HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 燃料电池技术论文

燃料电池技术论文

时间:2022-05-19 06:24:01

燃料电池技术论文

燃料电池技术论文范文1

关键词:质子交换膜燃料电池;双极板;电极;催化剂

1质子交换膜燃料电池的结构及原理

按照电解质的不同可将燃料电池分为磷酸燃料电池、碱性燃料电池、固体氧化物燃料电池、熔融碳酸盐燃料电池及质子交换膜燃料电池(PEMFC)等五类。PEMFC单电池由质子交换膜、气体扩散电极、双极板等构成,图1是其结构与工作原理示意图。

PEMFC的基本工作过程如下:

(1)氢气通过双极板上的导气通道到达电池的阳极,氢分子在催化剂的作用下解离形成氢离子和电子;

(2)氢离子以水合质子H+(xH2O)的形式通过电解质膜到达阴极,电子在阳极侧积累;

(3)氧气通过双极板到达阴极后,氧分子在催化剂的作用下变成氧离子,阴、阳极间形成一个电势差;

(4)阳极和阴极通过外电路连接起来,在阳极积聚的电子就会通过外电路到达阴极,形成电流,对负载做功。同时,在阴极侧反应生成水;

(5)只要持续不断地提供反应气体,PEMFC就可以连续工作,对外提供电能。

2质子交换膜燃料电池的特点

(1)高效率。PEMFC以电化学方式进行能量转换,不存在燃烧过程,不受卡诺循环限制,其理论热效率可达85-90%,目前的实际效率大约是内燃机的两倍。传统动力源为了提高效率必须将负荷限制在很小范围内,而PEMFC几乎在全部负荷范围内均有很高效率。

(2)模块化。PEMFC在结构上具有模块化的特点,可根据不同动力需求组合安装,采用“搭积木”式的设计方法简化了不同规模电堆的设计制造过程。

(3)高可靠性。由于PEMFC电堆采用模块化的设计方法,结构简单,易于维护。一旦某个单电池发生故障,可自动采取适当屏蔽措施,只会使系统输出功率略有下降,而不会导致整个动力系统的瘫痪。

(4)燃料多样性。PEMFC动力系统既可以纯氢为燃料,也可以重整气为燃料。氢气的来源可以是电解水的产物,也可以是对汽油、柴油、二甲醚等化石类燃料重整的产物。氢气的存储方式可以是高压气罐、液氢、金属氢化物等。

(5)环境友好。当采用纯氢为燃料时,PEMFC的唯一产物是水,可以做到零排放。以重整气为燃料时,相对于内燃机而言,排放也极大降低。此外,PEMFC噪声水平也很低,各结构部件均可回收利用。3研究现状

3.1关键部件

电解质膜、双极板、催化剂及气体扩散电极是质子交换膜燃料电池的四大关键部件。

电解质膜是PEMFC的核心部件,它直接影响燃料电池的性能与寿命。1962年美国杜邦公司研制成功全氟磺酸型质子交换膜,1966年开始用于燃料电池,其商业型号为Nafion,至今仍广泛使用。但由于Nafion膜成本较高,各国科学家正在研究部分氟化或非氟质子交换膜。

双极板在PEMFC中起着支撑、集流、分割氧化剂与还原剂并引导气体在电池内电极表面流动的作用,目前广泛采用的是以石墨为材料,在其上加工出引导气体流动的流场,基本流场形式有蛇形、平行、交指及网格状等。

铂基催化剂是目前性能最好的电极催化剂,为提高利用率,铂以纳米级颗粒形式高分散地担载到导电、抗腐蚀的担体上,目前广泛采用的担体为乙炔炭黑,比表面积约为250m2/g,平均粒径为30nm。

PEMFC的气体扩散电极由两层构成,一层为起支撑作用的扩散层,另一层为电化学反应进行的场所催化层。扩散层一般选用炭材如石墨化炭纸或炭布制备,应具备高孔隙率和适宜的孔分布,不产生腐蚀或降解。根据制备工艺和厚度不同,催化层分为厚层憎水、薄层亲水及超薄三种类型。

