和未来纳米技术的ESD防护。

本书从半导体制造到产品使用方面对作者的ESD防护系列丛书进行了补充。它的独特之处在于覆盖了半导体芯片制造问题、半导体芯片的设计和现今所遇到的系统问题,以及未来的ESD现象和纳米技术的发展。本书深入浅出,层次分明,可作为电力电子、电气工程、半导体制造、纳米技术等领域的研究生和科研人员很好的参考书。

郑耀昕,硕士研究生

(中国科学院空间科学与应用研究中心)

半导体的制造方法范文5

关键词:半导体 太阳能产业 质量流量控制器 销售预测

1.背景

半导体产业是现代信息和电子工业的基础,从1947年在美国的贝尔实验室里科技史上第一支晶体管产品被开发,半导体产业已经经过了60多年的高速发展。当今的半导体产业发展正愈来愈体现出自身的鲜明特色,这对我国带来了巨大挑战,但同时也为实现产业升级提供了极好的历史机遇。

气体质量流量控制器,即Mass Flow Controller(MFC),可以对气体质量流量做精密控制。其作用是非常精确的控制进入腔体的载气和反应气体的单位时间内的流量,达成反应需要的混成比例,从而保证在晶圆表面生成需要的分布均衡和品质稳定的成分膜。目前,我国蓬勃发展的半导体产业、太阳能电池片制造行业以及LED制造领域都对质量流量控制器有着巨大的使用需求。而日本作为一个有几十年半导体产业发展史的国家,对市场定量的预测有其独到之处。本文主要目的在于借鉴日本市场的销售预测方法对半导体产业中常用的MFC进行市场需求量预测。

2.日本Horiba公司简介

株式会社堀场制作所(Horiba)是世界第六大测量测试设备的制造供应商,总部位于日本京都。Horiba的气体质量流量控制器产品来自旗下Horiba/STEC子公司。Horiba公司从最初进入中国市场时只有小于20%市场份额年销售量仅几百台质量流量控制器、销售量完全不及同类型欧美厂商(主要有美国的Unit和Tylan,艾默生集团旗下的Brooks,荷兰的Bronkhorst等)的MFC供应商,到2010年时已经年销售量占到国内半导体及太阳能设备装机MFC市场60%份额的举足轻重的制造商。

3.日本市场的销售预测方法和模型

日本企业对市场预测是基于独特的市场情报获取能力之上的,情报部门和销售预测部门两者相辅相成。信息收集是市场预测前的重要工作,日本企业的信息工作流程如下。

(1)客户扩产计划。准确计算出所需的设备,进而算出MFC准确的需求量,以量定价格。

(2)掌握已购设备的客户的情况。准确估算每年的替换或维修需求量。

(3)宏观的产业政策。可对潜在的新投资方向地区预先布局。

(4)竞争对手的详细信息和企业情况。便于设定竞争策略,以展开进攻性或保守策略。

基于前期情报战略提出的可供参考估算的市场预测量,销售部门对生产部门提出的生产量需求只需借助常规方法即可。因为太阳能电池片市场的客户多数为生产设备商,所以对生产量的需求预测采用“购买者意向调查法”。

先以各大太阳能行业的设备制造商为对象,按照他们的购买意向划分不同等级,然后用相应的概率来描述其购买可能性大小。一般分为5个等级:“肯定购买”,购买概率是 100%,“可能购买”,购买概率是80%,“未确定”,购买概率是50%;“可能不买”,购买概率是20%,“肯定不买”,购买概率为0。

其次,向设备制造商说明本公司产品的性能、特点、价格,市场上同类竞争产品的性能、价格等情况,以便使购买者能准确地做出选择判断,并请被调查者明确购买意向, 即属于5种购买意向中的哪一种。该工作在对客户进行产品推介时进行,不作为孤立项目。

第三,汇总来自各大设备制造商的反馈信息,对购买意向调查资料进行综合,列出汇总表,如表1所示。

从表1可以得知,“肯定购买”有多少家;“可能购买”有多少家;……“肯定不买”有多少家。最后,计算购买比例的期望值,再计算购买量的预测值。购买比例的期望值公式如下:

E=

* Pi:不同购买意向的概率值;

* Xi:不同购买意向的人数(户数)。

购买量预测公式如下:Y=E・N

* E:购买比例的期望值;

* N:预测范围内总人数(总户数)。

4.日本相关预测方法对我国的借鉴作用

日本早于中国通过官民结合的形态迎来了泛半导体产业的繁荣。而这条政府重点规划扶持、企业抓住机遇发展的道路对与日本工商业文化相近的中国来说,有很大的借鉴价值。日本企业的产业预测是以情报战为先头阵地来逐步推进的。国内企业一般不会把市场情报作为首要目标之一来推进市场销售,而仅仅以销售结果为单一目标进行市场活动。情报获取如果较为精确,且对目标客户的具体信息把握非常细致,以此为基础的市场预测就变得非常简单。

5.MFC在中国市场的销售预测

5.1 太阳能市场的销售预测

由于中国产业政策的支持力度比较大,国内的太阳能电池片制造和LED制造企业在近几年得到了很大的发展。以太阳能电池片制造为例从2005年时的不足1GW的产能,到2012年的9.46GW的产能预计(见图2),行业迎来了一个跨越式的发展。同时也给相关的设备制造商带来了重大机遇,而这些设备制造厂商也是质量流量控制器的主要用户。

根据实际的太阳能设备MFC使用量估计,每25mW(25mW是一条标准的电池片生产线的标准产能,一般产线以此为单位来计算)会带来3台扩散炉(Diffusion), 两台PECVD设备的需求,而每一个扩散炉带来三个反应腔的需求,一个PEVCD带来两个反应腔的需求,每个反应腔又带来四个MFC的需求,由此可知,最终25mw的标准产能将使用MFC总共达到64台。

因此,2012年将近1GW的新增产能需求(真实的增长数字可能数倍于此),会产生一个2500多台新装机MFC的市场容量。

5.2 半导体、LED及太阳能市场的销售预测

在泛半导体、半导体及太阳能的销售市场中,MFC一般作为设备的组件参与市场竞争。所以MFC销售的预测,更多的是与产业设备在行业内已使用数量相联系。考虑到业内设备的实际技术水准和技术条件,以及其使用环境,备品备件市场的数量预测还是可期的。

