HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 复合材料论文

复合材料论文

时间:2022-08-28 15:27:43

复合材料论文

复合材料论文范文1

某梁采用复合材料制造,约长2m,变截面并带理论外形,零件腹板部分主体为平面,包含有台阶面,侧面与壁板外形相应曲面一致,外形公差为±0.1mm,装配要求高;为“U”形结构,侧面角度闭角结构(<90°)。该构件在热压罐成型过程中脱模困难,如果强行取出会损坏构件和模具,无法保证型面公差,这对成型模具的结构设计提出了较高的要求。

2模具设计要求

复合材料成型模具直接影响着产品的质量,在设计时应满足:①模具要有足够的刚度、强度,以保证模具型面基准不变;②热容量小,热膨胀小,热稳定性好;③加工精度高,表面光度高,模具自身协调性好;④施工便捷,操作安全可靠;重量轻,运输方便;⑤可维护性好,制造成本低;⑥具有良好气密性。根据复合材料U形梁的结构特点,在设计中需要解决以下技术难点:成型模具的结构形式如何保证构件的型面公差,如何满足脱模要求并解决U形梁的回弹问题。

3模具选材

3.1模具材料

复合材料成型模具用料要求热变形小、热膨胀系数小以及导热系数高,大多采用普通钢、INVAR钢、碳/环氧复合材料和铝合金。普通碳钢适用于型面曲率不大的模具,当产品批量生产、尺寸精度要求较高时,选择钢制模具最为经济、实用;铝合金适用于平板类、尺寸精度要求不高的模具;INVAR钢适用于结构复杂、曲率大、尺寸大的模具。不同模具材料对复合材料构件变形的影响主要体现在两个方面,一方面是不同的材料热导率会影响与其直接接触的复合材料构件固化温度场的分布,从而影响最终构件内残余应力的大小及分布,引起不同的构件变形;另一方面就是不同材料的热膨胀系数不同,模具与构件之间的相互作用程度不一样,因此导致构件的变形不同。在固化过程中,模具与复合材料构件之间的热膨胀系数不匹配会引起模具与构件接触处的层间应力,包括层间剪切应力和沿构件厚度方向的力,这主要是由于模具与构件在固化压力的作用下始终粘贴在一起,随着模具受热膨胀,靠近模具的构件层比远离模具的构件层受到的约束张力要大,因此沿构件厚度方向形成一定的应力梯度,在固化过程中这部分应力被“冻结”在构件中,在脱模以前都没有得到释放,固化完成后冷却至室温脱模,这部分应力将被释放,脱模后的复合材料构件必须通过变形来维持应力的平衡。

3.2模具型面补偿修正

模具设计时要考虑复合材料与模具热膨胀系数的差异,INVAR钢和复合材料模具受热膨胀的影响很小,可忽略不计;但对于普通碳钢和铝合金模具影响比较大,对于大尺寸的复合材料构件需要采取补偿措施,根据计算公式和生产经验。考虑到制造成本和构件精度要求,本文设计的模具选用Q235钢制造,根据上述公式计算缩尺KS为-0.65‰,结合生产经验和复合材料梁的结构形式,提取整个构件的理论型面并按适当缩尺进行缩小,模具设计时按照缩小后构件提取的型面作为模具的设计型面,以减小构件的变形或抵消变形的影响作用。

4模具结构设计

4.1模具回弹角的补偿

复合材料在热固化成型过程中由于材料本身的各向异性、铺层方向引起的力学性能差异、结构的不对称性和基体的固化收缩效应等因素,在构件内经应力梯度和温度梯度耦合作用导致固化时的内应力积聚,一部分应力在构件中以残余应力的形式长久存在,另一部分应力在构件脱模后释放,这两部分应力存在的形式共同导致回弹变形。对于梁、长桁类有大夹角的构件,固化成型过程中在拐角处的回弹变形会导致夹角变化,即构件在固化脱模后,夹角因收缩而小于模具角度,此差值为回弹角。这将给制件间的装配带来容差、超差等问题,翼梁缘条回弹使其外形偏离了设计要求而导致蒙皮与翼梁间螺栓连接装配孔错位,若对装配件进行强制装配将会引起残余应力、密封不好等问题,这样会降低结构的强度和疲劳寿命,甚至造成制件报废。在模具设计时,通过调整模具型面来补偿构件回弹,即构件夹角加上回弹角等于模具夹角,使构件在脱模回弹后符合工程数模要求。国内外专家学者都在积极研究复合材料结构固化变形的预测及控制方法。GFG公司在复合材料工形梁的成型模具设计时,考虑工形梁缘条的回弹,采用经验的方法在模具的缘条型面上加入修正值(约1°)以抵消构件回弹。国内贾丽杰等人针对复合材料典型C形结构的回弹变形进行研究,通过对回弹角的预测结果进行修正,确定C形梁回弹角度在1°左右。本文涉及的复合材料U形梁为闭角结构,成型模具设计时需要进行回弹补偿,结合以往生产经验和国内外学者的研究结果,在两侧缘条各设置1°回弹补偿角,提取补偿后的两侧缘条型面为模具的型面。

4.2模具结构形式

复合材料梁一般为细长结构,常用模具结构形式为阴模、阳模和阴阳模组合,分析构件是否有气动面、装配面、胶接面等,一般情况下可确定这些面为贴膜面。根据U形梁的结构特点,采用CATIAV5R18建模,模具为框架式阳模结构,采用Q235钢焊接制造,模具包括模胎、支撑框架(支板组件和框架)、盖板、工具球套。根据产品设计部门所提供的产品零件数模提取成型曲面作为模胎的理论型面,将该曲面偏移10mm切割实体,获得“Ω”型模胎;创建支板组件,输入单个支板尺寸创建实体并设计散热孔,通过阵列命令创建其他支板;框架为长方体结构,采用的方钢管为标准型材,根据彼此之间的位置约束关系通过阵列偏移命令进行设置。这种框架式模具结构厚度均匀,通风好,升温快,有利于模具各点温度均匀,可以减少模具在升温和降温过程中因各部位温度不一样而引起的模具变形。(1)模胎模胎是“Ω”型一体式结构,采用10mm等厚的钢板,在保证气密性前提下允许拼接焊接。在模胎上需要留有一定距离用于打真空袋,通常手工铺贴模具的余量区在100~200mm。模胎的型面轮廓度公差小于0.2mm,数控加工后按数模中模胎线数据集划线,深0.5mm、宽0.3mm,并在余量线外打出标记,所有划线位置的偏差不大于0.2mm。构件轮廓线用于非数控切边时使用,决定构件外形尺寸的精度,设计时应考虑模具材料的膨胀因素作适当缩放处理。铺贴线用于无激光投影时手工铺贴定位,以控制铺贴余量,防止由于铺贴不完全齐整、流胶、挡胶条等因素导致固化后产品边缘质量不高,通常铺贴线到产品轮廓线可留20mm余量。(2)支撑框架框架与支板组件主要起支撑作用,保证整个模具的强度和刚度。框架取消了传统的薄板格栅结构,采用方钢管焊接,具有成本低、加工周期短的优点,有效实现模具减重,又使得空气流在模具体上下表面任意流动,加热更均匀。在支板组件上设计散热孔,尽量在同一直线上保证成型过程中空气的流通性,有利于整个成型的复合材料构件温度均匀,保证成型产品的质量。同时在支板两端设计80×50×10mm的加强块,防止模具在吊装时沿长度方向产生变形。(3)盖板和工具球梁腹板平面处采用2mm铝盖板与阳模配套使用,使构件表面加热均匀,同时在抽真空的过程中传力均匀,保证构件外表面的平面度。工具球用于定位找正,在设计时要覆盖构件的最高点和最低点,长度方向间隔不超过1m。各工具球孔按数模制造,并在模胎上打出所有工具球实际坐标值及孔位序号,用于手动铺贴时放置激光投影的靶标,以定位铺层区域。(4)后续处理模具焊接完成后进行2~3次退火,消除焊接和机加应力,减少模具的变形;对模具型面进行激光测量,型面精度符合图纸要求;加工完毕做气密试验,保证模具气密性。