3.2测控系统

PEMFC的工作性能受多种因素(温度、压力等)的影响,为确保PEMFC正常运行,提高其可靠性和有效性,就必须监测各个影响因素。即运用有效的措施来连续监测PEMFC运行的关键或重要状态,并对收集到的信息进行必要的分析和处理,以便做到故障预测和及时诊断,为PEMFC管理系统提供依据。目前,进行PEMFC测试系统相关方面研究的公司和机构众多,但仍没有制定出有关PEMFC测试的国际标准和相应的标准测试设备,不过已有实用的测试系统投入使用。加拿大Hydrogenics公司的燃料电池测试站(FCATS)、美国Arbin公司的集成燃料电池测试系统(FCTS)是其中的突出代表。

4质子交换膜燃料电池的应用

质子交换膜燃料电池是目前各种燃料电池中实用程度较高的一类。其优越性不仅限于能量转换效率高、工作温度低,还体现在其可在较大的电流密度下工作,适宜于较频繁启动的场合。因此世界各大汽车生产厂商一致看好其在汽车工业中的应用前景,PEMFC已成为现今燃料电池汽车动力的主要发展方向。目前,通用、丰田等世界上知名的汽车公司,都在积极开发以PEMFC系统为动力源的PEMFC电动车,曾先后推出各种类型的样车,并进行PEMFC电动车队的示范运行。PEMFC电动车以其优异的性能和环境污染很少等突出特点引起了人们的普遍关注,甚至被认为将是21世纪内燃机汽车最为有力的竞争者。

此外,在航空航天特别是无人飞行器领域,以及家庭电源、分散电站、移动电子设备电源、水下机器人及潜艇不依赖空气推进电源等方面也有广泛应用前景。

5质子交换膜燃料电池的发展趋势

在关键部件方面,围绕电解质膜、催化剂及双极板的研究方兴未艾。全氟型磺酸膜价格昂贵,开发非全氟的廉价质子交换膜是今后的研究方向。近年来,新型质子交换膜的的研究热点是开发能够在100℃以上使用的高温电解质膜。在催化剂方面,研制高性能抗CO中毒电极催化剂是最紧迫的任务,此外,还要寻找非贵金属氮化物或碳化物作为现有铂催化剂的替代。目前广泛使用的石墨板具有较好的耐腐蚀能力和较高的热导率,但成本较高,加工难度大,强度、电导率和可回收性均不如金属板。金属板目前急需解决的问题是表面处理,以提高其耐腐蚀能力。复合材料双极板则结合了纯石墨板和金属板的优点,具有耐腐蚀、体积小、质量轻、强度大及工艺性良好等特点,是未来发展的趋势。

在电堆方面,今后的研究重点将是使电堆中的电池单元的性能接近于单电池的性能,这就需要对电堆的结构进行优化,保证电堆中每一片电池单元的整个活性面积处于一致的操作环境,并优化水、热管理,改善电流密度分布的均匀性。