以太阳能制程中的扩散炉为例,该设备产品在国内的销售已有很长一段时间,设备上很多部件因为失效会进行更换,以保证设备的正常使用。在太阳能制程中,Horiba品牌的流量计市场占有率都在70%以上,所以基本上以Horiba的MFC作为考察对象,将市场上绝大部分的扩散炉设备上的该模块视作一个随机动态系统,这个系统也经历产品从市场导入、成长成熟到衰减乃至消失的全部过程。模块部件产品的不断更换使设备本身的使用年限得以延长,而设备使用年限的不确定性和模块部件的使用寿命或长或短也使这个系统带有随机性。

6.结语

日本在半导体产业上的发展以及日本与我国同源文化的特征,使其国内市场销售预测的方法同样适用于我国。近些年,随着太阳能及其LED这种泛半导体产业在我国的不断崛起,以及越来越多的海外厂商的现地化生产战略方案,其制程中必备的MFC(气体质量流量控制器)在中国的需求预测对这些厂商来说也越来越重要。本文对国内尚不多见的低端质量流量控制器(MFC)从海外成熟的市场预测入手,结合中国市场的实际状况,对MFC的需求量进行预测,可以为广大海外厂商即将开展的现地化生产战略提供销售量的预测准备。

参考文献:

[1]靳晓宇,半导体材料的应用与发展研究[J].大众商务,2009,(12)

[2]曹宝成,人类社会处于半导体时代[J].国际学术动态,2001,(02)

[3]王胜利,质量流量控制器控制原理分析[J].电子工业专用设备,1998,(04)

[4]邱善勤,中国半导体产业的状况及发展趋势[J],半导体行业,2007,(01)

半导体的制造方法范文6

被称为计算机大脑的硅芯片,现在的制造成本实在是太高了!不仅制造用设备售价高达数亿美元,成品加工周期竟然需要2周左右(一般要经过20道或更多的工序)。因此美国麻省理_T学院的杰科布森一直在致力于发明一种“桌上工厂”,试图使之能够在塑料等基体上用直接打印的方法制造芯片。这是一个多么大胆的设想啊!实现这项技术的关键在于,首先要研制出含有纳米半导体细粉的墨水,从而打印才可能由普通的喷墨打印机来完成。如果这种设想得以实现,人们将有可能通过互联网直接下载最新的芯片电路来完成计算机的升级,计算机的硬件制造工艺将由此变得更加人性化。

这种想法对于计算机硬件制造工艺来说,将是一次伟大的革命。如果能够实现,将在很多方面得到应用,从能够显示可变图像的“壁纸”到传统的逻辑电路等。它将使得计算机硬件的制造和当前的软件制造一样成为一种开放的资源。用几秒钟就能在塑料等片基上制造出价格远低于英特尔奔腾而功能毫不逊色的芯片的设想,已经成为杰科布森和他那些不知疲倦的学生的最大兴趣和奋斗目标。

杰科布森小组目前的优势在于“半导体墨水”合成方面的巨大进展。该小组已经找到一种合成大小在100个原子左右的无机半导体纳晶悬浮液(墨水)的方法,使得打印可以在低于300℃的条件下完成,从而也使得基体材料的选择范围较大,其中包括一般的塑料薄片。这种墨水中的半导体微粒尺寸约200 nm,与英特尔奔腾芯片中的晶体管尺寸相近。

杰科布森墨水中的无机微粒和一般墨水中的颜料微粒尺寸相近,所以可用喷墨打印机来实现打印的工作,还可利用多层打印的方法制造复杂电路。重要的是,所有这一切都可以在工作台上通过类似于印刷的方法来完成,不仅工作温度低于300℃,不需要超净车间和昂贵的加工系统,而且制造周期也非常之短。相比之下,传统的晶体半导体材料如Si、CdSe和GaAs等的熔点都高于1000℃,为了避免在高温下有害杂质进入,工作场所必须达到超净水平。

人们预见到,用这种方法制造出来的具有识别功能的高智能化标志或标签,可以有效地加速例如超市的货款收付过程。类似的智能化标签和通过逻辑电路实现的识别系统,将会有更加广阔的应用前景。

目前,这项研究还在起始阶段,实现在塑料基体上用打印的方法集成数以百万计的晶体管并构成高效逻辑电路的目标仍然相当遥远。杰科布森用阳文或阴文印章的办法制成的简单“芯片”其分辨率仍然较低,逻辑运算速度虽然比有机晶体管制成的电路要快一个量级,但是比起用传统工艺制成的芯片仍然要慢得多。要真正实现和英特尔奔腾芯片并驾齐驱的目标,还有一段艰苦而漫长的路要走。

杰科布森的这项极富挑战性的研究计划给我们的启示在于,人们应当重视从那些似乎要被淘汰的包括像印刷术这样一些极其古老的技术中,发掘隐含的宝贵科技经验并使之与新技术要求结合起来,就有可能用比较熟悉的手段和比较成熟的技术来完成某个具有极大创新意义的研究目标。杰科布森从古老的印刷术和印章以及近代喷墨打印技术中所继承并发展的技术,应当认为是以上认识的一个典范。基础知识和技能的教育价值对社会持续发展的作用也由此充分地得到体现。

阅读与思考

全新的构想和重大的发明根植于人们早已熟知的传统知识或技术,在科学发展史上并非孤例。杰科布森的事例便我们对“温故而知新”的教诲有了远远超出字面含义的认识。此外,杰科布森的“墨水”属于纳米技术的应用,体现了纳米材料的主要特点,有兴趣的同学不妨再深入想一想。

半导体的制造方法范文7

一、何谓芯片?

要了解芯片,首先要明白“集成电路”和“半导体”两个概念。1958年9月12日,在美国德州仪器公司担任工程师的“杰克·基尔比”发明了集成电路的理论模型。1959年,曾师从晶体管发明人之一肖克莱率先创造了掩模版曝光刻蚀方法,发明了今天的集成电路技术。而半导体是一种导电性能介于导体和绝缘体之间的材料,常见的有硅、锗、砷化镓等,用于制造芯片。

我们所说的集成电路指的是采用特定的制造工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及元件间的连线,集成制作在一小块硅基半导体晶片上并封装在一个腔壳内,成为具有所需功能的微型器件

芯片是指内含集成电路的半导体基片(最常用的是硅片),是集成电路的物理载体。

二、中国芯片发展现状

目前中国芯片发展现状可用四个词概括:发展很快,落后两代,技术受限,产品低端。

中国芯片制造工艺落后国际同行两代。中国目前只能量产28纳米级芯片,而国外可完成7纳米级产品制造;产能严重不足,50%的芯片依赖进口;同时中国的产能和需求之间结构失配,实际能够生产的产品,与市场需求不匹配;长期的代工模式导致设计能力和制造能力失配、核心技术缺失;投资混乱、研发投入和人才不足等问题,导致中国集成电路产业目前总体还处于“核心技术受制于人、产品处于中低端”的状态,并且在很长的一段时间内无法根本改变。