4.3工艺验证

在复合材料U形梁的热压罐成型工艺中,采用本文设计的成型模具进行铺叠成型,生产的复合材料构件易于脱模,表面光滑平整,型面公差符合要求,U形梁两侧缘条的角度变形控制在技术要求范围以内,满足了后续与壁板及其他组件的装配要求。

5结论

复合材料论文范文2

1复合材料成型模具数字化设计制造

1.1数控加工技术复合材料模具的生产一般都是利用数控加工技术制造的,不同结构的模具及不同材质的模具都需要借助数控加工技术进行生产制作,数控加工技术能够有效地保证生产产品的精确度与质量标准。社会在不断发展与进步,数控加工技术亦是如此,新的高速数控铣削技术在生产复合材料模具的操作中运用,能够有效提高生产效率,并能有效做好产品的质量控制,所以数字化程度的加深绝对是一件美事。

1.2先进表面处理技术表面的技术处理是模具生产质量把控的重要环节之一,因为这关系着模具表层的成分及组织,它是模具性能的直接衡量指标,直接决定了模具的硬度、耐磨度及耐腐蚀性等,所以模具的表面处理必须受到足够的重视。现如今从生产上存在的表面处理技术概况来讲主要有以下几种:化学法、表层覆层法及激光法等。然而激光法就是目前数字化发展的典型代表,此方法现在被广泛应用在复合材料模具的生产加工中,发挥着重要的作用,它能够有效地处理模具表面存在的问题,实现规范模具标准,大大延长模具使用寿命。

1.3解决模具加工生产所面临的问题复合材料模具的生产加工环节必然会面临一些问题,比如在结构焊接过程中会出现残余变形和残余应力等问题,这个就必须采取合理的工艺措施并且选择科学的设计方案来预防问题的产生;加工精度和表面质量是比较关键也是技术难度系数比较高的环节,这个环节极易出现质量问题,这是由于多方面的因素共同导致的,所以在这个环节的每一步操作我们都需要谨慎,必要的话我们可以借用数字化检测设备对此环节进行严格的检测,预防问题的发生,提高产品质量。由于复合材料构件的不同类型及不同材质在生产过程中会产生不同的热膨胀系数,这也是会影响复合材料模具成型的质量因素,所以我们在挑选材料时,尽可能选择热膨胀系数相近的材料,这样可以有效地防止由于热膨胀系数不同而产生的质量问题。

2结语

现如今复合材料的广泛应用要求我们必须提高及改善复合材料模具设计制作工艺,因为模具的质量直接决定了复合材料的质量,而且能够大大提高复合材料的生产效率以及降低生产成本,并在此基础上还能达到更加完美的质量,所以我们必须大力提倡并推进复合材料模具的数字化设计制造技术,这是复合材料模具设计制造工艺的发展趋势,是顺应时展潮流的。提高生产效率,降低生产成本是每个企业所追求的目标,而数字化设计制造技术是实现企业效益的技术基础,所以复合材料模具的数字化设计制造工艺应该被积极推广应用。

作者:柏洪武单位:重庆工业职业技术学院

复合材料论文范文3

关键词:复合材料与工程;人才培养;专业面;工程能力

中图分类号:G642.0?摇 文献标志码:A?摇 文章编号:1674-9324(2014)01-0098-02

复合材料是材料科学与工程发展最为活跃的前沿领域之一,是国防和国民经济建设的关键高技术新材料。我国高校开设的本科复合材料与工程专业一般以聚合物基复合材料为主线,目标是培养具备复合材料与工程领域的基础理论、专业知识和实验技能,适应现代复合材料高科技化发展趋势,掌握复合材料设计与制备技术,能从事先进复合材料与结构的设计、制备、评价的高级专业技术人才。我国聚合物基复合材料工业发展迅猛,产销量居世界首位。但是相对于发达国家的研究和应用水平,还存在很大差距。因此,面对日益增加的技术需求与教学内容的大量更新,为适应现代教育培养的新形势,必须对复合材料与工程专业的人才培养进行全面研究与改革。济南大学复合材料与工程专业自1995年招收本科生,1999年获得硕士学位授予权。我校的人才培养教学实践和对其他高校的调研结果表明,复合材料与工程专业的课程体系中普遍存在四个方面的问题:①化学与力学知识薄弱,创新能力差;②专业面太窄,毕业生工作适应性差;③理论与实践环节脱节,学生解决实际工程能力弱;④没有很好体现办学特色。针对上述问题,如何根据当今复合材料的发展,开展先进的、科学可行的专业人才培养工作,具有重要的现实意义和深远的历史意义。

一、加强有机化学、高分子知识的讲授

聚合物基复合材料的基体材料是有机物。有机化学是一门探讨有机分子结构性质、有机反应途径机理以及相关产物分离与结构鉴定的基础科学,是本专业一门重要的专业基础课。有机化学是聚合物合成的反应类型和反应机理的坚实基础。教学过程中应培养学生从有机化学的角度学习和设计聚合物合成的反应过程,提高学生学习高分子化学的效率,启发学生对聚合物设计的创新思维。高分子化学和高分子物理是本专业两门重要的专业技术基础课,既是理论学科,又是应用学科,涉及理论和实验教学两方面[1]。其专业理论性强,概念复杂,抽象难懂,聚合反应机理都是微观的,内容较难掌握,容易影响学生的学习兴趣。同时,教学内容与学时数减少的矛盾日益突出。为了提高学生学习的积极性和主观能动性,授课过程应结合复合材料常用聚合物基体材料,注重对各知识点进行重组和精练,不拘泥于教材内容的排序,兼顾聚合物基体最新的科技进展,做到重点突出,主次分明,紧密结合工程实践应用。

二、加强力学与结构设计知识的讲授

复合材料既是一种材料又是一种结构。复合材料的组分材料和纤维的铺设方向可以按照设计要求进行选择,即复合材料具有可设计性。复合材料的非均匀性和各向异性是复合材料力学的重要特点。与常规材料的力学理论相比,普通力学问题在复合材料力学中需要重新研究,以确定常规材料的力学理论、方法、公式的适用性与如何修正。对于复合材料的结构进行力学分析和设计计算必须以准确的复合材料力学性能数据为前提。随着复合材料的开发和应用,复合材料力学已形成独立的学科分支并蓬勃发展。

三、扩宽专业面,提高毕业生工作适应性

复合材料与工程专业涉及面广,内容多,如何根据社会的不同需要设置不同的专业教学知识体系十分重要,也非常困难。从毕业生就业和工作情况分析,应进一步扩宽学生知识面,提高其工作适应性。复合材料行业的发展,一方面分工越来越细,出现高度专业化趋势;另一方面技术复合程度越来越高,出现高度综合化趋势。因此,在专业课与选修课的设置上应充分考虑,使学生的专业知识、技能、工程素质与管理素质得到提高,工作的适应性增强。针对这种情况,我校对课程体系设置进行了改革,主干学科还是材料科学与工程,主要课程包括工程力学、物理化学、高分子化学及物理、材料科学基础、材料复合原理、复合材料学、复合材料聚合物基体、复合材料工艺与设备、复合材料结构设计基础、复合材料测试技术、现代材料测试技术。选修课的设置充分考虑扩宽知识面和就业,具体科目包括无机非金属材料工艺概论、新型建筑材料、工业仪表与工程测试、计算机辅助设计、试验设计与数据处理、金属材料概论、材料科学研究方法、建筑装饰材料、建筑装饰艺术设计等。

四、进一步加强实践实训环节,提高毕业生工程能力

复合材料与工程专业属工程技术型专业,应侧重对学生工程能力、推广应用能力的培养。复合材料工业一直持续快速发展,其发展速度远超过经济发展速度,并且没有任何减速的迹象。限制其发展的主要因素是不能提供足够的训练有素的工程师。针对这种情况,我们不断完善人才培养方案,重视实践教学环节,将教学实验、实习、科研实践相结合,将校内外实践教学相结合,增加开设了两周的综合性实验和一周的设计性实验。同时,与企业建立了多个复合材料教学实践基地,除了规定的认识实习、生产实习和毕业实习以外,再组织有兴趣的同学利用寒暑假在企业进行实地学习,并请企业参与专业建设和人才培养方案制定。定期邀请相关的专家报告他们的新产品开发研究,介绍行业新工艺与新设备。实践教学效果得到显著提高。

五、结合各校实际情况,体现学科的办学特色

各高校复合材料与工程专业的办学条件差异较大,应扬长避短,积累优势,形成自己的特色[2]。复合材料按照基体材料的分类可以分为聚合物基复合材料、无机非金属基复合材料、金属基复合材料。我校复合材料与工程专业在十多年的发展过程中,形成了自己的办学特色和科研方向,将专业教学与科研融为一体。结合我校传统无机非金属材料的基础优势,在课堂教学和实践教学中,将专业面从聚合物基复合材料拓宽到无机非金属基复合材料,并保持无机基复合材料的优势和特色。我校复合材料与工程专业于2009年被评为山东省品牌专业。实践表明,我们的特色办学促进了人才培养目标的实现,在提高人才培养质量方面发挥了独到的作用,也为学生就业扩宽了渠道,为山东省复合材料行业发展做出了贡献。总之,复合材料工程技术型专业人才的培养,应加强相关基础知识的讲授,扩宽学生知识面,努力提高学生工程能力和创新能力,着力解决学生工程能力弱的问题,使毕业生在复合材料生产、设计及研究开发等方面具有更快更高更强的工作适应性。

参考文献:

[1]郝智,伍玉娇,罗筑,黄彩娟.高分子化学课程教学改革与实践初探[J].高分子通报,2012,(5):116-118.