参考文献

燃料电池技术论文范文2

1.磷酸型燃料电池(PAFC) PAFC技术开发的现状与动向: 日本自实施月光计划以来,作为部级项目,正在实施5000千瓦级加压型和1000千瓦级常压型电厂实证运行。目前,磷酸型燃料电池的发电效率为30%~40%,如果将热利用考虑进去,综合效率可高达60%~80%。 除日本外,目前世界约有60台PAFC发电设备在运转,总输出功率约为4.1万千瓦。按国别和地区划分日本为2.9万千瓦,美国8000千瓦,欧洲3000千瓦,亚洲900千瓦。运转中的发电设备除3台(日本2台,意大利1台)为加压型外,其他均为常压型。磷酸型燃料电池的制造厂家目前主要为日本和美国,设备主要销往欧、亚。 美国已完成基础研究,200千瓦级电厂用电池近期有望商品化,但大容量电厂用电池处于停滞状态。德国已引进美国200千瓦级电厂用电池进行试验运行。另外,瑞典、意大利、瑞士等国也引进日、美的电池进行试运行。 2.熔融碳酸盐型燃料电池(MCFC) 日本对MCFC发电系统的技术开发始于1981年度的月光计划,该计划围绕开发1千瓦级发电机组这个目标展开了对MCFC燃料、电极等的开发。该开发研究进展顺利,从1984年开始,进而对10千瓦级发电机组进行研究开发。1986年,日立、东芝、富士电机、三菱电机、IHI分别对5台10千瓦级机组进行发电试验,其结果是输出功率为10千瓦,初期性能为电池电压0.75伏,电流密度150毫安/平方厘米。 1987年起,日本在对1000千瓦级实验电场(外部改质型)进行主要开发的同时,对100千瓦级发电机组以及1000千瓦级机组的设备的开发研究也取得了进展。1993年度,日立、IHI的2台100千瓦级外部改质型机组和三菱电机的1台30千瓦级内部改质型机组开始试验发电运行。其试验结果以及1994年度进行的5-25千瓦级机组的试验结果表明,电池电压0.8伏,电流密度达15毫安/平方厘米,单位时间内的劣化率小于1%。 在此基础上,1994年度起开始着手开发1000千瓦级试验工厂。1995年10月在中部电力(株)川越发电所开始建厂,确立了1000千瓦级实用化发电系统试验工厂的基本系统,对现有的事业用燃料电池电厂的运行进行评价,计划1999年开始试验运行,其目标为:燃料利用率为80%,千小时电池的劣化率小于1%,初期性能为:电池电压大于0.8伏,电流密度1500毫安/平方厘米,计划试验运行5000小时。 为使电池实用化,在上述研究开发的基础上,还进行了机组长寿命化研究,计划连续实验运行4万小时,每千小时单位劣化率小于0.25%。除此之外,还在开发200千瓦级内部改质型燃料电池发电系统。 美国能源部和美国电力研究所,正在积极开发MCFC。美国ERC公司开发的2兆瓦级内部改质型机组发电系统于1996年5月在圣克拉拉开始试验运行。MC-power公司开发的250千瓦级外部改质型机组发电系统,1997年2月起在圣迭戈开始试运行。 在欧洲,MCFC作为共同项目正在研究开发,取得了一些进展,其主要项目如下: ①高级DIC-MCFC发展计划(1996-1998年)。荷兰、英、法、瑞典等国参加研究,欧洲在市场分析、系统开发以及内部改质型机组的开发等方面取得进展。 ②ARGE项目(1990年起计划10年内完成)。德、丹麦参加,并在内部改质型发电系统的开发上取得进展。 ③MOLCARE。由意、西班牙参加,并在外部改质型发电系统开发上取得进展。 韩国从1993年起开始开发MCFC,1997年以开发100千瓦外部改质型发电系统为目标,开始了第二阶段研究开发工作。 3.固体电解质型燃料电池(SOFC) 作为SOFC开发的基础科学离子学,其开发历史很长,日、美、德等国已有30多

燃料电池技术论文范文3

Fuel Cell Micro-grids

2009

Hardback

ISBN 9781848003378

Shin’ya Obara著

燃料电池技术作为一种新型发电技术引起了越来越多人的关注,技术水平也得到了很大发展,本书介绍了由燃料电池及其它发电装置构成的分布式发电机组所组成的微电网的相关技术,作者Shin’ya Obara为日本苫小牧国家科技学院的教授,JSME,ASME,IEEE等多个学会成员,是《The Open Fuels and Energy Science Journal》,《Journal of Computational Science and Technology》,《International Conference on Electric Power and Energy Conversion Systems》,《Applied Mathematical Modeling》等多个杂志审稿人,出版著作17本,发表科技论文100多篇。

