HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 地形测量

地形测量

时间:2023-05-29 17:40:49

地形测量

地形测量范文1

摘 要:地籍测量是地籍信息系统的前期工作, 地籍测量的好坏直接牵涉到地籍信息系统的质量, 因此对地籍测量过程中的有关问题进行讨论是十分必要的。在地籍测量中需要进行野外权属调查、地籍测量、地籍产品质量检验、地籍图数据录入和建库等工作过程, 各个环节的质量将直接影响到地籍信息系统的最终质量。本文从地籍测量的概念、测量内容和测量中应该注意的问题等几个方面入手,剖析了开展地籍测量的问题。

关键字:地形测量;地籍测量;权属调查;

一、地籍测量的概念。地籍测量是土地管理工作的重要基础,它是以地籍调查为依据,以测量技术为手段,从控制到碎部,精确测出各类土地的位置与大小、境界、权属界址点的坐标与宗地面积以及地籍图,以满足土地管理部门以及其它国民经济建设部门的需要。为满足地籍管理的需要,在土地权属调查的基础上,借助仪器,以科学方法,在一定区域内,测量每宗土地的权属界线、位置、形状及地类等,并计算其面积,绘制地籍图,为土地登记提供依据而进行的专业测绘工作。它是土地管理的技术基础。要求分级布网、逐级控制,遵循“从整体到局部,先控制后碎部”的原则。

二、地籍测量内容。1、根据地块权属调查结果确定地块边界后,参照表10-2设置界址点标志。2、界址点标志设置后,按照下述“二”中的测量方法进行地籍要素测量。3、测量内容:包括区划、权属、地类、地形四要素的所有面、线和点状对象,外加等高线和高程注记点。

三、地籍测量的特点。地籍测量与基础测绘和专业测量有着明显不同,其本质的不同表现在凡涉及土地及其附着物的权利的测量都可视为地籍测量,具体表现如下:

(1)地籍测量为土地管理提供了精确、可靠的地理参考系统。地籍测量是一项基础性的具有政府行为的测绘工作。现阶段我国进行的地籍测量工作的根本的目的是国家为保护土地、合理利用土地及保护土地所有者和土地使用者的合法权益,而且借助现代先进的测绘技术为地籍提供了一个大众都能接受的具有法律意义的地理参考系统。

(2)地籍测量是在地籍调查的基础上进行的。地籍测量具有勘验取证的法律特征。无论是产权的初始登记,还是变更登记或他项权利登记,在对土地权利的审查、确认、处分过程中,地籍测量所做的工作就是利用测量技术手段对权属主提出的权利申请进行现场的勘查、验证,为土地权利的法律认定提供准确、可靠的物权证明材料。

(3)地籍测量的技术标准必须符合土地法律的要求,地籍测量技术和方法是对当今测绘技术和方法的应用集成。地籍测量技术是普通测量、数字测量、摄影测量与遥感、面积测算、误差理论和平差、大地测量、空间定位技术等技术的集成式应用。根据土地管理和房地产管理对图形、数据和表册的综合要求组合不同的测绘技术和方法。

(4)从事地籍测量的技术人员应有丰富的土地管理知识。地籍测量工作从组织到实施都非常严密,它要求测绘技术人员要与地籍调查人员密切配合,细致认真地作业。

四、地形测量与地籍测量有何区别。

地形测量:指的是测绘地形图的作业。即对地球表面的地物、地形在水平面上的投影位置和高程进行测定,并按一定比例缩小,用符号和注记绘制成地形图的工作。地形图的测绘基本上采用航空摄影测量方法,利用航空像片主要在室内测图。但面积较小的或者工程建设需要的地形图,采用平板仪测量方法,在野外进行测图。

地籍测量:是以地籍调查为依据,以测量技术为手段,从控制到碎部,精确测出各类土地的位置与大小、境界、权属界址点的坐标与宗地面积以及地籍图,以满足土地管理部门以及其它国民经济建设部门的需要。为满足地籍管理的需要,在土地权属调查的基础上,借助仪器,以科学方法,在一定区域内,测量每宗土地的权属界线、位置、形状及地类等,并计算其面积,绘制地籍图,为土地登记提供依据而进行的专业测绘工作。

五、地籍测量方法及精度要求。测量方法:原则上采用数字地面测量,即使用全站仪或其他解析型地面测量仪器,配合棱镜,实地测量测站至待测碎部点的方向、距离和高差,同时输入待测点图式编号及其相关点的连接码,并采集待测对象的主要属性数据。

精度要求:地物(貌)点测定精度

①地物(貌)点分:地物(貌)按点位精度要求分为三类:

A、类地物点。又称主要地物点,指主干街巷或支巷的拐点和巷侧建筑物的明显角点B、类地物点。又称次要地物点,主要指设站施测困难的城镇明显建筑物角点和村庄内明显建筑物角点。C、类物(貌)点。除上述两类地物点的其他地物(貌)点,主要指无法准确定位的地物(貌)点。

②平面精度。地物(貌)点相对于邻近图根点的点位中误差,应不超出表1(表略)的对应规定范围。同类邻近地物(貌)点间的距离中误差应不超出表2的对应规定范围。森林隐蔽等特殊困难地区可按表7.1规定值方宽50%。表1地物(貌)点平面点位中误差(厘米)

③高程精度。地物(貌点)高程精度按表2(表略)等高线间内插点高程中误差要求。表2 等高线间内插点的高程中误

六、关于地形测量与地籍测量的比较

1.要素。地籍测量重点在权属要素(包括权属界线及与之有关地物要素),对于常规地形测量所要求的高程点、等高线、管线等地貌要素无强制要求。地形测量除不表示权属界线、地籍编号等要素外,原则上对地表的所有地物、地貌均应予以表示,可以根据比例尺及用户要求对其取舍。

2.方法。目前的全野外数字成图手段可应用于地形测量、地籍测量。地籍测量因对地貌、管线等要素不做要求,野外碎部采集及内业编辑成图工作量大大减少,但后续的宗地图制作、入库工作的工作量非常大,并且因为入库而对图形的拓扑关系要求很严格,体现在地籍图编辑上就要求严格的做好点、线、面的编辑与检查。

地形测量因为为全要素测量成图,野外采集与内业编辑比较繁琐。但是地形测量到编辑成图为止,基本没什么后续工作(除非建立数据库)。因此,如果在地籍测量的基础上进行地形图的成图,首先删除地籍权属界线、注记,然后进行地形要素的补测,这一步是主要工作量所在(需补测线杆、检修井、高程点、交通附属设施等等)。

3.精度。地籍图的精度优于地形图。如果先测制地形图,必须兼顾地籍图精度要求;如果先进行地籍测量,在补测成地形图,已测要素的精度完全可以保证。

地形测量范文2

关键词:现代工程测绘地形测量应用分析

地形测量学是研究测绘地形图及与其有关测绘工作的理论、方法的应用技术学科。地形测量主要是为城市、矿区以及各种工程提供不同比例尺的地形图,以满足城镇规划、矿山开采设计以及各种经济建设的需要。以往传统的测绘主要是控制测量、地形测量、施工测量、竣工测量和变形监测5 个部分。现代工程测绘技术自动化技术具有自动化程度高、测图精度高、图形属性信息丰富和图形编辑方便等优点。

1、现代工程测绘技术

随着科学技术水平的提高,我们传统测绘技术不断向数字化测绘技术转化,我国工程测量技术的发展趋势和方向是:测量数据采集和处理的自动化、实时化、数字化;测量数据管理的科学化、标准化、规格化;测量数据传播与应用的网络化、多样化、社会化工程测量中的数字化技术。

第一, 地图数字化技术。建立各种GIS 系统,可以对原有地图进行数字化处理,对于已有纸制地图,若其现势性、精度和比例尺能满足要求,可以利用数字化仪将其输入计算机,经编辑、修补后生成相应的数字地图。目前的手扶跟踪数字化和扫描矢量化两大类仪器,针对大比例尺地形图,可以扫描大多数矢量化软件并能自动提取多边形信息,从而高效、便捷、保真的对地图进行数字化处理。

第二,数字化成图手段。大比例尺地形图和工程图的测绘是传统工程测量的重要内容,常规的成图方法野外工作量比较大,作业较为艰苦且作业程序复杂,同时还有繁琐的内业数据处理与绘图工作,成图周期长,产品单一,难以适应社会飞速发展的需要。但数字化成图技术精度高、劳动强度小、更新方便、便于保存管理及应用、易于等特点适应了我们现在工程测绘技术的需要。数字化成图手段与我们传统的白纸测图相比,不仅仅是在技术方法上的改进,更是在技术本质上的飞跃,它有几个明显的特点:首先,彻底了内外作业的界限,从最初的控制到最后成图,都可以一体化进行,大大减少了室外作业的强度,从而是成图的周期大大缩减,其次,测量人员无需分级布网逐级控制,在一个测量区域内可以一次性布网,而且其控制网可以任意混合,布控点也比传统测图大大减少,可以跟碎部测量同时进行,再者 ,碎部点的记录格式也可以被数字测图软件识别,进而有效的将其统一起来,对于碎部点的确定也避免了仅仅依靠坐标的方法,如距离交会法、对称点法等多种方法根据实际测区的情况相结合起来。最后,在碎部测量时不会因为图幅边界的限制而产生麻烦,外业不受图幅的限制,在进行内业成图时可以自动与界边进行处理。目前,数字化成图技术有内外业一体化和电子平板两种模式都具有较高的成图效率。