为什么中国制造不出高端芯片?先要了解芯片制造过程。芯片制造主要分为三大环节:晶圆加工制造、芯片前期加工、芯片后期封装。其中技术难度最大最核心的是芯片前期加工这个环节,分为上百道制程,每道制程都有相应的装备。在这些装备里面,技术难度最大的就是光刻技术。中国半导体技术主要是在第一和第三环节。第二个环节中的技术装备大部分处于空白,所以高端的整个芯片都需要进口。

光刻机精度,芯片制造的卡脖子环节

制约集成电路技术发展的有四大要素:功耗、工艺、成本和设计复杂度,其中光刻机就是一个重中之重,核心技术中的核心。

一些装备由于其巨大的制造难度被冠以“工业皇冠上的明珠”的称号,最主流的说法是两大装备:航空发动机和光刻机,最先进的航空发动机目前的报价在千万美元量级,但是最先进的光刻机目前的报价已经过亿美金。

半导体的制造方法范文8

    改革开放以来,经过大规模引进消化和90年代的重点建设,目前我国半导体产业已具备了一定的规模和基础,包括已稳定生产的7个芯片生产骨干厂、20多个封装企业,几十家具有规模的设计企业以及若干个关键材料及专用设备仪器制造厂组成的产业群体,大体集中于京津、沪苏浙、粤闽三地。

    我国历年对半导体产业的总投入约260亿元人民币(含126亿元外资)。现有集成电路生产技术主要来源于国外技术转让,其中相当部分集成电路前道工序和封装厂是与美、日、韩公司合资设立。其中三资企业的销售额约占总销售额的88%(1998年)。民营的集成电路企业开始萌芽。

    设计:集成电路的设计汇集电路、器件、物理、工艺、算法、系统等不同技术领域的背景,是最尖端的技术之一。我国目前以各种形态存在的集成电路设计公司、设计中心等约80个,工程师队伍还不足3000人。2000年,集成电路设计业销售额超过300万元的企业有20多家,其中超过1000万的约10家。超过1亿的4家(华大、矽科、大唐微电子和士兰公司)。总销售额10亿元左右。年平均设计300种左右(其中不到200种形成批量)。

    现主要利用外商提供的EDA工具,运用门阵列、标准单元,全定制等多种方法进行设计。并开始采用基于机构级的高层次设计技术、VHDL,和可测性设计技术等先进设计方法。设计最高水平为0.25微米,700万元件,3层金属布线,主线设计线宽0.8-1.5微米,双层布线。[1]目前,我国在通信类集成电路设计有一定的突破。自行设计开发的熊猫2000系列CAD软件系统已开发成功并正在推广。这个系统的开发成功,使我国继美国、欧共体、日本之后,第四个成为能够开发大型的集成电路设计软件系统的国家。目前逻辑电路、数字电路100万门左右的产品已可以用此设计。

    前工序制造:1990年代以来,国家通过投资实施“908”、“909”工程,形成了国家控股的骨干生产企业。其中,中日合资、中方控股的华虹NEC(8英寸硅片,0.35-0.25微米,月投片2万片),总投资10亿美元,以18个月的国际标准速度建成,99年9月试投片,现已达产。该工程使我国芯片制造进入世界主流技术水平,增强了国内外产业界对我国半导体产业能力的信心。

    在前8家生产企业中,三资企业占6家,总投资7.15亿美元,外方4.69亿美元,占66%.目前芯片生产技术多为6英寸硅片、0.8-1.5微米特征尺寸。7个主干企业生产线的月投片量已超过17万片,其中6~8英寸圆片的产量占33%以上。

       目前这些企业生产经营情况良好。2000年,七个骨干企业总销售额达到56亿元人民币,利润7.5亿元,利润率达到13%.同年全国电子信息产业总销售额5800亿元人民币,利润380亿,利润率6.5%.

    封装:由于中国是目前集成电路消费大国,同时国内劳动力、土地资源价格相对便宜,许多国外大型集成电路生产企业在中国建立了合资或独资集成电路封装厂。

    国内现有封装企业规模都不大,而且所用芯片、框架、模塑料等也主要靠进口,因此大量的集成电路封装产品也只是简单加工,技术上与国际封装水平相差较远。主要以DIP为主,SOP、SOT、BGA、PPGA等封装方式国内基本属于空白。

    集成电路封装业在整个产业链中技术含量最低,投入也相对较少(与芯片制造之比一般为10:1)。我国目前集成电路年封装量,仅占世界当年产量的1.8%~2.5%,封装的集成电路仅占年进口或消耗量的13%~14.4%,即中国所用85%以上的集成电路都是成品进口。

    2000年,我国集成电路封装业的销售收入超过130亿元,其中销售收入超过1亿元的14家,全年封装电路近45亿块,其中年封装量超过5亿块的5家。

    材料、设备、仪器:围绕6英寸芯片生产线使用的主要材料(硅单晶、塑封料、金丝、化学试剂、特种气体等)、部分设备(单晶炉、外延炉、扩散炉、CVD、蒸发台、匀胶显影设备、注塑机等)、仪器(40MHz以下的数字测试设备、模拟测试设备及数模混合测试设备)、部分仪器(40MHz以下的数字测试设备、模拟测试设备及数模混合测试设备)国内已能提供。

    芯片制造设备,我国只具备部分浅层次设计制造能力,如电子45所已有能力制造0.5微米光刻机等。

    半导体分立器件:2000年,全年分立器件的销售额60亿,产量341亿只。

    供需情况和近期发展形势

    20世纪90年代,我国集成电路产业呈加速发展趋势,年均增长率在30%以上。2000年,我国集成电路产量达到58.8亿块,总产值约200亿人民币(其中设计业10亿,芯片制造56亿,封装130亿)。如果加上半导体分立器件,总产值达到260亿元。预计2001年,集成电路产量可达70亿块。

    2000年,全球半导体销售额达到1950亿美元,我国半导体生产从价值量上看,占世界半导体生产的1.6%(含封装、设计产值),从加工数量看占全世界份额不足1%(美国占32%,日本占23%)。

    从需求方面看,据信息产业部有关人员介绍,2000年,国内集成电路总销售量240亿块,1200亿人民币。业内普遍估计,今后10年,半导体的国内需求仍将以20%的速率递增,估计2005年,我国集成电路国内市场的需求约为300亿块、800亿元人民币;2010年,达到700亿块、2100亿元人民币。