本书分为13章。1.考虑部分负荷及负荷波动的小型燃料电池热电联供系统,介绍了系统的组成与布置、能量平衡与目标函数、能量输出特性等内容;2.燃料电池供能网络最小成本优化配置方案,介绍了系统方案、热水管路系统释放热能的数量、能量平衡、成本计算与目标函数、分析方法与案例研究、分析结果等内容;3.分区协作管理模式引起的发电效率的提高,介绍了系统布置、微电网的发电效率、电力需求模型、分析方法并进行了案例研究,对分析结果进行了讨论;4.采用负荷平衡及放热损失方法考虑减小燃料电池容量的燃料电池供电系统,介绍了负荷平衡和燃料电池的布置方案、分析方法并进行了案例分析;5.柴油发电装置与燃料电池混合互联微电网的设备布置方案,介绍了微电网模型、混合互联微电网模型、设备布置、混合互联微电网运行方法、柴油发电机特性与质子交换膜型燃料电池特性、系统分析方法并进行了案例研究;6.分布式燃料电池废热的有效利用分析法,介绍了热水管路放热的途径与数量、热能平、热水管路系统放热的数量、燃料电池发电与供热特性、能量需求方式与燃料电池容量,并进行了案例分析,对分析结果进行了研究;7.寒冷地区独立房间燃料电池的负荷相应特性,介绍了系统布置、每部分装置的时间常数、分析方法、分析结果与讨论;8.可以控制装置数量的燃料电池微电网的负荷响应特性,介绍了微电网的电能质量、系统中各配置装置的响应特性、控制变量与分析方法、微电网的负荷响应特性;9.质子交换膜燃料电池与木质生物质发电机混合微电网动态特性,介绍了系统方案、质子交换膜燃料电池与斯特林发电机的控制响应特性、该混合微电网动态特性分析结果;10.考虑到部分负荷运行时效率TIGA的燃料电池与氢发动机混合系统,介绍了系统方案、设备特性,该混合系统的电力与热能输出特性,案例分析与结果讨论;11.氢气化城市煤气发动机与燃料电池混合微电网二氧化碳排放分析,介绍了系统方案、设备特性、案例分析与结果讨论;12.带太阳能重整装置的燃料电池系统的快速运算法则的发展,介绍了系统方案、能量与质量平衡、该系统的动态运行预测、案例分析与结果讨论;13.燃料电池与风力发电机微电网的功率特性,介绍了微电网模型,系统布置设备的响应特性,控制参数与分析方法,微电网的负荷响应特性。

本书结构清晰,表述深入浅出,理论分析之后都有相应的案例分析,有利于对所述内容的理解。该书既可以作为电力相关专业本科生或研究生的教科书,也可以作为相关领域研究人员的参考资料。

论立勇,博士生

(中国科学院理化技术研究所)

燃料电池技术论文范文4

【摘要】本文介绍了燃料电池发电技术的特点和应用形式,论证了在我国电力系统发展燃料电池发电技术的必要性。概述了国外燃料电池的发展计划和市场预测,总结了国外发展燃料电池的经验。通过技术比较,提出了在我国电力系统发展燃料电池发电的技术路线。

     燃料电池发电是将燃料的化学能直接转换为电能的过程,其发电效率不受卡诺循环的限制,发电效率可达到50%一70%,被誉为二十一世纪重要的发电新技术之一。目前,国际上磷酸型燃料电池已进入商业化,其它几种燃料电池预计在2005年一2010年200KW一将全面进入商业此。对于这种蓬勃发展的发电新技术,国家电力公司应该采取怎样态度?要不要发展?怎样发展?这些问题亟待解决。

l 燃料电池发电的技术特点和应用形式

1.1 技术特点

    燃料电池发电是在一定条件下使燃料(主要是H2)和氧化剂(空气中的02)发电化学反应,将化学能直接转换为电能和热能的过程。与常规电池的不同:只要有燃料和氧化剂供给,就会有持续不断的电力输出。与常规的火力发电不同,它不受卡诺循环的限制,能量转换效率高。与常规发电相比燃料电池具有以下优点:

(1)理论发电效率高,发展潜力大。燃料电池本体的发电效率可达到50%一60%,组成的联合循环发电系统在(10-50)MW规模即可达到70%以上的发电效率。

(2)污染物和温室气体排放量少。与传统的火电机组相比,C02排出量可减少40%一60%。Nox(<2ppm)和SOx(<1ppm)排放量很少。

(3)小型高效,可提高供电可靠性。燃料电池的发电效率受负荷和容量的影响较小。

(4)低噪音。在距发电设备3英尺(1.044米)处噪音小于60dB(A)。

(5)电力质量高。电流谐波和电压谐波均满足IEEE519标准。

(6)变负荷率高。变负荷率可达到(8%一lO%)/min,负荷变化的范围大(20%一120%)。

(7)燃料电池可使用的燃料有氢气、甲醇、煤气、沼气、天然气、轻油、柴油等。

(8)模块化结构,扩容和增容容易,建厂时间短。

(9)占地面积小,占地面积小于lm2/KW。

(10)自动化程度高,可实现无人操作。

    总之,燃料电池是一种高效、洁净的发电方式,既适合于作分布式电源,又可在将来组成大容量中心发电站,是2l世纪重要的发电方式。制约燃料电池走向大规模商业化的主要因素是:高价格和寿命问题。

2.1 燃料电池的应用形式

(1)现场热电联供,常用的容量为200KW一1MW。

(2)分布式电源,容量比现场用燃料电池大,约(2-20)MW。

(3)基本负荷的发电站(中心发电站),容量为(100-300MW)。

(4)燃料电池还可用于100W-100KW多种可移动电源、便携式电源、航空电源、应急电源和计算机电源等。

2 为什么要在我国电力系统发展燃料电池发电技术?

2.1 采用燃料电池发电是提高化石燃料发电效率的重要途径之一

    以高温燃料电池组成的联合循环发电系统,可使发电效率达到60%-75%(LHV),这一目标将在2005年左右实现。预计到2010年,发电效率可超过72%。煤气化燃料电池联合循环(IGFC)的发电效率可达到62%以上。以燃料电池组成的热电联产机组的总热效率可达到85%以上。燃料电池本体的发电效率基本不随容量的变化而变化,这使得燃料电池既可用作小容量分散电源,又可用于集中发电应用范围广泛。

2.2 燃料电池发电可有效地降低火力发电的污染物和温室气体排放量

    燃料电池发电中几乎没有燃烧过程,NOx排放量很小,一般可达到(O.139一 0.236)kg/MW·h以下,远低于天然气联合循环的NOx排放量(1kg/MW·h一3kg/MW.h)。由于燃料进入燃料电池之前必须经过严格的净化处理,碳氢化合物也必须重整成氢气和CO, 因此,尾气中S02、碳氢化合物和固态粒子等污染物排量也污染物的含量非常低。与常规燃煤发电机组相比,C02的排放量可减少40%一60%.在目前CO2分离和隔绝技术尚不成熟的状况下,通过提高能源转换效率减少CO2排放是必然的选择。

2. 3 采用燃料电池发电可提高供电的灵活性和可靠性

    燃料电池具有高效率、低污染、低噪声、模块化结构、体积小、可靠性高等突出特点,是理想的分布式电源。与目前一些可做为分布式电源的内燃机相比,燃料电池的发电效率更高、污染更低。在250KW-lOMW的功率范围内,具有与目前数百兆瓦中心电站相当甚至更高的发电效率。作为备用电源的柴油发电机由于污染和噪声大不宜在未来的城市中应用。低温燃料电池不仅发电效率高,而且启动快、变负荷能力强,是很好的备用电源。现代社会对供电的可靠性和环境的兼容性要求越来越高,高效、低污染的分布式电源系统日益受到重视。近年来美国、加拿大、台湾相继发生因自然灾害或人为因素造成的大面积停电,许多重要用户长期不能恢复供电,给社会和经济造成了巨大的损失。北约轰炸南联盟,使电力系统严重受损。这些由不可抗力引起的电网破坏无不使人引发出一个重要的思考:提高我国电力系统供电的可靠性和供电质量,虽然主要依靠电网的改造和技术革新,但如果在电网中有许多分布式电源在运转,供电的可靠性将会大大提高。