第三,全球卫星定位技术(GPS)。GPS具有海、陆、空全方位实施三维导航与定位能力的新一代卫星导航与定位系统。GPS 接收机的改进,广域差分技术、载波相位差分技术的发展,使得GPS 技术在导航、运载工具实时监控、城市规划、工程测量等领域有了更为广泛的应用。 GPS具有非常高的精度,而且其性能相当好,是迄今为止最好的导航定位系统,它的选点方便,可以减少大量的建造高标的费用,而且告诉的数据处理速度以及精确的精度都符合现代测量的高标准。它的全面建成和发展势必会给测绘行业带来一场全新的技术变革。于此同时,RTK (Real TimeKinematics,实时动态) 技术在GPS 基础上进一步发展,能够实时提供流动站在指定坐标系中的三维定位结果,并在一定范围内达到厘米级精度的测量。GPS-RTK技术可以高精度、快速地测定图根控制点、界址点、地形点、地物点的坐标,利用测图软件可以在野外一次生成电子地图。因此,RTK 被广泛应用于图根控制测量,地籍、房地产测绘、数字化测图及施工放样等各种现代工程测绘工作中。

第四,数据库技术与GIS 技术。随着测量数据采集和数据处理的逐步自动化、数字化,测量工作可以利用数据库技术或GIS 技术建立数据库或信息系统。我国国民经济建设飞速发展和社会进步,也有力地推动了GIS 技术的应用与发展。同时,GIS 作为信息科学和信息产业的一部分,政府和有关主管部门都给予重视和支持。GIS技术的优势不仅在于它的集地理数据采集存储、管理、分析、三维可视化显示与成果输出于一体的数据流程,还在于它的空间提示、预测预报和辅助决策功能。

最后,大型与精密工程测量技术的改进。随着我国国民经济建设的飞速发展,大型工程建设、超高层建筑物与构筑物建设、大坝变形监测以及自动化生产线和超高精度的设备安装等越来越多的应用在我们现代工程中。这对工程测量工作者来说是实践的极好机会,充分的改进各项技术并应用与实践中。

2、现代工程测绘技术与地形测量分析

伴随着我国测绘新技术的不断进步,现代工程测量必将朝着测量内外作业一体化、数据获取及处理自动化、测量过程控制和系统行为智能化、测量成果和产品数字化、测量信息管理可视化、信息共享和传播网络化的趋势上发展。地形测图为城市、矿区以及为各种工程提供不同比例尺的地形图,以满足城镇规划和各种经济建设的需要。地籍及房地产测量是精确测定土地权属界址点的位置,同时测绘供土地和房产管理部门使用的大比例尺的地籍平面图和房产图,并量算土地和房屋面积。

可以这么说,GPS的出现使得高精度定位坐标快速实现变的轻而易举,尤其是应用了RTK技术后,甚至都不需要通过各级的控制点就能依靠其数据达到快速,高进度的测定界址点以及相应的坐标,然后根据测图软件在野外就能连贯的测绘成电子图,最后通过计算机对其比例计算直接打印出各种比例的图件。应用RTK技术定位时要注意通过基准站的接收机并结合一直数据将这些数据同步传送给流动的GPS接收机,在观测卫星达到六颗星后,就可以得到厘米级别的动态位置,这与之前通过GPS静态、快速静态定位后在对其数据进行出来相比,大大提高了定位效率,所以RTK技术的出现,是基于GPS定位系统的前提下,两者相互结合所达到的效果目前收到了测量界的高度重视。

计算机、网络技术的发展及测量仪器的智能化发展,使我们的测绘技术发生了重大变革,3S 技术(GPS 全球定位系统、GIS 地理信息系统、RS 遥感)及其集成技术成为测绘技术自动化技术的核心。同时,在地形测量中,可以为城市、矿区以及各种工程提供不同比例尺的地形图,以满足城镇规划、矿山开采设计以及各种经济建设的需要。

应用现代工程测绘技术可以更精确的研究地球局部表面形状和大小,并将其测绘成地形图。现代工程测绘的技术可以更精确更省时省力的测定小范围地表高低起伏形态和地物(如建筑物、道路、耕地等)的特征点的平面位置和高程,采用一定的测量符号并按一定的比例,采用特定的技术缩绘在图纸上,为国家经济建设提供设计与施工的图纸资料。

3、总结

综上,随着现代测绘技术的出现,无论在学科理论、技术体系、应用范围上都取得了重大的发展,彻底地改变传统测绘的方式。同时,现代测绘产业以“3S”技术为特征,成为人类研究地球及自然环境解释某些自然现象以及解决人类社会发展等问题的重要工具。通过对现代工程测绘技术与地形测量的分析,我们可以通过先进的工程测量手段为我国经济建设提供设计与施工的详细的图纸资料。

参考文献:

[1]魏卫红. 现代测绘技术的发展及应用[J]. 今日科苑. 2009(13) .

[2]张辉. 新时期下信息化测绘技术的发展[J]. 中国勘察设计.2009 (03) .

地形测量范文3

关键词:海洋测绘水下地形 平面定位 水深测量

中图分类号:P24 文献标识码:A

1 概述

同陆地一样,海洋与江河湖泊开发的前期基础性工作也是测绘。不同的是,海洋测绘是测量水下地形图或水深图。兴建港口、水上运输、海上采油、海底探矿、海洋捕捞,发展水产、海域划界,海战保障、监测海底运动,研究地球动力等任务都需要各种内容的水下地形测量。 水下地形测量主要包括定位和测深两大部分。定位的作用是不言而喻的,目前的水上定位手段有光学仪器定位、无线电定位、水声定位、卫星定位和组合定位。[1]平面位置的控制基础主要是陆上已有的国家等级控制点,卫星定位如采用差分方式,其岸台亦多采用已知控制点,以求坐标系统的统一。水上定位同时, 测量水的深度是确定水下地形的重要内容。测深与定位是必须瞬时同步进行的工作,都是描述水底地形的要素。但规范规定的测深中误差要求却不是一个定值,而是随着使用方法不同、所测深度不同以及是否感潮水域而有不同的精度要求。

2 水下地形测量技术

2.1 水下地形测量的发展历史

水下地形测量的发展是与测深手段的不断完善紧密相连的。在回声测深仪问世之前,主要的测深工具是测深铅锤和测深杆。这种测深方法不仅精度很低,费时费力,而且对于测量现场的要求很高,例如为了保证精度测量的水深不能过深,测量只能在测船停泊的时候进行定点测量,风浪对测量精度的影响非常大。20世纪60年代, 出现了侧扫声纳, 可探测船一侧( 或两侧) 一定面积海域内的水下障碍物和水底地貌,可以取得类似于航摄效果的水底表面声学图像。20世纪70年代, 又出现了多波束测深系统, 它能一次给出与航线垂直的平面内几十个甚至百余个海底被测点的水深值, 形成一定宽度的全覆盖的水深条带, 可以比较可靠地反映出水下地形的细微起伏, 比单一测线的水深测量确定水下地形更真实。目前,多波速测深系统正向小型化发展,适用浅水海域和简易船只的新产品已经有售。20世纪80年代以后, 又推出了高效率的机载激光测深系统, 激光光束的高分辨率能获得海底传真图像, 从而可以详细调查海底地貌和底质。美国国防制图局于1990年研制的ABS机载水深测量系统, 除包括一台激光测深仪外, 还有一台多光谱扫描仪和一台电磁剖面仪, 能够在各种环境条件下, 在飞机上利用激光、光谱和电磁测量几种方法互补快速测制沿海的水下地形图。这些手段一般可测深30~50m,精度在±0.3m左右。目前, 还可以利用卫星上安装合成孔径雷达(SAR)等设备对海面遥感摄影, 通过对照片处理确定水深。需要强调的是,以上水深测量得到的瞬时值存在着仪器、潮汐等因素的影响。因此,需在数据后处理中加入相关改正,并归算至统一的高程基准面。为了与陆上地形图实现拼接,水下地形图宜采用与陆地统一的高程基准。而为航海服务的海图通常采用理论深度基准面, 它和平均海面相差一个常数。国外少数国家,在水下工程施工前, 还利用潜水器携带水下立体摄影机获取水下地形的立体相片,或者利用高分辨率声学系统采取全息摄影技术测量水下地形。在特殊地区还可利用水下经纬仪、水下激光测距仪、水下气压水准仪和水下液体比重水准仪、水下电视摄影系统测量水下地形。

2.2 水下地形测量方法

2.2.1 测深仪的选择

当前常见测深主要靠回声测深仪进行。利用水声换能器垂直向下发射声波并接收水底回波, 根据回波时间和声速来确定被测点的水深, 通过水深的变化就可以了解水下地形的情况。[2]为提高发射功率,改善方向性,回声测深仪的换能器从单个发展到多个;为扩大探测面积,从单波束发展为多波束,他能一次给出与航线相垂直的平面内几十个海底被测点水深值,或者测出航线一定宽度的全覆盖的水深条带。并应用了计算机和数字显示技术,提高了精确度,扩大了使用范围。

测深仪的测深精度与测深仪的固有误差、水温、水深、河床类型等因素有关,而与比例尺无关。实际测深精度为:

δ2深度比例误差=h深度 * 1/100

δ实际定位=[(δ2测深仪固有误差+δ2深度比例尺误差+δ2湿度+δ2盐度+…)/n]1/2

从公式可以看到,测深精度的主要误差源在于深度比例误差,因而在选择设备时,应尽量选择大量程、高灵敏度的测深仪。测深仪机型可分为单频测深仪和双频测深仪。单频测深仪可满足一般的深度测量需求,但对于兼有淤积、土方计算类型的测量就变得困难,因后者水深测量需要测定两个深度,一个为表层深度,另一个为积岩深度,故只有用具有两个不同探测频率的双频测深仪才可实现。[3]

2.2.2 常规水下地形测量

常规水下地形测量的工作包括测深、定位和水位观测三部分内容。首先在河道两岸建立一定密度的控制点,布设一定数量的水位站,要考虑到水位站的控制范围与测深精度、瞬时水位差、水位改正模型之间的关系,水位站的密度必须满足控制范围内内插后的水位精度。具体作业时运用GPS和导航软件对测深船进行定位,并指导测深船在指定测量断面上航行,导航软件或测深系统每隔一个时间段自动记录观测数据。测量数据处理主要包括坐标转换、声速改正、水位改正、时间同步改正、地形图生成等。