复合材料论文范文4

关键词:导电高分子复合材料;导电性;应用

中图分类号:TQ 316 文献标识码:A 文章编号:1672-3791(2016)06(a)-0000-00

导电高分子材料就是在高分子材料的基础上,根据使用的要求,加入了相应的导电体,经过多重技术的处理之后,使其具有了较高的导电能力。而由于这种材料在制造的过程中,使用对材料的要求不高,使用的技术加工手段简单,使用的生产成本较低,导电性能较好等原因,受到了社会各界的广泛重视。因此,为了使导电高分子复合材料在当前阶段中更好的应用,在当前的科学研究中,加强对其进行研究成为了必然趋势。

1导电高分子复合材料的导电理论

1.1 统计渗滤模型

在高分子复合材料的导电理论中,首先就是统计渗滤模型,这一模型通常是几何模型为基础上建立的,就是将复合材料中基本物质使用一定技术将其抽象化,使其存在一定形状的分散体系,然后根据一定的机理要求,将其进行重新的排列,使其重新组合成一个整体,使高分子材料中的基本物质成为了连续相,而加入的导电体材料根据其功能的不同,有些成为了连续相,有些成为了分散相,这些有效的分散相以及连续相,就在导电高分子复合材料中构造出了导电通道。在这一模型的基础上,对导电高分子复合材料的电阻率与导电体进行深层次的分析,在两者之间建立相应的联系。最具有代表性的就是在建立统计渗滤模型时,根据不同的需求,将基本物质抽象为形状、大小不同的球型、规则的多面体等,同时将导电体抽象成连续性的珠串等[1]。这种模型有效的将高分子材料的导电理论进行了阐述,但是其也具有一定的缺点,就是其只能使用在较为简单的复合材料中,复合材料中只能有一种基本物质以及导电体材料,对于具有多种基本物质或者导电体材料的复合材料时,虽然也能建立相应的模型,但得到的理论与实际之间会存在较大的差异。

1.2 热力学模型

随着统计渗滤模型的使用,人们逐渐的发现其有一些缺点,例如在构建模型时,往往忽略了基本物质与导电体之间的作用关系,使得到的结果具有一定的偏差,不满足当前社会发展的需求,在这种情况下,就研究出了热力学模型来对导电高分子复合材料导电理论进行了阐述,使结果得到了很大的改进。这一理论是以热力学原理的基础上建立的,在这项理论中,认为构建导电通道的过程中,导电体处于临界状态的体积与模型中多余的自由能具有一定的联系,当模型中多余的自由能达到一定的程度后,就会在模型的内部自动的构建出导电通道。并且,高分子材料中基本物质的熔融粘度较大,更好的阻止了平衡相的分离;导电体粒子的直径较小,更好的帮助平衡相分离。使用这种模型来对导电高分子复合材料进行阐述与实际更加接近[2]。

2 导电高分子复合材料的特殊效应理论

导电高分子材料的性能往往不是一成不变的,在特定的环境中,其性能也会逐渐的在变化着。例如一些导电高分子复合材料在拉力或压力的作用下,就会出现一些特别的效应,例如压敏效应、拉敏效应等,可以根据这些特殊的效应来对地导电高分子复合材料进行阐述。

在压敏、拉敏效应理论中,可以利用通道理论对其进行阐述。在不同的高分子材料,所中具有的临界范围不同,在压敏的情况下,材料中的导电体相对就不是很多,使得导电体的分布不是很好,无法直接构造出导电通道,如果在这时向复合材料施压,压力不是很高时,没有达到材料的最大临界值,复合材料仍然具有高阻态;当所施加的压力过高时,超过了最大临界值,就会使复合材料发生一定的形变,使其内部构建出了导电通道,从而使其具有了导电性。在拉敏的情况下,材料含有大量的导电体,其内部具有一定的导电通道,这时在对其使用拉力时,当垃圾过大,超过最大临界值时,复合材料就会发生形变,致使其全本具有的导电通道遭受了损坏,从而使复合材料不在具有导电性[3]。

3 导电高分子复合材料的应用以及发展趋势

3.1 导电高分子复合材料的应用

导电高分子的原材料一般为聚合物或者具有导电效果较强的填充物,随着科学技术的不断发展,目前已经成功研制出了具有良好导电性的高分子复合材料,且随着高分子复合材料的广泛应用,也增加了抗静电、电磁波屏蔽等功能,使得导电高分子材料获得了巨大的技术突破,目前,根据导电高分子材料的性能不同,可以将其分为半导体材料、高导电体材料、热敏导体材料等,其材料成分不仅有金属材料,如铜、铝等,同时也含有碳系聚合物,大大增加了导电高分子复合材料的稳定性,同时降低了制作成本。另外,由于导电高分子复合材料的优点,使得基于传统的工作方式有了极大程度的改善,如在开关元件生产过程,传统的导电材料的在开关中虽然能够保证电流的有效传输,但是金属材质会产生无用功率,同时导体过热还会引发安全事故,因此,在开关元件的生产中应用高分子复合材料,能够有效的保护用电安全,同时,利用高分子复合材料的热效应,能够制作出热敏传感器,提高能源的利用率,另外,导电高分子复合材料也在航电器的制作、煤电系统、建筑施工中有着广泛的应用[4]。

3.2 导电高分子复合材料的研究进展

由于高分子复合材料具有非常良好的应用前景,因此,我国重视并鼓励高分子复合材料研究的创新和发展,但是高分子复合材料具有较强的不稳定性,其性能容易受到制作工艺、制作环境等外在因素的影响,近年来,先进的导电理论指出寻研制能与复合材料稳定结合的导点模型是未来高分子复合材料的研究发展方向。随着科学技术的不断发展,目前已经得出复合体系的构建是建立导线模型的前提要素,利用拓扑学方法能够有效的对复合材料的参数进行测量,同时能够有效的观测出不同添加剂对导电高分子复合材料的影响。由于高分子复合材料必须具有实用性,因此,导电高分子复合材料的研究上也偏向于增加其稳定性、轻便型、降低制作工艺与成本,同时使导电高分子复合材料能够适应不同的温度及湿度,扩大导电高分子复合材料的应用范围,尽管在理论研究上存在诸多的困难,但是在应用方面已经取得了巨大的突破[5]。

4 总结

综上所述,在现阶段的发展中,导电高分子复合材料占据重要的作用,有效的对其进行使用,可以更好地促进社会的发展。并且随着不断对其进行研究,相关的理论知识已经得到了一定的发展,处在了一个瓶颈阶段,很难在使其继续发展。因此,在当前阶段对导电高分子复合材料进行研究时,就要向着应用方面进行研究,使其在实际中起到更大的作用,有效的促进我国社会的发展。

参考文献

[1]陆昶,胡小宁,赫玉欣等.特殊形态结构导电高分子复合材料的电学性能[J].材料研究学报,2012,07(01):37.

[2]屈莹莹,赵帅国,代坤等.各向异性导电高分子复合材料的研究进展[J].塑料工业,2012,06(05):22.