    对于象军事基地、指挥中心、医院、数据处理和通讯中心、商业大楼、娱乐中心、政府要害部门、制药和化学材料工业、精密制造工业等部门,对电力供应的可靠性和质量要求很高。目前采用的备用电源效率低、污染严重、电压波动大。而采用燃料电池作为分布式电源向这些部门提供电力,会使供电的可靠性和电力质量大大提高。他们将是燃料电池发电技术的第一批用户。

    对于边远地区,负荷小且分散,若建设完善的电网,不仅投资大,线损大,且电网末端地区电力质量不稳定。对于这些区域若辅助燃料电池发电的分布式电源,更能有效地解决这些地区的电力供应问题。燃料电池的重量比功率和体积比功率均比常规的小型发电装置大,因此,它也是理想的移动电源,适合于各种建设工地、野外作业和临时急用。

2.4 发展燃料电池发电技术是提高国家能源和电力安全的战略需要

    美国已将燃料电池发电列为国家安全关键技术之一。美、日之所以能在燃料电池技术方面处于世界领先地位,与国家从战略高度予以组织、资助和推动密不可分。在目前复杂的国际环境下,高技术的垄断日趋严重,掌握清洁高效发电的高新技术对未来国家的能源和电力安全具有重要的战略意义,而燃料电池发电技术,正是这种高效清洁的高新发电技术之一。燃料电池突出的优点,以及发达国家竟相投入巨资研究开发的行动,足以说明燃料电池发电技术在21世纪会起到越来越重要的作用。

2.5 发展燃料电池发电技术是国电公司“加强技术创新,发展高科技,形成高新技术产业”的需要

    燃料电池发电技术是电力工业中的高新技术,己受到普遍重视。美国燃料电池发电技术的研究开发主要由美国能源部组织实施,其中一个重要的目的就是形成新的高技术产业,为美国的经济注入新的活力。日本的东京电力公司、关西电力公司及其它公用事业单位是日本燃料电池开发及商业化的主要承担者和推动者,其目的也是为电力公司注入新的经济增长点以获得巨大的经济效益和社会效益。

    国家电力公司处在完成“两型”、“两化”、 “进入世界500强”的历史时刻,恰逢党中央国务院号召全国各行业“加强技术创新,发展高科技,实现产业化”的有利时机,在国家电力公司内不失时机地进行燃料电池发电技术的研究开发是非常必要的。采取引进、消化、吸收和再创新的技术路线,以高起点,在尽可能短的时间内初步形成自主产权的燃料电池发电关键技术,不仅可以使我国在燃料电池发电技术领域与国外的差距大大缩小,而且,对国家电力公司进行发电系统的结构调整、技术创新、形成高新技术产业、实现跨越式发、提高国际竞争能力都具有非常重要的意义。

2.6 燃料电池发电技术在我国有广阔的发展前景

    未来二十年,随着我国“西气东送”,全国天然气管网的不断完善及液化天然气(LNG)的广泛应用,燃用天然气的燃料电池发电将会有很大市场。煤层气也是燃料电池的理想燃料。我国丰富的煤层气资源也将是燃料电池发电的巨大潜在能源之一。燃料电池可与常规 燃气一蒸汽联合循环结合,形成更高效率的发电方式。与煤气化联合循环(IGCC)结合,形成数百兆瓦级的大型、高效、低污染的中心发电站,比IGCC效率更高,污染更小。

    燃料电池可与水电、风电和太阳能发电等结合,在高出力时,利用电解水制氢,低出力时用燃料电池发电,达到既储能,又高效发电的目的。采取气化或厌氧处理的方法将生物质变为燃料气,通过燃料电池发电,提高能源转换效率,并降低污染物排放量。对一些经济欠发达但有丰富的沼气资源的地区,利用燃料电池发电技术有可能更有有效地解决这些地区的电力供应问题。