2.2.3 无验潮模式下GPS-RTK水深测量

常规的水下地形测量是用GPS测定水底点的平面位置,利用测深仪测定水深,通过对潮位、测船吃水等参数的改正,得到定位点高程。但是由于水面比降、潮汐等影响,使验潮站之间与待测位置之间的距离受到一定的限制,必须设置验潮站测量水位,推算潮汐传播规律。由于快速逼近整周模糊度技术的出现和不断改进,整周未知数可以迅速确定,从而保证了GPS实时载波相位差分(RTK)可以在动态环境下,实时地以厘米级的精度给出用户站的三维坐标。采用RTK技术可实时精确求得测定两点之间的相对高差,通过该高差可反算出流动站GPS相位中心的高程,该高程同基准站具有相同的高程基准面。但RTK得到的是WGS84坐标系中的高程,属于大地高程系统。如果能将该大地高转换成正常高或正高,就可以直接确定水下地形点的高程而无需进行验潮,因此称之为免验潮的水下地形测量。该测量方法摈弃了传统水下地形测量对潮位观测的严格需求,直接获得水底点高程,操作和实施方便、快捷。但上述方法同传统的测量方法一样,存在着船体姿态对测量成果精度的影响。在水面条件平稳情况下,姿态对测量精度影响较小;反之,影响较大时,必须进行测量和补偿。[4]

3 结语

随着计算机技术、空间技术和通讯技术的飞速发展,水下地形测量装备正在朝着系统功能更加集成化,系统外观更加小型化和轻便型方向发展。随着测量理论研究和测量手段的变化,测量精度将明显提高。具有面状测量功能的多波速测量系统将被广泛应用,各种水声校准设备的使用也将提高声纳设备的测量精度。数据采集和处理软件将得到进一步的发展,功能将满足不同用户的特殊要求。整个系统的简化和发展,使水下地形测量有着更加光明的未来。[5]

参考文献:

[1] 梁开龙. 水下地形测量[J]. 测绘通报, 2001,(06):16.

[2]于岱峰,李良良,李登富. 新旧水下地形测量方法浅析[J]. 山东建材, 2008,(02):63~65.

[3] 周军根. 水下地形测量技术方案的探讨[J]. 四川测绘, 2003,(03):137~140.

[4] 路武生. 水下地形测量原理与方法研究[J]. 科技创新导报, 2009,(26):191.

地形测量范文4

GPS全球定位系统由空间卫星群和地面监控系统两大部分组成,测量用户还应有卫星接收设备。

(1) 空间卫星群:GPS的空间卫星群由24颗高约20万公里的GPS卫星群组成,均匀分布在6个轨道面上,各平面之间交角为600,轨道和地球、赤道的倾角为550,卫星的轨道运行周期为11小时58分,可以保证在任何时间、任何地点地平线以上接收4到11颗GPS卫星发送出的信号。

(2) GPS地面控制系统:GPS地面监控系统包括1个主控站、3个注入站和5个监测站。主控站的作用是根据各监控站对GPS的观测数据计算卫星的星历和卫星中的改正参数等,并将这些数据通过注入站注入到卫星中去;同时还对卫星进行控制,向卫星指令,调度备用卫星等。监控站的作用是接收卫星信号,监测卫星工作状态。注入站的作用是将主控站计算的数据注入到卫星中去。GPS地面控制系统主要设立在大西洋、印度洋、太平洋和美国本土。

(3) GPS卫星接收设备:由GPS接收机、数据处理软件及相应的用户设备如计算机、气象仪等组成,其作用是接收GPS卫星发出的信号,利用信号进行导航定位等。

二、RTK的作用

RTK(Real Time Kinematic)技术又称载波相位差分技术,是实时处理2个测站载波相位观测量的差分方法。载波相位差分方法分为两类,一类是修正法,另一类是差分法。所谓修正法,即将基准站的载波相位修正值发送给用户,改正用户接收到的载波相位,再解求坐标。所谓差分法,是将基准站采集的载波相位发送给用户,进行求差解算坐标。可见,修正法属准RTK,差分法为真正的RTK。RTK技术也同样受到基准站至用户距离的限制。为解决此问题,发展成局部区域差分和广域差分定位技术。通常把一般差分定位系统叫DGPS,局部区域差分定位系统叫LADGPS,广域差分系统叫WADGPS。

(1) 应用RTK技术进行定位时,要求基准站接收机实时地把观测数据(如伪距或相伴观测值)及已知数据(如基准点坐标)实时传输给流动站GPS接收机,流动站快速求解整周模糊度,在观测到4颗卫星后,可以实时地求解出厘米级的流动站动态位置。这比起GPS静态、快速静态定位需要事后处理来说,其定位效率会大大提高。故RTK技术的出现和在测量中的应用受到人们的重视和青睐。

(2) 地形测图一般是首先根据控制点加密图根控制点,然后在图根控制点上用经纬仪测图法或平板仪测图法测绘地形图。近几年发展到用全站仪和电子手簿采用地物编码的方法,利用测图软件测绘地形图。但都要求测站点与被测的周围地物地貌等碎部点之间的通视,而且至少要求2~3人操作。采用RTK技术进行测图时,仅需1人背着仪器在要测的碎部点上呆上1~2秒钟并同时输入特征编码,通过电子手簿或便携微机记录,在点位精度合乎要求的情况下,把1个区域内的地形地物点位测定后回到室内或野外,由专业测图软件可以输出所要求的地形图。用RTK技术测定点不要求点间通规,仅需1人操作,便可完成测图工作。

三、测量中动态和静态

地形测量范文5

【关键词】GPS;RTK;地形测图;房地产测量

1.概述

地形测图是为城市、矿区以及为各种工程提供不同比例尺的地形图,以满足城镇规划和各种经济建设的需要 。地籍及房地产测量是精确测定土地权属界址点的位置,同时测绘供土地和房产管理部门 使用的大比例尺的地籍平面图和房产图,并量算土地和房屋面积。

用常规的测图方法(如用经纬仪、测距仪等)通常是先布设控制网点,这种控制网 一般是在国家高等级控制网点的基础上加密次级控制网点。最后依据加密的控制点和 图根控制点,测定地物点和地形点在图上的位置并按照一定的规律和符号绘制成平面图。

GPS新技术的出现,可以高精度并快速地测定各级控制点的坐标。特别是应用RTK新技术, 甚至可以不布设各级控制点,仅依据一定数量的基准控制点,便可以高精度并快速地测定界址点、 地形点、地物点的坐标,利用测图软件可以在野外一次测绘成电子地图,然后通过计算机和绘图仪、 打印机输出各种比例尺的图件。

应用RTK技术进行定位时要求基准站接收机实时地把观测数据(如伪距或相位观测值)及已知数据 (如基准站点坐标)实时传输给流动站GPS接收机,流动站快速求解整周模糊度,在观测到 四颗卫星后,可以实时地求解出厘米级的流动站动态位置。这比GPS静态、快速静态定位 需要事后进行处理来说,其定位效率会大大提高。故RTK技术一出现,其在测量中的 应用立刻受到人们的重视和青睐。

2.RTK技术用于各种控制测量

常规控制测量如三角测量、导线测量,要求点间通视,费工费时,而且精度不均匀, 外业中不知道测量成果的精度。GPS静态、快速静态相对定位测量无需点间通视能够高精度 地进行各种控制测量,但是需要时候进行数据处理,不能实时定位并知道定位精度,内业 处理后发现精度不合要求必须返工测量。而用RTK技术进行控制测量既能实时知道定位结果, 又能实时知道定位精度。这样可以大大提高作业效率。应用RTK技术进行实时定位 可以达到厘米级的精度,因此,除了高精度的控制测量仍采用GPS静态相对定位技术之外, RTK技术即可用于地形测图中的控制测量,地籍和房地产测量中的控制测量和界址点点位 的测量。

地形测图一般是首先根据控制点加密图根控制点,然后在图根控制点上用经纬仪测图法 或平板仪测图法测绘地形图。近几年发展到用全球仪和电子手簿采用地物编码的方法,利用 测图软件测绘地形图。但都要求测站点与被测的周围地物地貌等碎部点之间通视,而且至少 要求2-3人操作。

采用RTK技术进行测图时,仅需一人背着仪器在要测的碎部点上呆上一、二秒钟并同时 输入特征编码,通过电子手簿或便携微机记录,在点位精度合乎要求的情况下,把一个区域 内的地形地物点位测定后回到室内或在野外,由专业测图软件可以输出所要求的地形图。 用RTK技术测定点位不要求点间通视,仅需一人操作,便可完成测图工作,大大提高了测图的工作效率。

3.RTK技术在地籍和房地产测量中的应用

地籍和房地产测量中应用RTK技术测定每一宗土地的权属界址点以及测绘地籍与房地产图, 同上述测绘地形图一样,能实时测定有关界址点及一些地物点的位置并能达到要求的厘米级精度。 将GPS获得的数据处理后直接录入GPS系统,可及时地精确地获得地籍和房地产图。但在影响 GPS卫星信号接收的遮蔽地带,应使用全站仪、测距仪、经纬仪等测量工具,采用解析法或 图解法进行细部测量。

在建设用地勘测定界测量中,RTK技术可实时地测定界桩位置,确定土地使用界限范围、 计算用地面积。利用RTK技术进行勘测定界放样是坐标的直接放样,建设用地勘测定界中 的面积量算,实际上由GPS软件中的面积计算功能直接计算并进性检核。避免了常规的 解析法放样的复杂性,简化了建设用地勘测定界的工作程序。

在土地利用动态检测中,也可利用RTK技术。传统的动态野外检测采用简易补测或平板仪 补测法。如利用钢尺用距离交会、直角坐标法等进行实测丈量,对于变通范围较大的地区 采用平板仪补测。这种方法速度慢、效率低。而应用RTK新技术进行动态监测则可提高检测 的速度和精度,省时省工,真正实现实时动态监测,保证了土地利用状况调查的现实性。