[3]徐晓英,王世安,王辉.复合导电高分子材料微观网络结构及导电行为仿真分析[J].高电压技术,2012,10(09):2221.

复合材料论文范文5

关键词:复合材料,细观结构,有效属性,均质化

 

0引言

复合材料是由两种或两种以上组分材料组成的新材料, 根据不同的需要,可以选取不同的组分材料和细观结构来优化材料的性能,在航空航天、建筑、交通等领域得到越来越广的应用。为了预测复合材料的宏观力学属性,人们提出了许多的方法。早期主要以解析模型为主,如Eshelby等效夹杂法[1]、微分法[2]、Mori-Tanaka法[3]等,这些方法只考虑了复合材料结构的一些基本信息,而忽略了复合材料内部的结构特征,计算精度和适用范围有限。随着计算机技术的发展,数值法得到了广泛的应用,如通用元胞法[4-5]和有限元方法[6-8],其方法通常是对复合材料细观结构的“代表性体积元”(RVE)进行力学分析,进而获得其宏、细观力学性能。数值法很好地考虑了复合材料细观结构特征,预测精度较高。

对于高填充比和填充颗粒尺寸跨度大的复合材料,如固体推进剂[9],建模时为了使RVE具有代表性,模型中通常包含数百个颗粒,数值法预测这类材料的有效属性时前处理变得异常困难。毕业论文,有效属性。为了解决这一问题,B. Banerjee[10]利用一种递归算法预测了复合材料PBX9501的有效弹性属性,但是该算法所采用的正交化网格并不能很好的反映颗粒的边界。毕业论文,有效属性。K. Matous[11]在进行固体推进剂损伤分析时,通过Mori-Tanaka方法将基体与小尺寸颗粒均质化为一种混合物。毕业论文,有效属性。

本文将不同尺寸类型的颗粒分别与基体进行均质化,提出一种预测复合材料有效弹性模量的多步骤方法。利用多步法计算了不同填充分数和组分模量比复合材料的有效弹性属性,并与全尺寸有限元计算结果进行了对比。

1多步骤法

高填充分数和颗粒尺寸跨度大的复合材料细观结构RVE通常很大,如图1所示。多步法将预测有效弹性属性的过程分为几个步骤,首先将小颗粒与基体视为一种混合物,利用有限元或细观力学等均质化方法计算出其有效属性后,再把它当成一种新的基体,如此反复,直至计算出整个代表性体积元的有效属性,过程如图2所示。在每一步计算过程中,与基体相混合的颗粒种类越多,计算精度也越高,同时计算模型也越大。多步法计算过程中,参与混合的颗粒体积分数通过下式计算得到:

(1)

其中,为颗粒在“混合物”中的体积分数,,为参与均质化的颗粒和基体体积分数。

图1 复合材料“代表性体积元”

Fig .1 RVE of composite

图2 多步法预测复合材料宏观有效属性过程

Fig.2 Progression of propertyprediction of multi-step method for composite

2均质化方法

2.1有限元法

利用有限元方法预测复合材料有效属性时,首先在将“代表性体积单元”进行网格剖分,再施加周期性边界条件模拟均匀介质的力学行为。周期边界条件表示为

(2)

其中,为RVE的边长,,为施加于边界上的位移载荷。假定平面应变情况下,通过有限元方法计算得到的细观应力、应变场为和,对其进行体积平均得到平均应力(有效应力)和平均应变(有效应变)

(3)

(4)

其中,,为平均应力和平均应变,,为单元平均应力和单元平均应变,为单元数,为单元体积。则二维杨式模量和泊松比计算如下

(5)

(6)

三维杨式模量和泊松比可通过上式转化得到[12]

(7)

(8)

2.2 Mori-Tanaka方法

解析法中,由于Mori-Tanaka方法计算简单,同时在一定程度上考虑了复合材料中夹杂之间的相互作用,成为预测复合材料有效属性的有效工具,对于多相复合材料,其体积和剪切模量可表示为[13]

(9)

(10)

式中,,,,,,分别为体积模量和剪切模量,为体积分数,下标和0分别代表第相颗粒与基体, 为相的数目。杨式模量和泊松比为

(11)

(12)

由(9)-(10)可知,Mori-Tanaka法只考虑了颗粒体积分数,而忽视了复合材料中颗粒的形状、大小及分布等结构特征。

3计算结果

考虑三相颗粒增强复合材料,各组分为各向同性弹性材料,具体组成及力学参数如表1所示。计算中,颗粒体积分数为40%~70%, 颗粒1与颗粒2之间的体积比为1:1.8。迭代法预测该复合材料的有效弹性模量分两个步骤,每一步分别用有元法(FEM)或Mori-Tanaka(MT)方法计算,计算结果与全尺寸RVE的有限元和Mori-Tanaka计算结果进行对比,全尺寸模型颗粒总数为90,每个单步中颗粒数为50。毕业论文,有效属性。四种多

步法与全尺寸有限元计算结果如图3所示

表1 复合材料组分参数

Tab.1 Parameters of composite constituents

 

复合材料论文范文6

关键词:复合材料;教学内容;方法手段;设计规划

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)16-0205-02

材料是人类赖以生存和发展的物质基础。复合材料对现代科学技术的发展,有着十分重要的作用。复合材料注重各组分材料之间相互取长补短、协同作用,具有组元选择可设计性和结构可设计性[1]。《复合材料》是贵州大学针对矿物资源工程本科专业所设置的一门专业选修课程,意在扩展学生的专业知识。本文在近年来对该课程教学实践的基础上,从教学内容、教学方法和手段以及课程考评方式等方面提出自己的一些设想,以供相关同仁参考。

一、课程背景及基本概况

调查发现,国内高校针对相关专业设置的与复合材料相关的课程除了《复合材料》之外,还有《复合材料学》、《复合材料学基础》、《复合材料概论》等,单从课程名称上看,前两者属于系统讲授的必修类大课,后者属于概论类课程。本校矿物资源工程专业所设置的《复合材料》仅32学时,具体讲授中按照概论的思路开展,务求做到对相关基本概念和知识点都能够讲到。

当前我校的专业选修课还没有像其他公共选修课那样按照个人兴趣真正地自主选择,而是根据专业培养方案要求,在限定的学分数及课程范围内以专业、班级为单位,按照指导性原则有针对性地集体选择。这样就会出现部分学生对所“强制”选修的课程不感兴趣、缺乏学习主动性等现象。另外,我校矿物资源工程专业原本非材料类专业,近年来虽然对课程设置体系有所调整,但在学分数限定下,对于材料学科的课程无法系统化,所设置的课程无法全面覆盖学生在学习《复合材料》时所要求先修的材料科学与基础、材料合成与制备、高分子材料、材料物理、材料化学、金属材料、无机非金属材料、材料界面等材料学科主要基础课程[2],这就给《复合材料》课程的授课带来了一定困难,经常会遇到学生对于相关基础知识空缺的现象。当前笔者课题组正在进行矿物资源工程专业创新创业教育教学研究,如何开展好专业选修课程的教学工作并达到预期目标也是需要亟待解决的问题,值得我们认真研究和思考。

二、对本课程的教学内容的设计规划

《复合材料》课程涵盖的知识体系宽广、内容丰富,是一门实用性非常强的课程[3]。作为一门选修课,要在培养方案中所限定的32学时内系统地完成全部课程内容教学任务几乎不可能,因此必须对教学内容根据专业培养目标要求进行合理调整。本课程主要内容包括复合材料的定义及发展历史、分类及基本性能、基体和增强体的结构与种类、复合材料界面、复合材料的制备及应用等。结合近年的教学实践,拟按照下述思路着手教学内容的调整和设计。

1.按照专业定位和人才培养目标确定教学重点。在教学之初,首先制定课程教学大纲,明确教学目标及要求,确定教学内容及重点。确定教学重点是实现有效教学的前提,只有在明确了教学目标的前提下才能在教学过程中抓住重点、突破难点。针对矿物资源工程专业偏向矿物材料的特点,在课程内容中对于金属基复合材料部分作简要概述,而对于聚合物基复合材料,由于其增强材料大多为矿物颗粒、纤维以及晶须,应该和陶瓷基复合材料等进行重点、详细介绍。