2.7 与国外有较大的差距

    在燃料电池发电技术方面,我国与国际先进水平有较大的差距。在MCFC和SOFC技术方面,国外已分别示范成功了2MW和100KW的燃料电池发电机组,而我国在这方面才刚刚起步,2000年才可望研制出2KW左右的试验装置。在PAFC和PEFC技术方面,国内与国外的差距更大。倘若我们现在不开始研究开发燃料电池发电技术,等到燃料电池完全成熟后再引进,不但会受制于人,还将付出更大的经济代价,更谈不上尽快形成燃料电池发电的产业化。若不能形成燃料电池的产业化并在电力系统广泛应用,那么,也谈不上提高发电效率和降低污染物的排放。只有从现在开始,在国外的基础上,高起点研究,经过10-20年的努力,有可能在国电公司形成燃料电池的产业和广泛的商业应用。

2.8 在我国电力系统发展燃料电池发电技术是市场经济条件下的迫切要求

    分散式电源作为大电网的有效补充己得到许多国家的重视,而电源提供者的多元化更是一种趋势。我国电网的容量大、技术水平和可靠性还较低、抵御各种灾害的能力较差,在这种情况下,小型高效的燃料电池分布式电源随着技术的商业化市场潜力巨大。

    倘若电力系统不及时进行研究开发,在未来几年内,有可能被国外企业和国内其它其它行业或民营企业占领燃料电池分散电源市场。在市场经济条件下,国电公司既是用户,又是开发者。对于燃料电池这样重要的发电高新技术,应不失时机地着手研究开发,联合国内一些基础研究单位,争取纳入国家的攻关计划,获得国家支持,在尽可能短的时间内,形成燃料电池发电技术研究开发的优势,开发燃料电池发电关键技术和成套技术,形成国电公司的高新技术产业,既可优化调整电力结构,又能满足市场的不同需求。

3 国外燃料电池发展计划及商业化的预测

    研究美、日、欧洲等国家和地区燃料电池的发展进程及商业化的预测,对我们制定燃料电池的发展战略和预测应用前景会有一定的参考价值。

3.1美国燃料电池发电技术研究开发状况

(1)美国燃料电池发电技术的研究开发计划

    1997年,美国总统克林顿颁发了"改善气候行动计划”, 燃料电池被确定为一项关键技术,联邦政府为此制定了一项“美国联邦燃料电池发展计划”,目的是通过燃料电池的商业化来减少温室气体排放量。在这项计划中,对每一个燃料电池的新用户资助l000/KW的优惠。结果,仅在1998年,就有42台200kw PAFC发电机组投入运行。

    美国政府鼓励在一些对环境敏感的地区建立燃料电池发电站。此外,政府已促使美国所有的军事基地安装200KW燃料电池发电机组。通过这些措施,加速燃料电池的商业化,并提高国家能源的安全性。美国政府投入巨资研究开发燃料电池发电技术的另一个目的,就是要保持美国在这一领域的领先地位。随着商业化过程不断深入,将逐步形成新的高技术产业,为美国的经济注入新的活力,提供更多的就业机会。

    美国DOE的燃料电池发展计划如下:

    PAFC己商业化,不再投入资金进行研究开发。PAFC目前的发电效率为40%一 45%(LHV),热电联产的热效率为80%(LHV)。

    已完成250KW和2MW MCFC的现场示范,预计2002年进行20MW的示范;2003年左右,使250KW和MW级MCFC达到商业化;2010年,燃用天然气的250KW一20MW MCFC分散电源达到商业化,100MW以上MCFC的中心电站也进入商业化; 2020年,100MW以上燃煤MCFC中心发电站进入商业化。MCFC技术目标是运行温度为650℃,发电效率达到60%(LHV),组成联合循环的发电效率为70%(LHV),热电联产的热效率达到85%(LHV)以上。