参考文献

[1]李德仁,龚健雅,边馥苓等.地理信息系统导论.北京:测绘出版社,1993(9)

[2]陈述彭等,《地理信息系统导论》,科学出版社,北京,2000.1

地形测量范文6

关键词:地形测量;测绘技术;发展趋势

引言

地形测量学是研究测绘地形图及与其有关测绘工作的理论、方法的应用技术学科。地形测量是为城市、矿区以及各种工程提供不同比例尺的地形图,以满足城镇规划、矿山开采设计以及各种经济建设的需要。

地形测绘是研究地球局部表面形状和大小,并将其测绘成地形团的理论和技术。通过测定小范围地表高低起伏形态和地物(如建筑物、道路、耕地等)的特征点的平面位置和高程,经相应的数据处理、采用一定的测量符号按一定的比例缩绘在图纸上。从而获得与相应地面几何图形相似的地形图,为国家经济建设提供设计与施工的图纸资料。传统的测绘包括控制测量、地形测量、施工测量、竣工测量和变形监测5 个部分。现代测绘技术自动化技术具有自动化程度高、测图精度高、图形属性信息丰富和图形编辑方便等优点。

一、目前地形测量的测绘自动化技术

测绘自动化是集数据采集、处理、传输、显示于一体。随着计算机、网络技术的发展及测量仪器的智能化,测绘技术自动化技术发生了重大变革,3S 技术(GPS 全球定位系统、GIS 地理信息系统、RS 遥感)及其集成技术成为测绘技术自动化技术的核心。

1.GPS 技术GPS(Global PositioningSystem)称为全球定位系统,是美国20 世纪70年代开始研制的,它历时20 年,于1994 年3月全面建成的利用导航卫星进行测时和测距,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统,是一种高精度、全天候、高效率、多功能的测绘工具。

GPS 定位技术与常规地面测量定位相比,具有抗干扰性能好、保密性强,功能多、应用广,观测时间短,执行操作简便,全球、全覆盖、全天候、高精度的特点。特别是RTK 的定位精度可达厘米级,在水上定位得到了广泛的应用。

GPS RTK(Real Time Kinematic)技术开始于90 年代初,是一种全天候、全方位的新型测量系统,称载波相位动态实时差分技术,是目前适时、准确地确定待测点的位置的最佳方式,是基于载波相位观测值基础上的实时动态定位技术。

GPS RTK 具有定位精度高且精度分布均匀,速度快、效率高,观测时间短,方便灵活,测程不受限制,不受通视条件影响等优点。

2.GIS 技术地理信息系统(GeographicalInformation System-GIS)是利用现代计算机图形和数据库技术来处理地理空间及其相关数据的计算机系统,是融地理学、测量学、几何学、计算机科学和应用对象为一体的综合性高新技术。其最大的特点就在于:它能把地球表面空间事物的地理位置及其特征有机地结合在一起,并通过计算机屏幕形象、直观地显示出来。

GIS 具有以下的基本特点:一是公共的地理定位基础;二是多维结构;三是标准化和数字化;四是具有丰富的信息。地理信息系统对空间地理信息进行处理,准确采集有关的数据,并对地理空间数据和信息进行处理、管理、更新和分析,是采用数据库、计算机图形学、多媒体等最新技术的技术系统,对现代测绘技术自动化技术的起重要支撑作用。

目前GIS 地理信息将向着数据标准化(Interoperable GIS)数据多维化(3D&4DGIS)系统集成化(Component GIS)系统智能化(Cyber GIS)平台网络化(Web GIS)和应用社会化(数字地球)的方向发展。

3.RS 技术遥感RS(Remote Sensing)起源于20 世纪60 年代,不直接接触被研究的目标,感测目标的特征信息(一般是电磁波的反射、辐射和发射辐射),经过传输、处理,从中提取人们感兴趣的信息。遥感包括摄影、陆地、卫星、航空、航天摄影测量等技术。遥感技术依其波谱性质,可分为电磁波遥感技术、声学遥感技术、物理场遥感技术。遥感信息技术已从可见光发展到红外、微波;从单波段发展到多波段、多角度、多时相、多极化;从空间维扩展到时空维;从静态分析发展到动态监测。RS 为GIS 提供信息源,GIS 为RS 提供空间数据管理和分析的技术手段(图像处理),GPS 作为GIS 有力的补测、补绘手段,实现了GIS 原始地图数据的实时更新。3S 的综合应用是一种充分利用各自的技术特点,快速准确而又经济地为人们提供所需的有关信息的新技术,三者的紧密结合,为地形测量提供了精确的图形和数据。

二、测绘技术自动化技术的发展趋势

随着计算机、网络技术的发展及测量仪器的系统、智能化,测绘技术自动化技术向着3G 技术及集成技术自动化、实时化、数字化,数据库和应用软件的开发应用,三维可视化技术以及人工智能化发展。使测绘技术自动化技术能全方位的应用于地形测量中,提高了地形测量的效率和准确性。

1.3G 技术及集成技术的进一步发展积极普及3G 技术的应用,改进3G 技术中存在问题,更新3G 及其集成技术测量的方法和手段,加强测量精度和准确性,使3G 技术能在地形测量测绘技术领域的应用进一步扩展。全球数字摄影测量系统在GPS、GIS、RS 和3S 集成技术中的应用,对数码摄影测量和地形测量更加普及和深化,使测绘技术向电子化、自动化、数字化方向发展。

2.测绘软件及数据库的开发与更新加强地形测量数字化测绘软件的研发,使测绘软件系统更加高效、灵活和功能齐全,使测绘软件技术在地形测量中起到了相当重要的作用。更新完善信息数据库,将采集的测量数据转换直接进入信息数据库,数据管理查询方便,数据共享,实现全球数据更新和扩展空间基础信息系统的动态管理,实现测量数据的管理科学化、标准化、信息化,实现测绘数据的传输网络化、多样化、社会化,使测绘技术走向自动化,实时化,数字化。

3.人工智能和专家系统在测绘技术中的应用随着计算机技术的发展和测绘技术与相关学科的交叉、综合,人工智能和专家系统在测绘技术中有着广泛的应用前景。计算机利用专家知识模拟人脑思维进行推理,从事智能化的数据、图形处理和信息管理工作,极大地提高工作效率,使测绘技术向自动化、智能化发展。全球定位系统(GPS)数字摄影测量系统(DPS)遥感技术(RS)地理信息系统(GIS)和专家系统(ES)这5S 技术的发展和相互结合,专家系统在其中发挥着重要的作用,专家系统对整个测量流程进行控制,并执行相应的推理、分析和处理工作,并可实现信息资源共享,实时动态监测诊断,提高效率和质量,是测绘技术通向实时、自动、智能测量系统的关键。

结束语

随着计算机、网络技术的发展及测量仪器的智能化,测绘技术自动化技术发生了重大变革,从传统的测绘技术(例如电子测距仪、经纬仪、水准仪和平板仪)向3G 技术、数字摄影测量技术以及人工智能化发展,推动了测绘技术自动化技术的活跃和革新,测绘技术朝着自动化、实时化、网络化和数字化方向发展,使地形测量更快速、简单、精确。

参考文献:

[1]王运昌.地形测量学[M].冶金工业出版社.1993.p2.

[2]张德军,皱顺平.浅谈土地测绘技术的发展[J].山西建筑.2009.35(29):p355- 356.

地形测量范文7

摘要:目前地形测量的测绘自动化技术地形测量学是研究测绘地形图及与其有关测绘工作的理论、方法的应用技术学科。地形测量是为城市、矿区以及各种工程提供不同比例尺的地形图,以满足城镇规划、矿山开采设计以及各种经济建设的需要。该文阐述了地形测量和测绘技术相关概念及目前地形测量的测绘自动化技术,并探讨了测绘技术自动化技术的发展趋势。

关键词:地形测量;测绘技术;发展趋势

地形测绘是研究地球局部表面形状和大小,并将其测绘成地形图的理论和技术。通过测定小范围地表高低起伏形态和地物(如建筑物、道路、耕地等)的特征点的平面位置和高程,经相应的数据处理、采用一定的测量符号按一定的比例缩绘在图纸上。从而获得与相应地面几何图形相似的地形图,为国家经济建设提供设计与施工的图纸资料。现代测绘技术自动化技术具有自动化程度高、测图精度高、图形属性信息丰富和图形编辑方便等优点。测绘自动化是集数据采集、处理、传输、显示于一体。随着计算机、网络技术的发展及测量仪器的智能化,测绘技术自动化技术发生了重大变革,3S技术(GPS全球定位系统、GIS地理信息系统、RS遥感)及其集成技术成为测绘技术自动化技术的核心。

地形测量学是研究测绘地形图及与其有关测绘工作的理论、方法的应用技术学科。地形测量是为城市、矿区以及各种工程提供不同比例尺的地形图,以满足城镇规划、矿山开采设计以及各种经济建设的需要。

地形测绘是研究地球局部表面形状和大小,并将其测绘成地形团的理论和技术。通过测定小范围地表高低起伏形态和地物(如建筑物、道路、耕地等)的特征点的平面位置和高程,经相应的数据处理、采用一定的测量符号按一定的比例缩绘在图纸上。从而获得与相应地面几何图形相似的地形图,为国家经济建设提供设计与施工的图纸资料。

1、目前地形测量的测绘自动化技术

测绘自动化是集数据采集、处理、传输、显示于一体。随着计算机、网络技术的发展及测量仪器的智能化,测绘技术自动化技术发生了重大变革,3S技术(GPS全球定位系统、GIS地理信息系统、RS遥感)及其集成技术成为测绘技术自动化技术的核心。

1.1 GPS技术 GPS(Global Positioning System)称为全球定位系统,是美国20世纪70年代开始研制的,它历时20年,于1994年3月全面建成的利用导航卫星进行测时和测距,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统,是一种高精度、全天候、高效率、多功能的测绘工具。