    从近几年统计数字分析看,国内生产芯片(包括外商独资企业的生产和在国内封装的进口芯片)占国内需求量的20%~25%,但国内生产部分的80%为出口,按此计算,我国集成电路产业的自给率仅4%~5%.但是,有两个因素影响了对芯片生产自给率的准确估计。首先是我国集成电路的产品销售有很大一部分通过外贸渠道出口转内销,据信息产业部估计,出口转内销约占出口量的一半。如此推算,国内半导体生产满足国内市场的实际比重在12%~15%.实际上,国内生产的芯片质量已过关,主要是缺乏市场信任度,而销售渠道又往往掌握在三资企业外方手中。

    但芯片走私的因素,可能又使自给率12%~15%的估计过分夸大。台湾合晶科技公司蔡南雄指出:官方统计,1997年中国大陆进口集成电路和分立器件约50亿美元,但当年集成电路进口实际用汇达95.5亿美元。[2]近几年大力打击走私,这一因素的作用可能有所减弱。但无论如何,我国现有半导体产业远远落后于国内需求的迅速增长则是不争的事实。

    由于核心部件自给能力低,我国的电子信息产业成了高级组装业。著名的联想集团,计算机国内市场占有率是老大,利润率仅3%.我国电子信息制造业连年高速增长,真正发财的却是外国芯片厂商。

    由此,进入1990年代以来,我国集成电路进口迅速增长。1994~1997年,集成电路进口金额年均递增22.6%;97年进口金额为36.48亿美元,96.06亿块。[3]1999年,我国集成电路进口75.34亿美元,出口(含进料、来料加工)18.89亿美元。

   2000年6月,国家《软件产业和集成电路产业的发展的若干政策》(国发18号文件)。在国家发展规划和产业政策的鼓舞下,各地政府纷纷出台微电子产业规划,其中上海和北京为中心的两个半导体产业集中区,优惠力度较大,投资形势也最令人鼓舞。目前累计已开工建设待投产的项目,投资总额达50亿美元,超过我国累计投资额的1.5倍,未来2-3年这几条线都将投入量产。

    ·天津摩托罗拉:外商独资企业,总投资18亿美元,在建。2001年5月试投产,计划11月量产。

    ·上海中芯:1/3国内资金,2/3台资(第三国注册)。投资14亿美元。2001年11月将在上海试投产。

    ·上海宏立:预计2002年一季度投入试运行,16亿美元。

    ·北京讯创:6寸线,投资2亿美元。

    ·友旺:在杭州投资一条6寸线,10亿人民币左右,已打桩。

    目前我国半导体产业和国际水平的差距

    总体上说,我国微电子技术力量薄弱,创新能力差,半导体产业规模小,市场占有率低,处于国际产业体系的中下端。

    从芯片制造技术看,和国际先进水平的差距至少是2代。[4]尽管华虹现已能生产0.25微米SDRAM,接近国际先进水平(技术的主导权目前基本上还在外方手中),国内主流产品仍以0.8-1.5微米中低端低价值产品为主。其中80%~90%为专用集成电路,其余为中小规模通用电路。占IC市场总份额66%的CPU和存储器芯片,我国无力自给。

    我国微电子科技水平与国外的差距,至少是10年。[5]现有科技力量分散,科技与产业界联系不紧密。产业内各重要环节(基础行业、设计、制造工艺、封装),尚未掌握足以跨国公司对等合作的关键技术专利。

    半导体基础(支撑)行业落后:目前硅材料已有能力自给,各项原料在不同程度上可以满足国内要求(材料半数国产化,关键材料仍需进口)。

    但如上所述,几乎所有尖端设备,我们自己都不能设计制造,基本依赖进口。业内认为我国半导体基础行业和国际水平差距约20年。

    一般地说,西方对我引进设备放松的程度和时机,取决于我国自身的技术进展,所以我国半导体设备技术的进步,成为争取引进先进设备的筹码(尽管代价高昂)。如没有这方面的工作,设备引进受到限制,连参与设备工艺的国际联合研制的资格也没有(韩台可以参与)。

    已引进的先进生产线,经营控制权不在我手中,妨碍电路设计和工艺自主研发现有较先进的集成电路生产线(包括华虹NEC、首钢NEC),其技术、市场和管理尚未掌握在中国人手中。其原因是“自己人”管理,亏损面太大。现有骨干企业不是合资就是将生产线承包给外人,技术和经营的重大决策权多在外方代表手中。经营模式还没有跳出“两头在外”模式。

    这也说明,我国现有国有企业经济管理机制,尽管有了很大进步,但还没有真正适应高科技产业对管理的苛刻要求,高级技术人才和营销人才更是缺乏。

    “某厂…最赔钱的×号厂房,包出去了。这也怪了。台湾人也没有带多少资金技术,还是原来的设备和技术,就赢利。

    “我问承包人,人还是我们的人,厂房技术还是我们的,为什么你们一来就行了?他说”体制改变了“。我问体制改了什么,是工资高了?也不是。他们几个人就是搞市场。咱们中国市场之大,是虚的。让人家占领的。

    “10多年前我在美国参观,他们的工厂成品率是90%多,我们研究室4K最高时成品率50%多,当时这个成绩,全国轰动。我参观时问,你们有什么诀窍做到90%多?美国人说没有什么诀窍,就是经常换主管,新主管要超过上一任,又提高一步。主管到了线里,就是general,…说炒就炒。咱们国家行吗?我们这些领导都是孙子…半导体的生产求非常严格的纪律。没有这个东西绝对不行。你想100多道工艺,每一道差1%,成品率就是零。所以这个体制,说了半天没有说出来,一是市场,一是管理。”[6]但无论如何,我们半导体产业的“管理”和“市场”这两大门坎,是必须跨过去的。深化国企改革、发挥非国有经济的竞争优势,在半导体领域同样适用。

    由于没有技术和经营控制权,导致我们的半导体产业遇到两方面困难。首先,国内单位自行设计的专用电路上线生产,必须取得生产厂家的外方同意,有的被迫转向海外代工,又多一道海关的麻烦;关系国家机密的芯片更无法在现有先进生产线加工(或者是外方以“军品”为名拒绝加工,或者是我方不放心)。

    其次,妨碍了产学研结合、自主设计和研发工艺设备。例如中国科学院微电子中心已达到0.25微米工艺的中试水平,但因先进工厂的经营权不在自己手中,无法将自有工艺研究成果应用于大线试生产。