2.结合专业目标要求合理设计课程讲授体系。虽然在各类教材中,复合材料的各章节看似独立,但实际上章节内容之间联系非常紧密,在教学中要特别注重各章节之间的衔接以及知识点之间的内在逻辑和关联,让学生在学习中从整体上把握课程学习方向,最终能形成一个完整的知识体系。比如课程概述部分关于复合材料组成的基体和增强体,在后续各类型复合材料的教学中都有所涉及,并且都可以按照基体材料、增强材料、界面性能、加工制备、复合材料性能的逻辑次序来展开,前四个方面都会对复合材料最终的性能及用途有所说明。所以,在整个教学过程中,都要严格把握材料组分、结构与性能以及性能决定应用等关系,把每章节的内容和整门课程的内容联接为一个知识整体。

3.教学中注重理论联系实际。随着复合材料在日常生活和社会生产实际中的应用领域不断发展扩大,使得平时我们在衣、食、住、行各方面能够看得到、摸得着的东西都能够和复合材料搭上关系,甚至还是亲密关系,比如我们所穿的衣服布料、吃饭用的碗碟和水杯、各类建筑材料等,都可分别归类为课程中相应的聚合物基复合材料、陶瓷基复合材料等大类。在课程讲授中时常穿插这些生活中的实例有助于加深学生对课程内容的记忆和提高学习兴趣,学生对此也非常喜欢。

4.及时更新与课程相关的知识和内容。复合材料自从研究发现以来,一直处于迅速发展的态势,每时每刻都会诞生新的复合材料,涌现出新的研究成果。因此在教学内容中也要不断地推陈出新,将之前的陈旧内容进行更新换代,时常添加一些在复合材料领域发表的最新研究成果,尤其是把新型复合材料在航空航天、新能源、医疗、环境等尖端领域中的应用实例贯穿到课堂教学中。

5.笔者目前正攻读材料学矿物材料方向的博士学位,在课程内容讲解中,可以结合攻读博士期间的研究内容、方法以及所查阅的大量文献资料等对课堂知识点进行补充完善。

三、教学方法及教学手段的丰富和创新

现在的教学大多都采用多媒体方式教学,但是多媒体教学过程也不仅仅就是做个PPT给学生演示讲解一下就完事了,在教学中要不断丰富和创新自身的教学方法和教学手段。

1.精心制作多媒体课件。当今高校课堂,PPT课件已经是最基本的要求了。即便如此,我们对这个最基本的PPT也要认真对待。我们要做到课件美观精练、图文并茂,尽量避免大段文字堆积和由于粗心大意而产生的错别字等小问题,还要避免为图省事而随意在网上下载别人现成的课件,即使是教材随带的课件,也得按照自己设计的教学内容和思路精心调整和修改,还要将好的视频和音频等素材融入到演示课件中。在计算机多媒体技术快速发展的今天,还要将已经很成熟的计算机辅助教学(CAI)系统引入到自己的教学过程中,增大教学信息,给学生创造一个有经历感的学习环境。

2.调整和创新教学方式。首先,在教学过程中开展教师指导学生自主学习,让学生真正成为教学环节的主题。总体而言,该课程多为陈述性内容,以往的“灌注式”教学模式使得课堂气氛沉闷,学生也觉得枯燥乏味[4]。因此课堂教学中无需做到面面俱到,针对设计的重点内容进行详细讲解,对于容易理解的内容让学生在教师指导下自学,进行学生汇报或提问式检查等。其次,采用讨论式教学,加强课堂互动,鼓励学生提问,引导学生思考,让学生主动参与到教学中去。最后,每一章教学中期给学生布置题目,让学生自主查阅文献资料,在课堂上进行分组报告,也鼓励学生针对自己感兴趣的主题或内容进行报告,报告后其他同学进行提问、点评和讨论,此举可以锻炼学生利用各种媒介进行文献查阅和语言报告表达能力,使学生了解复合材料的最新发展动态,接触学科前沿领域,并提升自身综合能力。同时也要借鉴国内外其他高校在相同课程教学中好的思路和方法。

四、采取多元化的课程考评机制

课程考核是教学质量管理体系中的一个重要环节。传统的纯知识记忆考试方式在很大程度上约束了学生的思维,也会对学生造成一定的压力,最终的结果就是造成学生整天为了通过考试而学习,缺乏学习的积极性和主动性[3]。教学中,我们要意识到考试从来都只是衡量和评价学生对所学课程知识掌握情况以及使用所学知识理解问题、分析问题和回答解决问题能力的一种手段,并非教学的最终目的。鉴于此,本课程开始之初就倡导学生轻松学习,最终采取多种形式相结合的考查方式,主要包括开卷笔试、课堂报告、课程论文等,同时在很大程度上还兼顾考查学生平时的学习态度、学习能力等综合素质。这种多元化的考评机制既达到了学生对课程知识的掌握情况,也注重对整个学习过程、创新思维以及综合素质的考查,符合学生在学习上的心理要求,也达到了预期的教学效果,学生对此也表示满意和赞同。

五、结语

教学过程是一个日积月累、不断完善和熟练的过程。课程教学改革并非只是口头上的说词,还是一项长期的系统工程,需要在长期的教学过程中不断探索和总结。我们要改变选修课曾不被很多老师和同学所重视的不良现象。通过不断的学习和总结,提高自身的教学水平,培养学生的学习兴趣、学习积极性和主动性,最终达到提高学生综合能力、培养社会所需的综合素质人才的目标。

参考文献:

[1]尹洪峰,魏剑.复合材料[M].北京:冶金工业出版社,2010:2.

[2]马庆宇.《复合材料概论》教学改革浅析[J].教育教学论坛,2013,(2):48-50.

复合材料论文范文7

关键词:碳纤维;复合材料;磨削温度

中图分类号:TB文献标识码:A文章编号:1672-3198(2012)06-0187-01

0 绪论

碳纤维/树脂复合材料作为一种先进的复合材料,具有重量轻、模量高、比强度大、热膨胀系数低、耐腐蚀、吸振性好等一系列优点,在航空航天、汽车等领域已有广泛的应用,随着航空、航天及军事装备技术的快速发展,对碳纤维复合材料构件的要求日益严格,碳纤维复合材料的机械加工中的热问题已成为影响其性能的重要因素。另外,随着碳纤维复合材料性能的不断提高,材料的切削加工性能越来越差,热量堆积导致砂轮刀具磨损加剧,影响加工精度和加工效率,难以降低加工成本。在碳纤维增强复合材料的零件与其他零部件装配连接时,不可避免的要进行大量的机械加工,特别是磨削加工与孔加工。因此,碳纤维复合材料磨削热分析研究,已成为目前复合材料研究和应用所面临的一项亟待解决的难题。

1 磨削测温实验

本试验以碳纤维/树脂复合材料板为试验材料,进行磨削测温试验。该碳纤维增强复合材料的增强体是T300型碳纤维,基体材料是AG-80型树脂,在预浸处理后铺层预置而成。材料如图1所示。

图3是GC60J砂轮磨削碳纤维/树脂复合材料的试验结果,在砂轮线速度Vs=15.7m/s的条件下,改变工件进给速度和磨削深度得到的曲线。由图3可以看出,增大磨削深度ap,工件表面磨削温度升高。主要是由于磨削过程中,增大磨削深度由于切削变形力和摩擦力均增大,因而使磨削温度升高。图3 磨削深度对磨削温度的影响图4是GC60J磨削碳纤维/树脂复合材料的试验结果,在工件进给速度Vw=14m/min的条件下,改变磨削深度和砂轮线速度得到的几组曲线。由图4可以看出,增大砂轮转速Vs,工件表面磨削温度升高。增大砂轮转速,由于单位时间内工作的磨粒数增多,磨削厚度变薄,切削变形能增大,同时,产生划擦和耕犁的磨粒数增多,是摩擦加剧,因而导致磨削温度升高。

图5是GC60J磨削碳纤维/树脂复合材料的试验结果,在砂轮线速度Vs=11.8m/s的条件下,改变磨削深度和进给速度得到的几组曲线。由图4可以看出,增大进给速度Vw,工件表面磨削温度升高。增大工件进给速度,使得每颗磨粒的切削厚度增大,因此使得磨削阻力增大,热源强度增大,因而导致磨削温度升高。

3 结论

通过以上试验和分析我们得到如下结论:

(1)增大砂轮转速,由于单位时间内工作的磨粒数增多,磨削厚度变薄,切削变形能增大,产生划擦和耕犁的磨粒数增多,摩擦加剧,因而导致磨削温度升高。

(2)增大磨削深度由于切削变形力和摩擦力均增大,因而使磨削温度升高。

(3)增大工件进给速度,使得每颗磨粒的切削厚度增大,因此使得磨削阻力增大,热源强度增大,因而导致磨削温度升高。

(4)为了保证温度在200以下,并考虑加工效率,工艺参数选择为:磨削深度0.02~0.04mm,砂轮速度取13~17m/s,进给速度取12~16m/min。

参考文献

[1]黄海鸣,杜善义.C/C复合材料烧蚀性能分析[J].复合材料学报,2001,18(3):76-80.