GPS定位技术与常规地面测量定位相比,具有抗干扰性能好、保密性强,功能多、应用广,观测时间短,执行操作简便,全球、全覆盖、全天候、高精度的特点。特别是RTK的定位精度可达厘米级,在水上定位得到了广泛的应用。

GPS RTK(Real Time Kinematic)技术开始于90年代初,是一种全天候、全方位的新型测量系统,称载波相位动态实时差分技术,是目前适时、准确地确定待测点的位置的最佳方式,是基于载波相位观测值基础上的实时动态定位技术。

GPS RTK具有定位精度高且精度分布均匀,速度快、效率高,观测时间短,方便灵活,测程不受限制,不受通视条件影响等优点。

1.2 GIS技术 地理信息系统(Geographical Information System-GIS)是利用现代计算机图形和数据库技术来处理地理空间及其相关数据的计算机系统,是融地理学、测量学、几何学、计算机科学和应用对象为一体的综合性高新技术。其最大的特点就在于:它能把地球表面空间事物的地理位置及其特征有机地结合在一起,并通过计算机屏幕形象、直观地显示出来。

GIS具有以下的基本特点:一是公共的地理定位基础;二是多维结构;三是标准化和数字化;四是具有丰富的信息。

地理信息系统对空间地理信息进行处理,准确采集有关的数据,并对地理空间数据和信息进行处理、管理、更新和分析,是采用数据库、计算机图形学、多媒体等最新技术的技术系统,对现代测绘技术自动化技术的起重要支撑作用。

1.3 RS技术 遥感RS(Remote Sensing)起源于20世纪60年代,不直接接触被研究的目标,感测目标的特征信息(一般是电磁波的反射、辐射和发射辐射),经过传输、处理,从中提取人们感兴趣的信息。遥感包括摄影、陆地、卫星、航空、航天摄影测量等技术。[6]遥感技术依其波谱性质,可分为电磁波遥感技术、声学遥感技术、物理场遥感技术。

遥感信息技术已从可见光发展到红外、微波;从单波段发展到多波段、多角度、多时相、多极化;从空间维扩展到时空维;从静态分析发展到动态监测。

RS为GIS提供信息源,GIS为RS提供空间数据管理和分析的技术手段(图像处理),GPS作为GIS有力的补测、补绘手段,实现了GIS原始地图数据的实时更新。3S的综合应用是一种充分利用各自的技术特点,快速准确而又经济地为人们提供所需的有关信息的新技术,三者的紧密结合,为地形测量提供了精确的图形和数据。[6]

2、测绘技术自动化技术的发展趋势

随着计算机、网络技术的发展及测量仪器的系统、智能化,测绘技术自动化技术向着3G技术及集成技术自动化、实时化、数字化,数据库和应用软件的开发应用,三维可视化技术以及人工智能化发展。使测绘技术自动化技术能全方位的应用于地形测量中,提高了地形测量的效率和准确性。

2.13G技术及集成技术的进一步发展 积极普及3G技术的应用,改进3G技术中存在问题,更新3G及其集成技术测量的方法和手段,加强测量精度和准确性,使3G技术能在地形测量测绘技术领域的应用进一步扩展。

全球数字摄影测量系统在GPS、GIS、RS和3S集成技术中的应用,对数码摄影测量和地形测量更加普及和深化,使测绘技术向电子化、自动化、数字化方向发展。

2.2 测绘软件及数据库的开发与更新 加强地形测量数字化测绘软件的研发,使测绘软件系统更加高效、灵活和功能齐全,使测绘软件技术在地形测量中起到了相当重要的作用。

更新完善信息数据库,将采集的测量数据转换直接进入信息数据库,数据管理查询方便,数据共享,实现全球数据更新和扩展空间基础信息系统的动态管理,实现测量数据的管理科学化、标准化、信息化,实现测绘数据的传输网络化、多样化、社会化,使测绘技术走向自动化,实时化,数字化。

2.3 人工智能和专家系统在测绘技术中的应用 随着计算机技术的发展和测绘技术与相关学科的交叉、综合,人工智能和专家系统在测绘技术中有着广泛的应用前景。计算机利用专家知识模拟人脑思维进行推理,从事智能化的数据、图形处理和信息管理工作,极大地提高工作效率,使测绘技术向自动化、智能化发展。

全球定位系统(GPS)、数字摄影测量系统(DPS)、遥感技术(RS)、地理信息系统(GIS)和专家系统(ES)这5S技术的发展和相互结合,专家系统在其中发挥着重要的作用,专家系统对整个测量流程进行控制,并执行相应的推理、分析和处理工作,并可实现信息资源共享,实时动态监测诊断,提高效率和质量,是测绘技术通向实时、自动、智能测量系统的关键。

地形测量范文8

一数字化地形图

随着现代信息网络的高速发展,计算机技术在测量领域中的应用正在迅速发展,在计算机技术突飞猛进和高新测绘仪器不断推出的新形势下,我国正逐步形成以即GPS全球定位系统、GIS地理信息系统和RS航空遥感技术为主要支撑条件的现代测量技术体系。高新技术在测量领域中的广泛研究和应用,使现代测量工作逐渐摆脱传统人工测绘模式而进入全新的智能化时代,测绘行业在研究领域等方面均发生了划时代的变化,这使测绘行业在研究发展方面也将更深入,不仅包括研究地形形状,地面点空间定位,也包括地球及其外层空间的自然形态,以及有关的各种自然与社会信息的获取与采集,所采集的信息也从单一信息处理扩展到多信息多层次处理,所提供的成果除传统的图件外,还发展到各种类型的数字化产品和各种信息系统,其应用深度除为社会和经济生活提供各种自然和社会基础信息外,还能为政府部门决策提供科学的依据。

二数字化测绘实施过程

⑴控制测量。平面控制测量:以首级GPS控制点为四等,导线控制网为二级,水准测量为四等水准测量为例。①测区GPS控制网的建立。采用GPS卫星定位系统,测量布设首级GPS控制点,点位埋设永久性标石。使用美国产Trimble4600LS单频GPS接收机施测,采用边连式连接,4台GPS接收机同时架设在测站上,精确对中整平后,量取仪器高两次,量至毫米,较差小于规定后,采用中数。每观测一个时段,两台接收机作为固定站,另两台作为移动站,循环往复,直至观测完所有点,每个点应观测45~70min。卫星截止高度角设置为不小于15。,最少卫星观测数为不小于4,PDOP不大于6,数据采集间隔为15”。对中误差不大于2mm,天线高差值不大于3mm。使用随机平差软件TGO1.6按照独立基线解算,所有基线解都为固定解,基线情况良好。最后平差出观测GPS点的坐标成果。②测区导线控制网的建立。在四等GPS点的基础上布设二级导线,点位布设于可永久保存地段,埋设标石或铺装路面钉。二级导线布设于GPS点之间。组成节点网。二级导线点分别以 01、 02……编号。采用方向观测法,二级导线观测水平角一测回。二级导线进行边长单程观测两测回,每测回边长读数四次。所用测距仪均为I级,MD≤5mm。

二级导线在现场用铅笔在规定格式的表格上进行记录,做到字迹清楚、整齐、美观,外业记录纸统一编号。观测工作结束后及时整理、检查外业记录,确保记录计算正确,观测成果满足限差要求。二级导线应先进行方位角闭合差、导线相对闭合差、测角中误差验算。

当各项限差满足规范规定后,按结点网输入计算机,使用清华山维测量控制网平差系统,进行严密平差;平差后进行精度评定,提供导线网精度指标以及最弱点精度数据。③高程控制网的布设。高程控制网以已知水准点为起算,将平面控制点布设成四等水准网,进行观测。水准测量使用北光S3自动安平水准仪进行观测,经浙江省测绘局质检站检测,i角误差小于20”,满足四等水准测量要求。观测采用中丝读数法,直读距离:观测顺序为后-前-前-后,观测时无固定点时,应使用尺垫。水准仪安置在适当的位置上,精确整平圆水准器,同一测站观测时,不得两次调焦,每测段测站数宜为偶数站。当各项限差满足规定后,按结点网输入计算机,使用清华山维测量控制网平差系统,进行严密平差;平差后进行精度评定,最后打印出高程控制点成果。

⑵碎部点数据采集。数字化测图中,碎部测量的主要方法为极坐标法,在实测碎部点坐标后,可利用软件中的各种交会方法、十字尺测量等方法来取得其余各点的坐标,然后利用测绘软件中的编辑功能,得到最后的图形。该单位的地形网测绘小组,基本上由两个人组成,一个人观测,并在全站仪上作业并编码,一人跑尺并内业绘图,经过多年的实践,表明是可行的。

⑶测量数据处理。无论是工程进程各阶段的测量工作,还是不同工程的测量工作,都需要根据误差分析和测量平差理论选择适当的测量手段,并对测量成果进行处理和分析,就是说,测量数据处理也是工程测量的重要内容。用专用电缆将全站仪与计算机连接起来,将外业采集的数据传输到计算机。首先进行数据预处理,即对外业采集数据的各种可能的错误进行修改和将野外采集的数据格式转换成图形编辑系统要求的格式。接着对外业数据进行分幅处理,生成平面图形,建立图形文件等操作,再进行等高线数据处理,即生成三角网数字高程模型(DTM)、自动勾绘等高线等。对经过内业处理的图形数据利用测绘软件进行编辑修改,最后用HP800绘图仪输出图件。

三检查验收

⑴作业人员和作业小组应对完成成果、成图资料进行严格的自检和互检,内业图件资料进行100%的检查,并且抽取图件以及原始资料进行野外检查。发现问题立即处理,超出限差的返工重测。