    工艺技术是集成电路制造的关键技术。如果我方没有自主设计工艺的技术能力,即使买了先进生产线也无法控制。目前合资企业中,中方职工可以掌握在线的若干产品的工艺技术,但无法自主开展工艺技术研究。5年后我方将接管华虹NEC,也面临自己的工艺技术能否顶上去的问题。工艺科研领域目前所处的困境如不能及时摆脱,则仅有的研究力量也会逐渐萎缩,如果不重视工艺技术能力的成长,我们就无法掌握芯片自主设计生产能力。

    设计行业处于幼稚阶段由于专业电路市场广阔,目前国内各种类型的设计公司逐渐增加。但企业普遍规模偏小、技术水平较低,缺乏自主开发能力。

    由于缺乏技术的积累,我国还远没有形成具有自主知识产权的IP库,与国外超大规模IC的模块化设计和S0C技术差距甚远。设计软件基本用外国软件,即使设计出来,也往往因加工企业IP库的不兼容而遭拒绝。

    集成电路的设计与加工技术是相互依存的。因为我国微细加工工艺水平落后,人才缺乏,目前不具备设计先进电路的水平,更没有具备设计CPU及大容量存储器的水平。也有的客户眼睛向外,不愿意在国内加工,但到国外加工还要受欺负。尽管我们花了100%的制版费,板图也拿不回来。

    超大规模集成电路的设计,难度最大的是系统设计和系统集成的能力,最需要的人才是系统设计的领头人,这是我国最缺的人力资源。国内现有人才多数是设计后道的能力,做系统的能力差。国内现有环境,培养这样的人才比较难。

    国内的设计制造行业,就单个企业来说很难开发需要高技术含量的超前性、引导性产品。多数民营中小企业只能跟在别人后面走仿制道路(所谓反向设计)。反向设计只能适应万门以下电路的设计开发。故目前还无法与国外先进设计公司竞争。

    缺乏市场信任度由于总体技术水平低,市场多年被外国产品占领,自己的供给能力还没有赢得国内市场的信任,以致出现外商一手向国内IC厂定货,再转手卖给国内用户的现象。这是当前外(台)商大举在国内投资集成电路生产线的客观背景。

    国内设计、制造的产品往往受到比国外产品更严格的挑剔,要打开市场需要更多的时间和精力,这就难免被国外同行抢先。半导体市场瞬息万变,竞争十分残酷,而我国对自己的半导体产业,似取过分自由放任态度,几乎完全暴露在国际竞争中。有必要对有关政策上给以重新评估。

    我国电子整机厂多为组装厂,自己设计开发芯片的极少,由于多头引进,整机品种繁多,规格不一,批量较小,成本高。另外,象汽车电子、新一代“信息家电”等产品市场很大,但需要高水平且配套的芯片产品,而我国单个电路设计企业无力完成,设计和生产能力还尚待磨合。如欲进军这方面的市场,需要高层有明确的市场战略和行业级的协调。我国微电子行业目前因技术能力所限,可适应市场领域还比较狭窄,又面临着国际市场的巨大压力。要争得技术和资本的积累期和机会,必须有政府的组织作用。

    还没有形成完整的产业体系从整体看,我国半导体产业还没有形成有机联系的生态群,或刚刚处于萌芽状态,产业内各环节上下游间互补性薄弱。目前少数先进生产能力,置于跨国公司的全球制造~营销体系内,外(台)商做OEM接单,来大陆工厂生产,国内芯片厂商被动打工。国家体制内的科研力量和现有生产体系的结合渠道不顺畅,国内科技型中小型民营(设计)企业和大型制造企业的互补关系正在建立中。

    “集成电路设计与生产都需要有很强的队伍,能够根据国内整机的需要设计出产品,按照我们的工艺规则来生产。他的设计拿过来我们能做,做好了能够测试,测试以后能够用到整机单位去应用。这条路要把它走通。另外还有一批人能够打开市场。其他的暂时可以慢一点。”[7]所以,目前我国微电子领域与国际水平的差距,并非单项技术的差距,而是包括各环节在内的系统性的差距。单从技术和资金要素来看,“908”“909”工程的实践,可以说是试图以类似韩国的大规模投资来实现生产技术的“跨越”。但实践证明,单项发展,不足以带动一个科技-产业系统的整体进步。不仅要克服资金、人才、市场的瓶颈,也要克服体制、政策的瓶颈,非此不能吸引人才,不能调动各方面的积极性。

    我国半导体产业发展的现有条件

    经过20年的发展和积累,特别是近年来我国电子信息产业的高速发展,半导体产业在我国经济、国防建设中的重要地位,以及加快发展的必要性,已基本形成共识。应该说,我国已经在多方面具备了微电子大发展所必须的条件。

    首先是经过多年的引进和国家大规模投资,已形成一定产业基础,初步形成从设计、前工序到后封装的产业轮廓。广义电子产业布局呈现向京津地区、华东地区和深穗地区集中的态势,已经形成了几个区域性半导体产业群落。这对信息知识的交流,技术的扩散,新机会的创造,以及吸引海外高级人才、都十分重要。

    技术引进和国内科研工作的长期积累,也具备了自主研发的基础。“909”工程初步成功,说明投资机制有了巨大进步,直接鼓励了外商投资中国大陆的热情。尤其在通讯领域,国内以企业为主导的研发机制取得了可喜发展。

半导体的制造方法范文9

本文重点对半导体硅材料,GaAs和InP单晶材料,半导体超晶格、量子阱材料,一维量子线、零维量子点半导体微结构材料,宽带隙半导体材料,光子晶体材料,量子比特构建与材料等目前达到的水平和器件应用概况及其发展趋势作了概述。最后,提出了发展我国半导体材料的建议。

关键词 半导体 材料 量子线 量子点 材料 光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smart cut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2 GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nm InGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K 5μm和250K 8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的Picogiga MBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSi MODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的Lars Samuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67 GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256 GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6H SiC单晶与外延片,以及3英寸的4H SiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2 GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP, GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

本文限于篇幅,只讨论了几种最重要的半导体材料,II-VI族宽禁带与II-VI族窄禁带红外半导体材料,高效太阳电池材料Cu(In,Ga)Se2,CuIn(Se,S)等以及发展迅速的有机半导体材料等没有涉及。

半导体的制造方法范文10

关键词:半导体照明;产业集群;协同创新;技术路线图

世纪之交,美国、日本、欧盟、韩国、台湾等国家和地区相继推出了半导体照明国家或地区发展计划,大力培育和发展本国或本地区的半导体照明产业。在微观层面,以美国GE、荷兰PHILP、德国OSRAM三大世界照明生产巨头为代表的跨国公司,纷纷与上游半导体公司合作组建半导体照明公司,积极创造竞争优势,并正在中国抢占专利制高点,对我国的半导体技术发展形成了合围之势。因此,长三角作为中国半导体照明产业化的重要基地,有责任形成产业联盟,通过产业集群协同创新,共同应对跨国公司的竞争。