[2]赵稼祥.先进复合材料的发展趋势[J].宇航材料工艺,1997,(5):55-56.

[3]赵军.二十一世纪复合材料市场前景广阔[J].国际学术动态,2005,(2):33-35.

复合材料论文范文8

Abstract: Although the FRP has been abundantly studied at home and abroad, there are many uncertain factors in practical projects. suffered from composition, processing technique, bonding methods and other influence factors, deformation, deflection change and failure mode of composite materials are not consistent with different shape and force of materials. This paper conducted indoor experiment and numerical simulation to H-shaped GFRP beam, and studied the mechanical properties and failure form.

关键词: FRP;加载试验;数值模拟

Key words: FRP;load test;numerical simulation

中图分类号:TB3文献标识码:A文章编号:1006-4311(2011)05-0208-01

0引言

复合材料[1]是由两种或者两种以上的单一材料,用物理或者化学的方法经人工复合而成的一种固体材料。复合材料不仅可以克服一些组分材料的缺点,而且能够提供一些组分材料所不能有的优点,其微观构造和复合机理是非常复杂的。组成复合材料的成分,绝大多数是由人工制成或者是人工合成的,因此不会出现资源减少或者是枯竭现象。复合材料产品和一些金属、非金属材料相比,可以大大降低能源消耗,减少材料消耗,大幅度减少腐蚀和磨损,缩短生产周期,提高产品的性能,延长使用寿命。FRP是纤维增强复合材料(Fiber Reinforced Polymer)英文名字的缩写。二十世纪五、六十年代以来,由于航空工业的发展需要,FRP复合材料被研究开发,并广泛应用于航空航天领域,如飞机制造、导弹、卫星部件等[2]。近年来,随着FRP复合材料制备加工工艺的发展和原材料价格的大幅下降,FRP复合材料被成功应用于土木工程领域,开始用于既有结构加固和新建结构工程当中,成为一种新型的、高性能的智能化土木工程结构材料。利用FRP材料取代钢材,将成为土木工程行业的一次革命。

1工字型GFRP梁的室内加载试验

GFRP即(Glass Fiber Reinforced Polymer),玻璃纤维增强复合材料,最先出现在美国并以用于实际中,时至今日它的生产工艺最为成熟,理论研究最为先进的一种纤维增强复合材料,本试验采用的复合材料为南京某复合材料生产厂家生产的拉挤型纤维增强复合工字型材料,试验在GFRP梁跨中和两端分别布置了百分表和单向应变片,用来测试工字型GFRP梁在受力过程中产生的应变和变形。整个试验采取分级加载,直至工字型GFRP梁发生破坏,其破坏形式为整体弹性失稳。

2工字型GFRP梁的数值模拟

本文采用大型通用有限元软件ABAQUS对工字型GFRP梁受力进行数值模拟。建模主要包括以下几个过程:①Proterty模块中GFRP材料属性和材料弹性主方向的定义。②Mesh模块中对GFRP梁的网格划分。③Interaction模块中耦合作用的设置。④Load模块中荷载和边界条件的设置。⑤Job模块提交作业分析以及Visualization后处理。把室内试验测试数据与有限元软件ABAQUS模拟结果进行比较,对比图见图1。由图1荷载-应变曲线和荷载-位移曲线可以看出,随着荷载的逐渐增大,梁跨中底部的应变和位移值基本都是按照线性增大的,说明工字型GFRP试验梁的整个受力过程为弹性工作阶段,其破坏前没有明显征兆。图中显示的实测值和ABAQUS模拟值有一定的差距,分析原因有以下几点:试验过程中百分表采取人工读数,多次人工读数会产生误差;室内试验采用油压千斤顶手动加载,随着梁受力沉降,会出现卸荷现象,需要及时的人工补载,这样不能保证荷载处于稳定值,对试验数据的采集产生一定影响;采用ABAQUS数值模拟建模过程中,有多种网格划分形式,不同的网格划分对模拟值会有一定影响。

3结论

通过室内试验结果和ABAQUS数值模拟结果相对比,ABAQUS模拟曲线与实际试验结果曲线相吻合,证实用ABAQUS模拟工字型GFRP梁的受力分析相对准确性。梁的四点弯室内试验中,分配梁支座下的工字型GFRP梁属于纯弯段,特别是梁跨中处由于受力分析清晰、挠度变化明显和应变的增减可测,是研究GFRP梁力学性能典型位置。故本文试验点数据采集和ABAQUS数值模拟变形和应变都选取梁跨中处。作为一种新型建筑材料,本文只是对工字型GFRP梁进行室内试验和数值模拟,了解其部分力学特性,对于和其它建筑材料相比的区别和优势,还有待试验进一步研究。

参考文献:

复合材料论文范文9

关键词:复合材料;压缩;稳定性;方法

1 概述

复合材料以其比强度高、比刚度大、具有抗疲劳、减振、耐高温、可设计等一系列优点,在航空航天等多个领域中都得到了广泛的应用。复合材料可改善结构性能,具有显著的减重效益,在直升机结构中已由次承力件发展为主承力件,且应用面逐步扩大[1-3]。作为直升机结构的基本构件,复合材料长桁结构在承受压缩载荷时可能发生局部屈曲,即突缘产生面外翘曲而发生的屈曲,为了保证结构的使用安全,需要进行稳定性分析和计算,求解结构件的失稳临界载荷和失稳模态,以控制结构失效[1]。

本文以某型直升机典型T型复合材料长桁结构为研究对象,采用工程理论计算和试验验证相结合的方法研究复合材料长桁在轴压载荷作用下的稳定性。得到T型复合材料长桁结构在轴压载荷作用下的破坏模式和失稳载荷,同时,通过对工程理论计算和试验得到的结果进行对比分析,得到不同方法之间的差异,对直升机复合材料结构设计提供有意义的参考。

2 工程理论计算方法[1]

直升机结构中采用了大量的复合材料长桁结构,当其承受压缩载荷时,可能会发生局部屈曲失稳或压损等破坏模式。计算其承载能力时,将结构分解成一边自由一边简支的长板结构和两边简支的长板结构两类层压板组成的单元。

其中,一长边自由一长边简支的长板可按下式计算长桁的轴压局部屈曲载荷:

对于两长边简支的长板按下式计算局部屈曲载荷[2]:

式中:Nxcr为单位宽度上的轴压屈曲载荷;b为突缘的宽度;L为突缘的长度;D为层压板的弯曲刚度系数。

各组成单元的压缩应力截止值用下式计算:

式中:?滓cu为各组成单元的层压板压缩截止值;Ex为各组成单元的层压板沿受压方向的等效弹性模量;?着c为各组成单元的层压板的压缩设计许用应变。

另一种常见的破坏模式为长桁的压损破坏,对于具有一个自由边板元的压损载荷计算公式如下:

式中:Ncu为层压板的极限压缩载荷,可根据材料的力学性能及铺层等进行估算,Ncccr为单位宽度上的轴压压损载荷。

3 试验验证

3.1 试验件

试验件采用直升机机体结构中典型的复合材料长桁结构,截面形状为T型,材料采用T300碳纤维材料,结构铺层为[45/0/90/0]s,选择两种长度的试件各6件,尺寸大小分布为300mm×48mm×24mm(长件)和140mm×48mm×24mm(短件),各板元厚度均为1.566mm,具体试件尺寸如图1所示。

3.2 试验件支持状态及加载方式

将试验件两端与夹具连接,在压力试验机上施加大小为10000N的轴向压缩载荷,如图2所示。在非加载面上布置应变片,分布于长桁总长度的1/2、1/3和1/6处,应变片距离试件边缘有5mm的距离,如图3所示。