⑵外业原始记录、内业平差计算成果、原始图件资料、数字化电子图件等测绘资料经作业组自检、互检符合规范要求后提交测绘队,由主管技术负责人组织进行队级检查。队级检查发现问题后要求作业组及时处理纠正,并且做好修测记录。队级检查通过后,编写地形测量技术总结报告,报请上级主管部门检查验收。

⑶最终检查验收,聘请省、市专家领导进行终审验收。作业队将各种原始记录计算表册,各种图件资料汇总,分类装订归档;数字化图形文件提供打印图纸,配合验收组检查验收。认真听取验收组意见,准确回答验收组提问,记录需修正的问题。通过检查验收后,在约定时间内善成图成果,交付使用。

地形测量范文9

【关键词】土方;三角网;方格网;质量

1、概述

在国家大力度城镇化建设和经济高速发展的背景下,工程建设的规模越来越大,而土方测量作为工程建设不可缺的部分,为前期规划和设计提供科学的依据;在实施过程中,土方测量的准确性为甲乙双方提供的公平的合作平台,减少了因为方量出入产生扯皮现象,从而耽误工期或影响工程质量。特别是有山、河、塘、树的复杂地形,土方测量的精度最容易出问题。只有控制好土方测量的质量,才能为工程建设的规划设计、施工提供有力的保障。

2、准备工作

2.1测量仪器的选择

现在,土方测量最常用的仪器有全站仪和RTK两种,往往地形比较复杂的测区,有山、河、树木等,通视情况比较差,单独用全站仪测量,如果工期不紧张,是能胜任测量工程的,但效率很差,测量成本很高;如果单独用RTK,测量效率很高,但如果有树,并且树比较高的话,影响GPS信号,RTK没信号或出现浮点解、单点解,将无法测量或者测量精度不够,有些可能会将有树的区域不测,内业处理时进行内插点,出现地形失真,计算方量误差大。因此复杂地形的土方测量,全站仪和RTK配合使用,能达到最好的效果,在卫星信号好的地方用RTK采集数据,提高工作效率,在卫星信号弱的地方,用全站仪采集数据,弥补RTK的弱点,这样就能全面真实的采集所有地形点的数据。

2.2控制点正确性验证

一般城镇测量控制点都是甲方从当地所属测绘部门购买或者实测引点的,控制点三个为最安全可靠。土方测量前必须对甲方提供的控制点进行检校,检校控制点的平面误差和高程误差,避免由于控制起点的错误而导致整个测量工作报废。

2.3确定计算方法

土方测量的计算方法有断面法、方格网法、三角网,根据不同的地形选择合适的计算方法是非常关键的,一般带状地形采用断面法计算,较为平坦的地形用方格网、三角网,复杂地形采用三角网计算。

2.3.1方格网法。方格网法的数学模型是将实际地形抽象为一些正方体的集合(见图1)。其中正方体的高度为:(HA+HB+HC+HD)/4,其中HA,HB,HC,H D为A,B,C,D四点高程与设计高程的高差。这里用(HA+HB+H C+HD)/4代替了凹凸不平的地面,这种代替在地形复杂的时候将会带来较大的误差。

2.3.2三角网法。三角网法是将相邻的最近高程点组成三角网,计算每一个三棱锥的填、挖方量,最后累计得到指定范围内填方和挖方的土方量。三角法直接采用野外测得的离散高程点(包括地形特征点)构建三角网来计算土方量,在野外测量地形特征点,具有描述地面模型逼真,保持原始数据的原有精度的优点。而且根据地形采样高程点自由度比较大更加方便,另外三角网也可以考虑地形线,提高了土方的精度,工作效率也高。

由以上原理可知,复杂地形的土方测量,三角网计算方法最为适合。如果工程性质为高尔夫球场等工程实体亦为不规则的地貌,可以采用三角网法中的两期土方计算。

3、外业数据采集

土方测量外业数据采集工作与地形图测量基本一致,都是根据地形或者根据甲方的要求用方格网采集地形离散点和方格网点的三维坐标数据,复杂地形土方测量的外业工作注意以下几点:

3.1注意杆高和仪器内高的统一

RTK测量中移动站的杆高可以固定,如果出错可以在后期数据处理中修正,但全站仪测量过程中,由于通视的原因,棱镜杆是不断变化的,这必须要求观测员和跑尺员有良好的沟通,仪器内高的输入必须和棱镜高必须一致,否则会使测量点位高程值失准,造成土方量计算错误。

3.2采集的数据点要清晰合理

复杂地形如上文提过宜采用三角网法,所以采集数据点要把握地形的特征点,比如陡坎的坎上和坎下高程点的密度不匹配,或者坎上或坎下漏测,会发生三角网构网不合理,网形失真,产生计算错误。

跑尺人员采点要条理清晰,方便内业清楚成图。很多测量从业人员认为土方测量最终只是提供一个准确的填、挖方量,外业仅记录所有特征点即可。如此会容易发生漏点的情况,而且不利于内业计算时检查、判断点位高程值合理性。

4、内业数据处理

内业数据处理是土方测量的重要环节,在计算时要注意以下几点:

4.1图面检查

查看整个测区采集的高程点,检查高程点的重复和遗漏情况,删除、改正错误的高程点。如果测区比较大,一般是几组人在共同测量,难免会出现测量结合区域重复或者遗漏的情况,由于棱镜高和仪器内高不统一,产生错误高程值,由于信号或仪器问题,或者由于外界环境干扰,产生个别“飞点”的情况,这些现象都会导致测量高程失准,所以在内业计算时必须认真检查。最直观的检查方法就是生成等高线,当测量点出现高程异常时,会明显的表现出来。如图2,一圈圈密集的等高线就说明该点发生了地形突变,根据测区的地形就可以判断该高程值有问题。

4.2采用多种计算软件计算核对

土方计算对工程设计意义重大,不仅设计到规划设计,还牵扯到工程量的结算,关系到双方的经济利益,其计算结果必须精益求精,因此在计算时要采用对最终计算结果可采用多种软件对算的方法检核。根据笔者多年的经验,用南方CASS软件的三角网计算方法,其计算土方量的误差在甲乙双方承受的范围之内。

5、结论

土方测量从测量准备,到数据采集,最后内业数据处理计算,每一步的过程控制都至关重要,直接影响着土方计算最终结果的正确性。只要按照测量操作程序施测,数据采集合理,计算方法选择适当,才能保证测量成果的质量。本文提供了在复杂地形条件下土方测量的质量控制方法,希望对从事类似工作同行有所帮助,不到之处请同仁们指正。

参考文献

地形测量范文10

关键词:GPS技术,水下地形测量

Abstract: along with the GPS technology continuous rapid development, underwater survey technology has made the corresponding progress, and has already become more and more mature, basically to finalize the design in "GPS + computer (including data processing software) + depth-measuring apparatus" measurement model, this paper is its basic principle, apparatus, equipment and matters of attention in the engineering practice to do a simple to elaborate, and combined with engineering example shows that the model of reliability in practical application

Keywords: GPS technology, underwater topography measurement

中图分类号:TU74 文献标识码:A文章编号:

1 水下地形测量基本原理

1.1GPS定位技术

GPS即全球定位系统(Global Positioning System),基本原理是卫星不问断地发送自身的星历参数和时间信息,用户接收到这些信息后,利用测距后方交会原理,计算出接收机的三维坐标、运动速度和时间等信息,从而进行起到定位和导航的作用。目前GPS系统提供的定位精度优于10m,为了得到更高的定位精度,通常采用差分GPS技术:将1台GPS接收机安置在基准站上进行观测,根据基准站已知精密坐标,计算出基准站到卫星的距离改正数,并由基准站实时将这一数据发送出去。用户接收机在进行GPS观测的同时,也接收到基准站发出的改正数,并对其定位结果进行改正,从而提高定位精度。差分GPS主要分为2大类:伪距差分和载波相位差分,后者的定位精度较高(可达厘米级),通常用于高精度的测量工程和研究中。GPS卫星发射2种频率的载波信号,即频率为1575.42MHz的L1载波和频率为1227.60HMz的L2载波,这2个载波上调制有测距码、伪随机噪声码、导航信息等。GPS接收机按接受的载波频率可分为单频和双频,单频接收机只能接收L1载波信号,双频接收机可以同时接收L1、L2载波信号。利用双频对电离层延迟的不一样,后者可以消除电离层对电磁波信号延迟的影响,而且通过在2个频率上观测可以加速整周模糊度的解算。

1.2测深仪工作原理

测深仪是一种单波束测深设备,工作原理是利用换能器在水中发出声波,当声波遇到障碍物而反射回换能器时,根据声波往返的时间和所测水域中声波传播的速度,就可以求得障碍物与换能器之间的距离。按照使用声波频率的个数,可分为单频和双频。单频测深仪仅用于一般的水深测量,双频测深仪可以同时测量淤泥表面深度和积岩深度,从而获得淤泥厚度,故后者还可以用于淤泥土方计算。

1.3 GPSRTK技术在水下地形测量中的应用

所谓水下地形测量,就是利用测量仪器来确定水下地形点的三维坐标的过程。在“GPS+计算机(含数据处理软件)+数字测深仪”的测量模式中,通过GPS的RTK功能(Real TimeKinematic,即实时载波相位差分技术,是实时处理两个测点载波相位观测量的差分方法)获得水面点的平面坐标及高程,通过测深仪获得该点处的水深,最终解算出与该点垂直对应的水下地形点的三维坐标。

2测量设备的选择

一般来说,双频GPS接收机相比单频接收机可以提供更为快速、更为精确、可靠的解算,是水下地形测量的理想选择。比如瑞士Leica1200、美国Trimble5800、南方公司的灵锐$80等。测深仪的测深精度与测深仪的固有误差、水深、水温、盐度等因素有关,主要误差源在于深度比例误差,因而在选择设备时,应尽量选择大量程、高灵敏度的测深仪。例如,中海达公司的HD系列数字测深仪,海鹰公司的SHD-13D、HY1600单频测深仪,南方公司的SDE系列测深仪等。