长江三角洲地区的LED产业集中在上海,江苏的南京、扬州和无锡,以及浙江的杭州等地区,开始呈现向园区聚集的发展趋势,且整个半导体照明产业链的投资都比较活跃。2007年,长三角的半导体照明产业规模约占国内总体规模的40%左右。截至2007年,在中国半导体照明联盟的73家会员中,长三角地区的半导体照明企业和机构有26家,占总数的三分之一。同时,长三角拥有中国六大半导体照明基地中的上海基地和扬州基地。其中,上海已经在半导体芯片制造和封装应用等方面呈现出良好的产业发展态势,并形成了比较完整的产业链和企业群;江苏在LED封装及应用方面已经初具规模;宁波具有良好的产业基础和经济区位优势,是国内主要的特种照明灯具生产基地,发展潜力巨大。

1 长三角区域半导体照明产业集群协同创新的现状及问题

1.1 协同创新现状

1.1.1 组建战略联盟,实现共同发展江苏奥雷光电(镇江)已形成了从大功率高亮度LED外延片和芯片制造―器件封装一应用三个领域的产业布局,无论从技术实力还是产业布局上都已处于国内领先地位。2005年江苏奥雷光电与上海宇体光电合作,在大功率高亮度LED外延和芯片进行研发和生产,并已签订协议,拟组建宇奥光电集团公司,共同发展LED芯片产业。

1.1.2 依托跨区产学研联盟,建立企业技术中心江苏日月(盐城建湖)照明公司、伯乐达集团(盐城)、盐城豪迈照明科技公司,分别与清华大学、北京大学、复旦大学建立长期合作关系,形成一定规模的封装应用生产线。此外,扬州市开发区先后引进清华大学、南京大学、中科院、中国电子科技集团公司等国内一流高等院校、科研单位落户,合作建立了扬州一南京大学光电研究院、中科院半导体研究中心、江苏省半导体照明工程技术研究中心、江苏省半导体照明检验中心、扬州一南京大学半导体照明研究院、扬州半导体照明和太阳能光伏应用研究与检验中心等研发机构10多家。

1.2 存在的主要问题

近几年,虽然长三角的LED产业发展较快,但由于均缺乏高新技术和知识产权体系作支撑,目前仍在低附加值领域徘徊,LED照明产业存在的问题主要表现在五个方面:

第一,在产品的应用开发上,低水平重复,缺少具有产业支撑度的龙头企业和企业集团。企业产业规模小,不能引领产业链的延伸和产业集聚。产业整合不够,绝大部分企业还是混战于低端市场,缺乏规范和约束,过度竞争导致在一定程度上影响到行业整体声誉,另外对封装前沿技术的研发广度和深度不足也需要引起足够重视。

第二,标准评价体系尚未建立,检测方法与手段缺乏,市场不能有效规范,市场竞争无序,产业管理部门需要加强合作。后应用领域本土市场规模巨大,但无标准、无规范的现象更加严重,产业高度分散,器件应用随心所欲,因设计、生产、安装不规范导致应用产品早期失效的现象比比皆是,给半导体照明产业的健康发展已经带来一定损害。

第三,基础性研究与产业化人才缺乏,结构不合理,核心装备与配套材料国产化的问题急需解决。

第四,行业发展缺少必要的政策支持,政府对半导体照明产业的扶持力度有待加强。

第五,缺乏长三角半导体照明联盟和合作平台,交流信息不充分,也是阻碍长三角产业聚集的重要原因。

1.3 产生问题的主要原因

1.3.1 缺乏产学研联合创新,影响自主创新能力的提升长三角地区在半导体照明产业领域还没有很好的形成产学研联合创新局面,表现在研究室、实验中心和各企业间各自为战,没有形成实质意义上的产业联盟。造成长三角地区半导体照明领域产学研联合创新缺乏的原因有:一是合作的积极性不高,高校、研究所更加关注这一领域的基础研究,例如照明材料的研究,而它又很难在短时间内获得突破,企业则是关注应用研究:二是高校、研究所管理机制与产学研合作要求不一致,高校教师的职称评定与论文挂钩,而企业更强调技术的应用开发;三是知识产权以及合作创新的成果归属问题目前国家还没有明确的规定,致使在合作过程中时有发生知识产权的纠纷问题。

1.3.2 企业规模偏小,标准建设滞后,产业集中度不高,阻碍了产业的集群发展长三角地区从事半导体照明的企业规模相对偏小,都是新成立的企业,资金薄弱,企业管理也相对薄弱,竞争不规范,今后很难在国际上规模竞争,至今还没有看到长三角地区有一家半导体照明企业上市融资。并且,中小企业融资难,也是制约长三角地区半导体照明企业规模不大的重要原因。此外,缺乏有影响力和有实力的企业制定技术标准,造成半导体照明行业没有统一的标准。短期看。没有统一的标准,将使半导体照明领域的竞争陷于无序状态。长期看,缺乏标准,必将使长三角地区的半导体照明产业在国际竞争中处于不利地位。

1.3.3 各地行政壁垒的存在,阻碍了产业链的有效整合上下游产业有机结合,专业化协作和分工是产业健康发展和成熟的标志,因为半导体照明产业的上下游产业的技术关联度相对较高,范围经济的属性较强。但由于行政壁垒的客观存在,长三角地区各个城市在制定半导体产业发展规划时,很少站在长三角的角度来考虑,在发展选择上几乎雷同。这样使企业集中在比较专业的领域,很少有企业能够在产业链条上进行垂直整合,没有一家企业形成了包括“衬底―延―芯片―封装―应用产品”的完整LED产业链,而长三角地区至今没有极具规模的封装厂。而以国外的发展经验来看,基本上都是走产业链垂直整合的发展道路,如美国的GELCORE的公司。

2 长三角区域半导体照明产业集群协同创

新的对策建议

2.1 发展战略

2.1.1 做强做大的集群发展战略 培育长三角的半导体照明产业的龙头企业,培养一批品牌企业。龙头企业是产业集群的支撑,产业集群的发展,必须要有龙头企业的牵动和带动。在培育龙头企业上,长三角各地政府要对获得全国驰名商标、中国品牌产品等的优势半导体照明企业实施重奖,并通过项目投资、土地、贷款上的政策,鼓励一些相关大企业集团通过收购、控股等资本运作方式进入半导体照明领域。同时积极引进和培育关联性大、带动性强的大企业,鼓励龙头企业提高核心竞争力,发挥其辐射、示范、信息扩散和销售网络的产业龙头作用;重点扶持关键性核心企业的技术自主创新项目,提升龙头企业带动力和产业集群竞争力。通过又强又大的龙头企业带动,在其周围聚集一大批配套企业,最终形成产业的集群发展。