试验过程中,沿着T型材的2加载边,通过夹具对试件施加轴压载荷,直至试验件破坏。在试验加载过程中,通过夹具上两侧的夹持螺栓、加载螺栓来保证试件的对接螺栓三个螺栓孔在同一对称轴线上,试验完成后,记录试验件的载荷~应变数据。试验前、后照片如图4所示。

3.3 试验结果分析

分别对试验件进行测试,试验件的典型破坏模式如图4中右侧图示所示。处理试验数据,得到试件的载荷-应变曲线(图5)和载荷-位移曲线(图6)。可以看出,在加载的过程中,曲线最初近似一条直线,随着载荷的不断增加,当载荷达到屈曲临界载荷时,曲线曲率发生变化,此时,长桁试验件板元无支持一侧逐渐发生变形以致发生翘曲,最后被压溃,导致试验件破坏,破坏后的试验件断裂。

试验测得长件的平均压缩失稳载荷为12800N,短件的平均压缩失稳载荷为14990N。可以看出,在截面尺寸相同的前提下,长桁长度对其压缩失稳载荷有所影响,长度减小,其承载能力增大,压缩失稳载荷增加。对于本文中所选取的试验件,当长度减小大约一半时,压缩失稳载荷增加约14.61%。

3.4 与工程理论计算对比分析

依据理论计算公式,计算T型长桁的压缩失稳载荷,结果对比如表1所示。

从对比结果可以看出,长件的轴压失稳载荷理论计算结果为11761N,试验结果为12800N,计算结果与试验结果之间存在3.6%的误差;短件的轴压失稳载荷理论计算结果为12494N,试验结果为14990N,计算结果与试验结果之间存在16.65%的误差。

可以看出,无论是长件是短件,工程理论计算的结果都小于试验值。也就是说,在直升机结构设计过程中,通过工程理论计算的方法得到的结果相对保守。

表1 结果对比

4 结论

本文以某型直升机典型T型复合材料长桁结构为研究对象,分别应用工程理论计算和试验方法得到长桁的压缩失稳载荷,通过对结果进行对比分析,得到结论如下:

(1)得到典型T型复合材料长桁的压缩失稳载荷,长件和短件分别为12800N和14990N。

(2)T型突缘在轴压载荷作用下,突缘中部各板元无支持一侧区域向面外发生翘曲,进而发生失稳,最终导致结构发生失稳破坏。

(3)工程理论计算方法较为保守,对于长件和短件分别有约8.12%和16.65%的余量,因此工程理论计算方法可以安全可靠地在直升机复合材料结构设计过程中应用。

参考文献

[1]中国航空研究院.复合材料结构稳定性分析指南[M].北京:航空工业出版社,2002.

复合材料论文范文10

论文关键词:TiC<sub>P</sub>复合材料,动态拉伸性能,高应变率,位错

 

1 引言

颗粒增强金属基复合材料因其具有较高的比强度、比刚度以及良好的加工性能在结构和工程上得到越来越广泛的应用[1]。但复合材料强度提高的同时,其延性却明显下降。近年来,国内外的学者对复合材料的弹塑性性能进行了广泛的研究[2-7],内容涉及失效机制,如颗粒的断裂、基体和增强颗粒界面的脱粘、基体的延性失效及加工工艺及热处理对复合材料性能的影响等。

大多数金属材料和金属基复合材料的强度会随应变率的提高而提高,且复合材料的应变率敏感性通常取决于基体的应变率敏感性以及基体和增强颗粒界面的结合情况等。本文将对TiCp/Ti 复合材料的动态拉伸性能进行研究,建立其率相关的本构关系,并从微观角度讨论其强化断裂机理、应变率敏感性以及复合材料应变率敏感性高于基体的原因。

2动态拉伸试验

2.1 试验系统及原理

冲击拉伸试验在中国科技大学的旋转盘式杆—杆型冲击拉伸试验机(SHTB)上进行,试验装置如图1所示。SHTB实验装置由旋转盘式加载系统、撞块、输入杆和输出杆组成。加载装置是一个直径为1.4米,转动线速度可以达到100m/s的飞轮。前置理想弹塑性金属短杆通过螺纹与撞块和输入杆连接,受拉伸试件用耐冲击高强度聚炳烯酸粘接剂与输入杆和输出杆的叉口相粘接。当飞轮边缘的线速度达到预先设定的数值时,安装在高速旋转盘上的双片锤头(1)瞬间被弹出并以该线速度打击撞块(2),这时同输入杆相连的理想弹塑性前置金属短杆(3)被拉断,从而在输入杆(4)中产生一近似拉应力方波脉冲。当入射应力脉冲沿输入杆向右传播到试件(5)后,一部分反射回输入杆(6)中,另一部分通过试件传入输出杆中,并在输入杆和输出杆中分别产生反射波和透射波。拉伸脉冲的幅度、宽度、和上升沿是由金属短杆的直径、长度和锤头的打击速度来决定的。贴在输入杆和输出杆上的三组半导体应变片(7)分别测得入射波、反射波和透射波,通过超动态应变仪(8)放大后被存

TCL双通道瞬态波形存储器(9)中。

根据一维应力波理论可得试件中的应力、应变和应变率分别为

(1)

国家自然科学基金(No.90305018)资助项目、北京林业大学优秀青年教师科技创新项目(YX2010-6).

(2)

(3)

其中,和分别为试件的横截面面积和长度; ,和 E 分别为输入/输出杆中弹性波的波速、杆的横截面面积以及弹性模量。

2.2 试验材料

试验所用的钛合金基体(T650)和TiC颗粒增强钛基复合材料(TP650)均由西北有色金属研究院自行研制并提供。TiC增强颗粒的平均粒度为5,体积百分比为3%;复合材料TP650采用PTMP(Pre-treatment melt process)法制备,颗粒在复合材料中呈弥散分布,界面反应层稳定。基体和复合材料试样均采用简单的退火,其热处理参数为:800℃/1小时+空冷。

试件设计成扁平的哑铃状,厚度1.1mm,形状、尺寸和形位公差设计如图2所示。

TiC颗粒和钛合金基体的物理和力学性能如表1所示。

表1 TiC颗粒和钛合金基体的物理和力学性能

Table 1 The Mechanical properties of TiCPparticles and Titanium alloy matrix

 

材料

TiC颗粒

基体T650

密度/ g/cm3

4.43

4.51

杨氏模量E/ GPa

460

118

剪切模量G/ GPa

193

43

泊松比

0.188

0.35

热膨胀系数/ ×10-6/K

复合材料论文范文11

一、高分子材料与工程

高分子材料与工程专业培养具备高分子材料与工程等方面的知识,能在高分子材料的合成、改性、分析测试和加工成型等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。

本专业学生主要学习高聚物化学与物理的基本理论和高分子材料的组成、结构与性能知识及高分子成型加工技术知识。

学习课程

聚合物加工原理、聚合物成型工艺、聚合物流变学、高分子物理、高分子化学、物理化学、有机化学

毕业生具备的专业知识与能力

掌握高分子材料的合成、改性的方法;

掌握高分子材料的组成、结构和性能关系;

掌握聚合物加工流变学、成型加工工艺和成型模具设计的基本理论和基本技能;

具有对高分子材料进行改性及加工工艺研究、设计和分析测试,并开发新型高分子材料及产品的初步能力;

具有应用计算机的能力;

具有对高分子材料改性及加工过程进行技术经济分析和管理的初步能力。

就业方向

该专业毕业生可到石油化工、电子电器、建材、汽车、包装、航空航天、军工、轻纺及医药等系统的科研(设计)院所、企业从事塑料、橡胶、化纤、涂料、粘合剂、复合材料的合成、加工、应用、生产技术管理和市场开发等工作,以及为高新技术领域研究开发高性能材料、功能材料、生物医用材料、光电材料、精细高分子材料和其它特种高分子材料,也可到高等院校从事教学、科研工作。

高分子材料与工程专业的20所大学

二、复合材料与工程专业

复合材料与工程专业培养具有良好的思想素质,强烈的社会责任感,健康的体魄和健全的心理素质、德、智、体全面发展,掌握新型复合材料生产原理和生产工艺、能胜任无机材料、高分子材料、新型复合材料等生产企业基层管理工作和实际岗位操作,具有较高综合素质,“用得上、留得住”的应用型人才。