为实时记录数据,还需配备计算机,考虑到携带,选择轻巧的掌上电脑PDA为宜,同时安装相应的软件,通过数据线连接GPS和测深仪,同时记录GPS和测深数据。PDA品牌较多,价格相差较大,考虑到水下测量的实际需求,中下档次的PDA即可。至于软件,可以选择中海达公司的海洋测量系列软件,笔者所用的是科地公司自主开发的cbGPSSHCE软件。

水上测量离不开船只,鉴于作业性质,宜选择重量稍大的机动船。重一点的机动船航行起来比较稳定,可使GPS对中杆和测深仪换能器连接线保持竖直,减少由于船体倾斜带来的误差。而船体轻的或者人力划的木船在航行过程中,尤其是在有风、有水流的情况下,船体摇晃剧烈,甚至测深仪都无法收到反射回来的信号,而不能测出数据,因此测量误差太大,成果不可靠。而海上测量,由于波浪较大,一般的船只不能平稳航行,最好选用专业的测量船,而且船载仪器可以实时记录船体不同方向的倾斜角度,故即使风浪较大船体有适当摇晃时,也能通过船体倾斜改正来得到可靠的数据。

3仪器参数设置

测量之前应对仪器进行相关参数设置,GPS除了参考站和流动站的一般设置外,还要确保流动站与PDA通信的端口处于打开状态,并设置历元输出速率,一般为0.1S。测深仪需输人吃水深度、声速以及选择合适的量程档位等。吃水深度可以直接量取,而声波在水中的传播速度,随海水的温度、盐度和水中压强而变化。在海洋环境中,这些物理量越大,声速也越大。常温时海水中的声速的典型值为1500m/s,淡水中的声速为1450m/s。所以在使用回声测深仪之前,应根据当时水域的物理特征对仪器声速值加以校正。

在PDA中,不同的数据处理软件参数设置也不尽相同,但大同小异。以笔者所用的cbGPSSHCE软件为例,首先设置正确的GPS、测深仪类型及二者与PDA的通信端口,设置包括波特率、字节长度等在内的通信参数,其次选择正确的参考椭球、坐标系等,最后还有水面至GPS天线距离、数据的记录间距等。一般而言,1:200比例的水下地形测量中,数据记录间距2m就能满足,其他比例地形测量可以适当加大,但笔者建议依旧选择2m,因为地形点越密集形成的等深线就越能真实地反映地形状况,在形成等深线之后再按照一定的密度过滤数据即可。这样既可以绘制更加接近真实状况的等深线,又能避免过分密集的数据点。

4数据检核

为保证测量成果可靠,施测前后需进行GPS和测深仪的数据检查。对于GPS,可用流动站对已知点测量,与已知坐标比较,满足精度要求即可。对于测深仪,需用测绳实地量取水深,与测深仪面板显示的深度比较即可。

此外,在不同时段对同一水域进行重复测量,比较邻近测点的高程,如果相差不大则说明在测量过程中始终保持同样的测量精度,也说明期间测量作业是正常进行的,没有意外发生。也可用常规方法对测量成果进行检核,比如用全站仪。全站仪架设在岸上,司尺员乘船到水中立镜杆,杆高不够时,可用测绳协助。成图后比较邻近点高程即可。

数据检核通常采取多种方法相结合的方式,从而确保了测量数据的准确性,增强了测量成果的可靠度。

5 测量过程中的注意事项

测量过程中,GPS流动站要保持RTK的固定解,因此流动站和参考站可以跟踪到相同的卫星必须4颗以上。在有遮挡物影响信号接受,或其他信号干扰时,可以通过升高GPS对中杆,调高参考站电台发射功率等方式增强信号,如果可跟踪到的卫星数量仍然不足,就只好在其他时段对该区域进行重复测量,因为不同时段卫星分布不同。甚至在必要的时候,可以用“全站仪+棱镜”的方式对无法测到的位置进行补测,而且利用这种方式还能够对数据作精度检查。

船在航行过程中,水深一般会均匀变化,若测深仪数据起伏较大,要及时检查,是不是哪里出了问题。例如,在有水草生长的水域中,测深仪探头容易挂上水草或垃圾,这时测深仪数据不稳,甚至闪烁不停,应该及时清理掉这些阻拦物。另外,为了设备及人员的安全,注意水域的深度,在水浅的地方需慢行,以免船只搁浅或者探头撞到水底硬物。

测量过程中,由于在水上航行,尤其水域较大时,没有什么明显的参照物,很难凭肉眼控制船的航行轨迹,而PDA上的数据记录软件可实时显示船体的航行位置及轨迹,故可凭此控制船体航行轨迹,在地势变化小、相对平坦的地方,适当放宽测量线路的间距,反之,需加密测量线路。这有利于使测点均匀布于整个测区,同时在测区地形变化复杂的地区能有足够数据反映水下地形的真实面貌。

在PDA数据记录软件上,可以显示水面高程、水深、固定解卫星数、平面坐标等即时数据,留意这些数据的变化规律,在出现异常时才能及时发现问题,并采取相应措施。比如在死水域中,水面高程始终是在某固定值附近变动,若脱离该值则测量过程可能发生了差错,比如GPS对中杆倾斜或者下滑。

6工程实例

笔者所在单位承接过许多水下地形测量任务,均采用“GPS+计算机(含数据处理软件)+数字测深仪”的测量模式,圆满完成了任务。现结合某水库水下地形测量,简要介绍该模式在工程实践中的应用。

外业数据采集完成后,将数据从PDA传到电脑上,然后通过WaterDataHandle软件将其转换为文本文件,摘录部分数据如表1。

此文本文件中,第1列为x坐标,其次为y坐标、水面高程、水深,最后的“4”表示PDA通过4号端口接受GPS实时数据。测量过程中,平面坐标采用深圳独立坐标系,高程系统为1956年黄海高程系统。

将上述数据的第3列与第4列相减,便得到平面坐标及与该坐标对应的水下地形点高程,从而获得水下地形点的三维坐标,导入专业的绘图软件即可成图。

在测量期间水库水位变化微小,可认为固定值,而上述测量数据也包含水面高程,测得水面高程值是随机现象,进行概率统计。最大值:23.773m,最小值:23.488m,平均值:23.6705m,标准差:0.0457m,上管制线(+3a):23.8077m,下管制线(一3a):23.5333m,样本量:6829个。概率分布如图1。

从上面的图表数据可知,6829个测量数据中,水面高程值近似符合正态分布函数N(23.6705,0.04572),其中误差为0.045m。为进一步检核,用全站仪对水面高程多次测量,取其平均值得23.682m,与上述测量数据平均值(23.6705m)基本吻合。

同时用全站仪对部分水下地形检查,共测得350个数据,按照等深线插值计算,结果表明,高程值相差最大为0.25m,最小为0.02m,平均值为0.12m.80%的数据高程差值在0.11m内,满足《工程测量规范》和《水电水利工程施工测量规范》中对水下地形测量的精度要求。

地形测量范文11

【关键词】RTK ;地形测量;图根控制测量

0.前言

RTK是Real Time Kinematic(实时动态)的缩写,它是建立在全球导航定位系统(GPS)基础上的定能技术,是GPS测量技术与数据传输技术相结合而构成的组合系统。它能够实时地提供测站点在指定坐标系中的三维定位结果,不仅能够达到导线测量的精度要求,而且误差分布均匀,不存在误差积累问题。而采用RTK进行图根控制测量,能够实时知道定位精度,一旦点位精度要求满足了,即可停止观测,从而可大大提高作业效率。在此,本文就RTK 用于地形测量中图根控制测量的相关内容展开阐述,以供参考。

1.RTK的概述

1.1 RTK的工作原理

RTK的工作原理是:在基准站上设置l台GPS接收机(基准站),对所有可见GPS卫星进行连续地观测,并将其观测数据通过无线电传输设备实时地发送给用户观测站(移动站)。在移动站上,GPS接收机在接收GPS卫星信号的同时,通过无线电接收设备接收基准站传输的观测数据,然后根据相对定位原理,实时地解算整周模糊度未知数并计算,显示移动站的三维坐标及其精度。

1.2 RTK的特点

(1)动态RTK通过实时处理即能达到厘米级精度,用户可以实时监测待测点的数据观测质量和基线解算结果的收敛情况,根据待测点的精度指标,确定观测时间,从而减少冗余观测,提高工作效率。

(2)操作简便,数据处理能力强,能方便快捷地与计算机及其他测量仪器通信。

(3)RTK测量只要事先设定限差就可以对数据自动的进行取舍和记录。

(4)与传统测量比较,RTK测量作业条件要求减少,作业自动化、集成化程度高、适用范围广,其在地形测绘、工程放样等方面均可独立完成。

(5)定位精度高,数据可靠,没有误差积累。且RTK测量是自动进行的,过程中不需人为的读数等操作,所以测量数据比较稳定和可靠。

2.RTK在图根控制测量中的应用

一般,RTK 应用于图根控制测量的基本作业流程如下:

2.1收集测区控制成果

含控制点的坐标、等级、中央子午线,坐标系及控制点是属常规控制网还是GPS控制网。

2.2坐标系数及作业参数

由于RTK获得的是WGS-84坐标,而RTK作业要求实时给出当地坐标,这就需要采用高斯投影的方法,将WGS-84坐标转换为国家平面坐标。在这个过程中,需要确定的是WGS-84坐标与国家平面坐标两个打底测量基准之间的转换参数(三参数或七参数)。根据工程需要,求定测区转换参数可按如下步骤进行:首先在测区以静态方式布设均匀分布的高等级GPS控制点,获得各点的WGS-84坐标和地方坐标系下的坐标,利用同一点的两种坐标,利用随机软件求解出坐标转换参数。