2.1.2 协作融合创新发展战略一是加强长三角的科技和经济部门积极与上海世博局开展协调和合作,在世博会展览区一些照明、装饰、装备。采用政府采购的方式,建立半导体照明示范区。二是加强半导体照明产业链内部之间的整合和协作,形成合理分工体系。三是加强与第三产业融合,形成专业化的半导体照明市场。

2.1.3 技术标准发展战略“一流企业做标准、二流企业做技术、三流企业做产品”。作为规范国际秩序的依据和准则,标准成为企业竞争的制高点,同时,标准也不再仅仅是技术和经济层面的问题,而上升到政治层面,国际上一些国家经常利用标准来保护本国的产业。因此,在半导体照明产品还缺乏国际公认的技术标准背景下,长三角地区完全可以在培育龙头企业的同时,积极参与国家层面的半导体照明技术标准体系建设,为我国未来半导体照明产业发展在国际上获得更多的话语权。

2.2 路径选择

根据长三角地区半导体照明产业发展的现状特点、存在的问题以及半导体照明技术发展趋势,制定长三角区域半导体照明产业集群演化关键技术创新路线图,见图1。创新路径分三步走:

第一步,加强要素交流,通过引进发达地区的生产设备,建立半导体照明产品的企业,生产半导体照明的应用产品。但是,引进不是简单的引进。把技术和设备引进之后必须继之以消化、吸收和创新。同样的设备,别人制造出了一流产品,我们做不出来,原因很简单,我们没有掌握引进的设备,没有掌握工艺技术。同时,这个阶段的创新主要是集中在半导体照明下游产品的研发上。此外,在半导体的上游技术也要加强,为后续创新打下基础。

第二步,加强产业资源整合,通过市场机制推动有实力的企业兼并。国外都是大公司在发展半导体照明技术,他们的技术与研发资金雄厚,而国内的半导体照明企业规模偏小,市场竞争混乱,不利于产业技术创新的增强和产业的健康发展。因此,国家可以出台一系列的鼓励政策,在长三角等市场经济较为发达的地区,鼓励一些大型上市公司,通过资本运作,来兼并相关半导体照明企业,加强在产业链上的垂直整合,加强半导体照明中游产品研发,强化半导体照明技术的集成创新。

第三步,加大融合与协同创新,在产业层次上做到有所为有所不为。从技术路线角度考虑,国内可以分几个梯队进行研究,第一梯队主要围绕国际上主流的技术路线去走,在主要技术路线上创造新的知识产权。而第二或第三梯队就要研究国外也没有实现批量生产的新方法,走出国际三种技术路线的包围。例如开发直接发白光的芯片,开发受激发后直接发白光的白光荧光粉。从产业链角度考虑,长三角应当重点发展封装和应用技术,但上游技术领域也不能放弃。

2.3 发展对策

2.3.1 建立专利诉讼预警机制,增强企业的应诉能力 由于长三角地区的半导体照明企业的规模相对较小,还没有引起国外半导体照明大公司的注意。但到了上海2010年举办世界工业博览会之后,半导体照明产业可能做大后,国内企业由于缺乏半导体照明的核心专利技术,导致被诉讼的概率会更高。因此,长三角应该建立一个产业联盟,建立专利诉讼的预警机制,以应对长三角的半导体照明企业在遭遇国外专利诉讼而处于的不利地位,做到未雨绸缪,变被动为主动。一是要建立该领域国外专利诉讼的信息共享机制,成立专家顾问中心,聘请各领域专家对联盟成员提供指导,为联盟的对外交涉提供咨询,及时发出预警信息。二是诉讼经验的共享机制,一旦遭到,而可作到有备而来。

2.3.2 合纵连横,形成专利联盟 随着半导体照明产业国际竞争加剧。国外一些知名企业纷纷组建战略联盟,采取专利相互授权,共同打击专利侵权行为。因此,在国外大公司采取专利相互授权的联合包围的策略之时,长三角乃至国内的企业也要采取合纵连横和建立联盟的反突围的策略,众人拾柴火焰高,共同抵御国外大公司的专利包围,寻找突破口。所谓合纵,就是要联合长三角地区半导体照明产业的上中下游的企业,采取交叉授权,建立专利战略联盟,形成专利池效应。所谓连横,就是要长三角地区半导体照明产业同一产业链上企业,采取相互授权的方式,增加彼此的专利拥有数量,增强专利拥有的质量,这样一旦有企业在国内或国外遭到专利诉讼,可以增加谈判的筹码,同时可分担高昂的律师费,互通信息,减少单独应诉带来的风险。

2.3.3 联合制定技术标准。促进产业集群发展长三角地区的半导体照明技术和产业在国家中具有一定地位,应该在标准之中有所作为,联合起来,制定标准。主要工作有:尽快完善测试方法、试验方法等基础标准:器件标准应与已有的半导体器件标准协调:研究、制定较成熟产品门类,如芯片的通用规范;对于尚不成熟的产品,应密切关注、研究,适时制定标准;注意产业链上中下游之间的协调;部门之间、行业之间强强联手,共同合作;积极参与国际标准的制定,适时提出国际标准提案。

半导体的制造方法范文11

NASA的Glenn研究中心研发的新型气凝胶具有很强的灵活性,能够承受折叠、褶皱、破碎、踩压等各种极限测试。专家称这种新材料能够承受1400摄氏度以上的高温,而且在重量方面具有很强的优势,一块厚皮能够完整承受一辆汽车的重量。同时,它良好的隔热抗冲击等优良性能能够为目前的工业研发提供更多可能。

半导体上生长出石墨烯

挪威科学家开发出一种低成本的方法,能够在砷化镓纳米线上生长出石墨烯。这种石墨烯半导体混合材料具有优良的光电性能和透明、可弯曲等特性,而作为一种半导体器件制造的新方法,有望成为制造新型电子设备的基础材料,加速石墨烯的商业化进程,为半导体产业带来变革。

首个纳米线光子开关

美国宾夕法尼亚大学用硫化镉纳米线制造出了第一个全光光子开关,并将其与逻辑门结合,而这是计算机芯片处理信息的基本组成部分。作为光子学前沿领域的重要进展,其为依靠光脉冲计算的光子计算机的诞生打下了基础。在未来,人们可能会看到“消费电子产品”一词,变成了“消费光子产品”。