专业特色

该专业既重视学生数学、力学和材料科学的基础理论培养,又重视学生的工程能力训练,并对有关专业课实行教学内容的国际接轨。课程设置注重基础理论与工程的结合、自然科学知识教育与文化素质教育结合,理论与实践相结合。学校会设有工程设计制图课程设计、工程训练、下厂实习、毕业实习、毕业设计和毕业论文等实践环节。实验有高分子物理实验、高分子化学实验、复合材料制备与加工实验、材料性能测试实验等 。

就业方向

本专业学生毕业后可毕业生可以就业于与复合材料相关的汽车、建筑、电机、电子、航空航天、国防军工、信息通讯、轻工、化工等有关企业和公司,担任工程研究 人员、工程师和营销管理人员,从事设计、研发、分析、生产、测试、评价、营销、管理等工作;也可以在高等院校、研究设计院所从事科研教学工作。

开设院校

哈尔滨工业大学、西北工业大学、华东理工大学、南京工业大学、青岛大学、青岛科技大学、长江大学、中北大学、河北工程大学等

复合材料论文范文12

关键词:陶瓷刀具 发展

中图分类号:TG711 文献标识码:A 文章编号:1672-3791(2011)09(a)-0246-01

几十年来,虽然由于新型刀具材料的出现,使切削速度和切削加工生产率成倍增加,然而,随着航空航天工业、动力工业、超高温、超高压技术等的发展,黑色金属及难加工材料(包括铁基、镍基、钻基、钦基高温合金、高硬度钢、铸铁及其合金、模具钢、耐热合金、钦合金等)的高速切削加工技术和刀具材料研究越来越迫切,同时,制造技术向高精度、高柔性和强化环境意识的方向发展,在这种情况下,高速切削已成为切削加工的主流,一般高于常规切削速度5一10倍。而高速切削的发展主要取决于高速切削刀具和高速切削机床的发展,其中,高速切削刀具材料起决定性作用[5]。

由于陶瓷刀具在1200一1450℃高温下尚能进行切削,并且可在切削速度500一1000m/min下进行工作,陶瓷刀具的研制成为刀具材料研究的热点。并且随着烧结理论的深入研究,各种氧化物、碳化物及氮化物等粉末制备技术的不断改进,多种陶瓷烧结及加工设备和工艺的不断开发研制,使得陶瓷材料成为高速切削、干切削刀具的理想材料,几乎可以加工包括多种难加工材料在内的所有黑色和有色金属[5]。

陶瓷材料作为三大材料之一,随着社会的发展被分成了两大类:普通陶瓷和特种陶瓷。普通陶瓷按其用途分为日用瓷、建筑瓷、电瓷和化工瓷;特种陶瓷又可分为结构陶瓷和功能陶瓷两大类。结构陶瓷强调材料的力学性能或机械性能;而将具有电、磁、声、光、热、化学及生物体特性,且具有相互转化功能的陶瓷定义为功能陶瓷[2]。陶瓷刀具是现代结构陶瓷在加工材料中的一个重要应用领域。陶瓷刀具是含有金属氧化物的无机非金属材料,具有高硬度、高强度、摩擦因数低、优异的耐热性、耐磨性(耐磨性为硬质合金的3~5倍)和化学稳定性等优异性能,能够在其他材料无法承受的恶劣环境条件下正常工作,它已成为高速切削刀具材料的首选[4]。

陶瓷刀具材料的出现也有半个多世纪历史,从1913年陶瓷材料最早试作切削刀具开始,陶瓷刀具材料的发展,在20世纪经历了以下几个阶段:50年代后期以氧化铝陶瓷为主,现氧化铝系陶瓷刀具材料是目前所有陶瓷刀具中应用最广泛,年消耗量最大的陶瓷刀具材料[5]。由于Al2O3系陶瓷刀具化学稳定性好、耐热、耐磨性能优异且价格低廉,所以目前所占比例很大;60一70年代以Al2O3/TiC陶瓷为主,70年代后期至80年代初期发展了Si3N4系陶瓷刀具及相变增韧陶瓷刀具材料,80年代后期至90年代在晶须增韧陶瓷刀具材料得到长足发展的同时,各种复相陶瓷刀具材料的研究也倍受重视。目前国内外应用最为广泛的是氧化铝系和氮化硅系陶瓷刀具材料。20世纪70年入使用的Al2O3/TiC热压陶瓷材料,强度、硬度和韧性均较高,仍是国内外使用最多的陶瓷刀具材料之一。此后在Al2O3中添加TiB2、Ti(C,N)、SiCW、ZrO2等陶瓷刀具也相继研制成功,其力学性能进一步提高,广泛应用于碳钢、合金钢或铸铁的精加工或半精加工[6]。

目前陶瓷刀具的研制己建立起融合切削学和陶瓷学为一体的、基于切削可靠性的陶瓷刀具材料设计研究理论体系[5]。现代陶瓷刀具材料多为复相陶瓷,根据材料不同的使用环境,以一定的设计理论为基础,采用各种超细的氧化物、碳化物、氮化物和硼化物等为基本组分,并依据不同的增韧补强机理进行微观结构设计,可以制备出具有良好综合性能的复相陶瓷。

陶瓷材料本征脆性,大多抗拉强度低、韧性差,因此陶瓷材料的强韧化是拓展其应用的关键。最近的研究表明,梯度功能材料(FunetionalGradientMaterial简称FGM)、表面改性陶瓷、纳米复合陶瓷刀具材料将在今后得到较大的发展[3]。

其中,纳米技术(Nano一ST)是于上世纪80年代迅速形成和发展起来的一门基础研究和应用开发紧密联系的高新技术,它在纳米尺度上研究物质(包括分子、原子)的内在相互作用和特性,它所涉及的领域是人类过去很少涉及的非宏观、非微观的中间领域,英国著名材料专家.RW.Cahn在《自然》杂志上撰文说:“纳米陶瓷是解决陶瓷脆性的战略途径”[5]。经过纳米改性的材料可提高强度、增加韧性、降低烧结温度。目前使用纳米技术制备的陶瓷刀具材料主要有两种:纳米复合陶瓷刀具材料和纳米涂层陶瓷刀具材料。

纳米复合结构陶瓷的概念是由K.Niliiara于1991年提出的,可看作是对复构陶瓷微观结构设计的应用。纳米复合材料是纳米材料的重要应用,它由两相或多相构成,其中至少有一相为纳米级尺寸。将纳米颗粒、晶须及纤维弥散到陶瓷基体中,制备成的纳米复合材料具有优异的性能。切削性能实验表明,纳米复合陶瓷刀具的耐磨性能远高于同组分的微米级的陶瓷刀具,且断续切削的能力也有了明显增强[2]。

纳米技术的出现为陶瓷材料的改性和增强提供了条件,纳米技术在现代陶瓷的应用方面将带来革命性的变化。将纳米颗粒增韧、纤维(纤维)增韧、相变增韧等手段相结合,在保持高硬度、高耐磨性和红硬性的基础上,研制出高强度、高韧性、智能化、经济环保、具有更好的耐高温性能、耐磨损性能和抗崩刃性能,满足高速精密切削加工的要求的高性能复合陶瓷材料,将是廿一世纪陶瓷材料学的发展方向[1]。

通过对近几年发表的关于陶瓷刀具切削性能研究的文献,了解了刀具材料的发展历程、陶瓷刀具材料的主要种类和特点,笔者认为陶瓷刀具类型的开发必将是高精度、高柔性和强化环境意识的现代制造技术的不二选择。

参考文献

[1] 徐立强.新型Ti_C_N_基金属陶瓷刀具材料的研制及切削性能研究.山东大学硕士学位论文.2005.

[2] 丁代存.Si_3N_4_TiC纳米复合陶瓷刀具材料的研制与性能研究.山东大学硕士学位论文.2005.

[3] Krestic V D.Fracture of brittle solids in the presence of ther-moelastic stresses.J Am Ceram Soc.1984,67(9):589~593.

[4] 宋新玉,赵军,姜俊玲.加工Inconel718时陶瓷刀具的磨损机理.中国机械工程.2009,4:763-768.