通常情况下,对于一定区域内的工程测量应用,我们往往利用以往的控制点成果求取“区域性”的地方转换参数。

2.3基准站的选址

数据传输系统由基准站发射电台和流动站接收电台组成,它们是实时动态测量的关键设备,基准站和流动站的观测数据质量好坏、无线电的信号传播质量好坏对定位结果的影响很大。因此,基准站位置的选择的是顺利实施RTK作业的关键之一。基准站安置应满足下列条件:

(1)基准站可设立在有精确坐标的、离测区较劲、周围环境较好的已知点上,也可设在未知点上(最好设在已知点上)。

(2)基准点应尽可能选择在交通便利,便于安置接受设备和便于操作的地方。

(3)基准站应选在地势较高,上空无卫星信号的大面积遮盖和影响RTK数据链通讯的无线电干扰,以及提高基准站无线架设高度。

(4)为防止数据链的丢失和多路径效应,图根点的设置应顾及了方便测图使用和便于RTK测量等因素,在基准站200m范围内应无GPS信号反射物、无高压输变电线路、电视台、无线电发射台等干扰源。实在无法回避的地方,采用增加观测时间、增加观测次数的方法以提高观测精度,并且规定测图时必须对相邻图根点进行检查。

(5)在测量中,如果流动站和基准站的距离相隔过大,精度会有所下降,因此流动站和基准站的距离不能过大,一般不超过10km范围。

一般,基准站的设置包括:建立项目和坐标系统管理、基准站电台频率的选择、RTK工作方式的选择、基准站坐标输入、基准站工作启动等。

2.4 流动站的设置

流动站设置包括建立项目和坐标系统管理、流动站电台频率选择、有关坐标的输入、GPS -RTK工作方式选择,流动站上作启动等。

在利用流动站进行图根布置时,应使用三角支架,使水准气泡居中,才进行测量,精度较好时才进行保存。

2.5 测量前的质量检查

据有关研究表明,RTK确定整周模糊度的可靠性最高为95%,在测量的过程中仍会存在着误差,如数据链传输误差等。因此,为了保证RTK的实测精度和可靠,必须对已知点进行检核,避免出现作业盲点。一般,检核法有:(1)已知点检核比较法—用RTK测出已知控制点的坐标进行比较检核,发现问题即采取措施改正。(2)重测比较法—每次初始化成功后,先重测1~2个已测过的RTK点或高精度控制点,确认无误后才进行 RTK测量。在已知点检核结束后,其符合要求后方可开始作业。

2.6 RTK实施步骤

野外作业时,基准站安置在选定的控制点上,连接好各条链接线,打开接收机输入点号、天线高、WGS-84的已知坐标;设置完毕检查接收的GPS卫星数≥5颗。检查电台发射指示灯是否正常,基准站设置完成。流动站选择与基准站电台相匹配的电台频率,检查电台接收指示灯是否正常,检查接收卫星颗数≥4颗,流动站可开始测量任务。

施测时,对每个图根点分别施测两次,在测量完成后,对该点编号并用油漆进行标示。

在测量的过程中,对某些点因接收卫星信号困难无法观测时,则可在附近另选地点加测一点,并尽量使得相邻的点互相通视,方便后续的测图工作。

2.7 内业数据处理,数据传输就是在接收机与汁算机之间进行数据交换

GPS-RTK测量数据处理相对于GPS静态测简单得多,如用TGO软件处理接收机导入的测量数据(*.dc),直接可以将坐标值以文件的形式输出和打印,得到控制点成果。

3.影响图根控制测量精度的几种因素及相应对策

3.1 转换参数对于测量工作的精确度十分重要

求转换参数所利用的控制点数量应该足够。控制点应以能覆盖整个测区为原则,最好均匀分布。另外,转换参数的精度不仅与所选点的位置与数量有关,还与所选点的坐标精度密切相关,因此在选择控制点时应该对测区内的已知点进行筛选。

3.2 用RTK作图根控制测量时,应该使用三脚架,以提高精度

图根控制点应该选在适合全站仪测量的地方,两点需要通视。每个控制点最好观测两次取其平均值作为结果,两次观测值的较差不宜超过3cm。

3.3 移动站离开基准站的最大距离称作RTK的作业半径

RTK的稳定性和精度随移动站到基准站距离的增大而降低。因此,要得到厘米级的精度,流动站和基准站的距离不能过大,一般不超过10km范围。

3.4 观测者的专业水平和经验对成果的精度影响很大

因此,在测量中应严格按规范操作,减少人为因素对测量精度的影响。 [科]

【参考文献】

[1]黄慜.RTK用于地形测量中图根控制测量精度分析研究[J].科技资讯,2009,(27).

地形测量范文12

关键词:水下地形测量;GPS-RTK技术;方法选用;技术分析

中图分类号:U416 文献标识码:A

水下地形测量和陆地地形测量较为相似,在水域开发的初始阶段都需要做好测图工作,但和陆地测量不同,海洋、河流、湖泊所要测量的是水下地形图。水下地形图有着广泛的应用,在远洋货运、港湾筹建、海域边界划分、都有着重要作用。也是监控大陆板块运动等任务不可或缺的基础资料之一。笔者基于水下地形测量技术进行分析,介绍最主要的几种测量方法,总结相关内容,提供给相关人士,供以借鉴。

1.水下地形测量概念

所谓水下地形测量,是在水下运用一定的测量仪器对地形进行的测量,一般是通过确定三维坐标来实现测量。主要是水深测量,这是沿测深线方向,按一定间隔测取待测深度点(称测深点)的深度,即测定水底点至水面的高度的测量工作,是水下地形y量的一个中心环节;在水深测量工作中,还要精确地测定深度点的平面位置,这项工作简称为定位;水深测量需与陆地上平面位置与高程联系起来才具有水下地形测绘等实用价值,测深与高程系统的联系,一般通过水位观测的措施。

2.水下地形测量技术方法

2.1 水深测量

根据使用的测量工具,测深方法主要有:人工测量、单波束声呐测深仪测量、多波束声呐测深系统测量等。

(1)人工测量主要利用测深锤、测深杆对水深进行测量。其中测深锤只适用于水深较小、流速不大的浅水区,且精度差、工作效率低,现已很少使用。这是较为传统的检测方法,在现阶段主要应用在浅滩水深少于100cm的地区,因为这些地区水深过浅,声呐难以准确地反映出水下地形特征。

(2)单波束测深声呐(也称回声测深仪)是目前用途最广,国内外进行水深测量的最基本的仪器。声呐是仿生学的重大突破,其特点是能够发出特定频率的音频声波,声波在和物体接触的时候,会根据接触面材质的不同发生不同程度的回弹,而测探仪能够接收到回弹的声波,根据回弹的速度和声波在水域的速度综合分析研究,以确定仪器和前方物体之间的距离。若要求水面至水底的深度时,则应将测得的水深加上换能器的吃水,可得水面至水底的深度。

2.2 导航定位

水下地形测量时,测量船须沿着预先设计的测线行驶,并且按照规定的时间或距离获取水深值和该水深值的平面位置。在20世纪90年代以前,有多种定位方法用于水下地形测量,如交会法、极坐标法、微波测距系统和无线电定位系统等。目前,GPS几乎完全取代了这些传统的定位方法,成为水下地形测量工作中最主要的定位手段,传统方法在实际工作中已经极少使用了。特别是离岸较近的情况下使用GPS实时动态(简称RTK)测量方式使定位更加简便快捷。实时动态测量的基本思想是,在基准站上安置一台GPS接收机,对所有可见GPS卫星进行连续地观测,并将其观测数据,通过无线电传输设备,实时地发送给用户观测站。在流动站上,GPS接收机在接收GPS卫星信号的同时,通过无线电接收设备,接收基准站传输的观测数据,然后根据相对定位的原理,实时地计算并显示流动站的三维坐标及其精度。

2.3 水位观测

水深测量需与陆地上平面位置与高程联系起来才具有水下地形测绘等实用价值。测深与高程系统的联系,一般通过水位观测的措施。简单的水位观测站为立在岸边水中的标尺,标尺零点高程通过与水准点联测求得。水深测量期间,按一定时间间隔对标尺进行读数,并绘制成水位-时间曲线,由此曲线即可得到测深时水面的瞬间高程,从而根据水深就可得到水底的高程。在落差较大的地区,应设置多个水位观测站,并利用其测值按距离或高差进行归算改正。

3.水下地形测量技术应用

3.1 无验潮(水位观测)水下地形测量

水上测量可以采用GPS无验潮方式进行工作(RTK方式)。基本原理是将GPS流动站的天线与测深仪的换能器安置在同一平面位置,作业时流动站根据基准站通过电台发送的改正数实时改正自身的测量值,获得点位的厘米级精度的平面坐标和高程坐标,同时数字测深仪获取该平面位置处的水深数据,根据观测的水面高程计算出该平面位置处水下点的高程坐标,与RTK获得的平面坐标一起组成水下点的三维坐标。然后将数据导入数字成图软件就可以编辑生成需要的水下地形图。RTK无验潮测深能消除波浪和潮位(水位)变化的影响,是一种理想的水上测量方法。

3.2 无人测量船测量水下地形

科技的发展使得测量行业也有了巨大变革,无人船也被投入到了现阶段的水域测量工作,能够将水下测量的设备装载到无人船上,通过精确的声呐、全球定位系统等遥感设备,结合新兴的远程控制软件设备,实现操作技术人员在岸上就能够时时的监控无人船只情况,并就无人测量船回传的测量数据进行分析研究。但在离岸较远或风浪较大的水域无法应用。

结语

综上所述,随着我国经济水平的不断提高,水下地形测量的需求不断增加。水下地形测量的手段有很多种,其优点和缺点并存。因此,相关人员应当依据工程的具体情况而选择恰当的测量方法,除了对测量时的环境因素和精度进行全面考虑之外,还应当不断的创新,采取科学的手段来弥补测量手段的不足之处,从而在未来的道路上可以使水上测量事业的不断进步。

参考文献

[1]姚冬.水下测量中延时效应的探测与改正方法探讨[J].科技信息,2014(3):92-93.