透明胶带诱发出高温超导现象

由多伦多大学领导的国际小组使用了透明胶带和玻璃载片来放置高温超导体,使其接近一种特殊类型的半导体——拓扑绝缘体,从而在这种新奇的半导体内诱发出了高温超导现象。这一方法为研制可用于量子计算机和提升能效的新型设备铺平了道路。

从微观水平“嗅”出癌症味道

迄今为止,精确识别癌细胞的标准方法是用一种能与癌细胞壁结合的生物受体,但其缺点是你要先知道相应受体是什么。一个美国研究小组开发出一种快速、灵敏的探测方法,能从微观水平识别出活组织内各种细胞类型,几分钟内就能区分出癌转移组织和正常组织。这为快速诊断癌症提供了一种比较通用的方法,并能减小活体检查的入侵性。

可溶解的超薄电子器件助伤口快速愈合

可溶解的电子器件不仅具有环保价值,还有医学价值。《科学》杂志近日刊文表明,一种名为纳米薄膜的超薄硅板,能够在数天内融化。溶解的速度是由桑蚕丝控制的,研究人员通过改变桑蚕丝的结晶方式来改变它的特性,从而控制电子器件的持久时间。这种名为“瞬态电子设备”领域的技术已经被用于加热伤口来避免伤口被细菌感染。

利用碳纳米管获得最小全息像素

全息影像技术主要指利用干涉和衍射原理记录并再现物体真实的三维图像,这种技术曾展现在许多描述未来生活的科幻电影中。英国剑桥大学的研究人员利用只有头发丝七百分之一粗细的碳纳米管传导和散射光线,形成迄今最小的全息像素,从而获取高清晰度的全息影像,且像素越小,清晰度就越高,这一技术未来有望提升全息图像的视觉感受。

目前最有效的热电材料问世

美国西北大学和密歇根州立大学基于常用的半导体碲化铅,合作开发出一种稳定的环保型热电材料,热电品质因数(ZT)创下世界纪录,达到2.2,可将15%至20%的废(余)热转换成电力。这是迄今报告的最高效率。与此相比,“好奇”号火星探测器采用的碲化铅热电材料的热电品质因数为1,效率只有这种新材料的一半。

变异蛋白在血细胞中逐渐积累引发亨廷顿病

亨廷顿病是一种致命的遗传神经疾病,有发展成痴呆最后致死的可能性。而英国科学家利用新的检测技术证明,导致亨廷顿病的有害蛋白是逐渐在血液细胞中积累起来的。他们对这些有害细胞是如何损害人的大脑进行了详细阐述。这一新发现不仅有助于监测亨廷顿病的进展情况,也有助于开发抑制有害蛋白的新药。

人类首次测量超级黑洞半径

黑洞作为宇宙中最神秘的天体之一在于其拥有强大的引力场,哪怕是光也无法逃脱。日前,由麻省理工学院海斯塔克天文台研究人员领导的国际科学家小组首次测量了遥远星系中央区域黑洞的半径。他们通过“事件视界望远镜”观测到黑洞边缘附近发出的光线,即在物质彻底落入黑洞之前可以抵达的最远事件视界边缘来测量黑洞半径,且发现一个质量达到太阳质量的60亿倍超大质量黑洞。

半导体的制造方法范文12

在中高端显卡市场,AMD的RadeonX1950系列凭借不俗的性能和合适的定价,使用户对其关注程度迅速提高,各大厂商的推广力度也高度升温,从而使Radeon X1950成为了市场的焦点。而目前大部分Radeon X1950 Pro显卡基于公版制造,同样的外观、同样的性能让消费者没有更多选择余地。于是各大厂商通过各种方法来增加自己产品的吸引力。最近七彩虹科技就推出一款与众不同的X1950 Pro显卡,它最大的特点是在采用散热片、风冷、热管对显卡进行散热的同时又增加了半导体制冷。

由于半导体制冷工作方式的特殊性,它工作时一端温度升高另一端温度降低这样温度高的一端热量如不能及时散发出去,就有可能烧毁设备,空气湿度较大时,温度低的一端可能会出现“结露现象。因此,半导体制冷并没有在电脑配件中得到大量应用。而利用半导体制冷的七彩虹镭风X1950 Pro-GD3冰封骑士设计比较巧妙它分别用两根热管将半导体制冷器的热端、冷端与显卡的两片散热片连接起来通过热管可以将热端的热量快速带走,有效避免热端由于过热而烧毁;同时通过智能温控设备,在显卡核心温度不高时关闭半导体制冷,杜绝了结露现象的产生。不使用半导体制冷时,显卡也可以通过连接冷端的两根热管进行散热。

七彩虹镭风X1950 Pro-GD3冰封骑士采用的核心与普通的Radeon X1950Pro一样,同为RV570,基于80nm工艺制造,拥有256-bit显存位宽,12条像素渲染管线、36个像素处理器12个纹理单元和8个顶点单元。但它的显存规格较一般的X1950 Pro要强不少,它搭配8颗64MB/32-bit的1.2 ns的三星显存颗粒组成512MB/256-bit规格。默认核心/显存频率与公版样,为575M Hz/1380MHz。由于七彩虹镭风X1950 Pro-GD3冰封骑士5F-AI 512M使用的散热器散热效果出色,加上1.2 ns显存的理论工作频率为1666 MHz,可以认为这款显卡具有相当大的超频空间。

从测试中可以看出,七彩虹镭风X1950 Pro-GD3冰封骑士在高分辨率下可以流畅运行各类游戏大作,在DX10游戏还未普及前性能不会落伍。随后,我们用显卡驱动中附带的超频软件将显卡核心愠存频率轻松超至675MHz/1592MHz,这时显卡性能大约有10%~15%的提升。为了验证七彩虹镭风X1950 Pro-GD3冰封骑士的半导体制冷是否有效,笔者将连接半导体制冷器冷端的那个风扇关闭,这样,显卡就只能通过半导体制冷进行散热。待机时显卡温度仅为45℃,超频时在70℃~83℃之间,可以看出半导体制冷对显卡的散热是非常有效的。需要说明的是显卡在温度超过70℃才会启用半导体制冷,半导体制冷在南方炎热的夏天会发挥更好的作用,玩家也可放心地冲击更高的频率。具有多种散热方式、超频能力出色的七彩虹镭风Xl950 Pro-GD3冰封骑士5F-AI 512M只比普通X1950 Pro的价格略高,为1599元,是中高端游戏玩家的又一个好选择。