    目前,己完成25kw和100kw SOFC现场试验,正在进行SOFC的商业化设计。预计2002年左右,进行MW级SOFC示范;2003年左右,100kw一1MW SOFC进行商业化:2010年,250kw一20MW燃用天然气的SOFC以分布式电源形式进入商业化,100MW以上燃用天然气的SOFC以中心电站形式进入商业化;2020年,100W及以上容量的燃煤S0FC以中心电站的形式进入商业化。SOFC技术目标是:运行温度为1000℃,发电效率达到62%(LHV),组成联合循环的发电效率达到72%(LHV),热电联产的热效率达到85%(LHV)以上,燃煤时发电效率可达到65%(LHV),这一目标预计2010完成。

    美国是最早研究开发PEFC的国家,但在大容量化和商业应用方面已落后于加拿大。目前美国生产的质子交换膜仍居世界领先水平。美国在PEFC的开发方面是面向家庭用分散式电源,实现热电联供。Plug Power公司与GE合作,计划2001年使10kw PEFC进入商业化,价格达到S750-1000/kw,大批量生产后,使PEFC的价格达到$350/kw。

(2)市场预测

    美国能源部(DOE)对美国潜在的燃料电池市场的预测认为:在2005年一2010年,美国年需求燃料电池发电容量约2335MW一4075MW。现在美国的燃料电池年生产能力为60MW,商业化的价格为$2000一$3000/kw,若年生产能力达到100MW/a,商业化的价格则可达到$l000-$1500/Kw。 若能达到(2000-4000)MW/a的生产能力,燃料电池的原材料费仅$200一$300/kw。那么燃料电池的价格则有可能达到$900-$l100/kw,此时可完全与常规的发电方式竞争。

3.2 日本燃料电池发电技术的发展进程及应用前景预测

(1)发展进程

燃料电池技术论文范文5

关键词:燃料电池技术路线

燃料电池发电是将燃料的化学能直接转换为电能的过程,其发电效率不受卡诺循环的限制,发电效率可达到50%一70%,被誉为二十一世纪重要的发电新技术之一。目前,国际上磷酸型燃料电池已进入商业化,其它几种燃料电池预计在2005年一2010年200kw一将全面进入商业此。对于这种蓬勃发展的发电新技术,国家电力公司应该采取怎样态度?要不要发展?怎样发展?这些问题亟待解决。

l燃料电池发电的技术特点和应用形式

1.1技术特点

燃料电池发电是在一定条件下使燃料(主要是h2)和氧化剂(空气中的02)发电化学反应,将化学能直接转换为电能和热能的过程。与常规电池的不同:只要有燃料和氧化剂供给,就会有持续不断的电力输出。与常规的火力发电不同,它不受卡诺循环的限制,能量转换效率高。与常规发电相比燃料电池具有以下优点:

(1)理论发电效率高,发展潜力大。燃料电池本体的发电效率可达到50一60%,组成的联合循环发电系统在(10—50)mw规模即可达到70%以上的发电效率。

(2)污染物和温室气体排放量少。与传统的火电机组相比,c02排出量可减少40%一60%。nox(<2ppm)和sox(<1ppm)排放量很少。

(3)小型高效,可提高供电可靠性。燃料电池的发电效率受负荷和容量的影响较小。

(4)低噪音。在距发电设备3英尺(1.044米)处噪音小于60db(a)。

(5)电力质量高。电流谐波和电压谐波均满足ieee519标准。

(6)变负荷率高。变负荷率可达到(8%一lo%)/min,负荷变化的范围大(20一120)。

(7)燃料电池可使用的燃料有氢气、甲醇、煤气、沼气、天然气、轻油、柴油等。

(8)模块化结构,扩容和增容容易,建厂时间短。

(9)占地面积小,占地面积小于lm2/kw。

(10)自动化程度高,可实现无人操作。

总之,燃料电池是一种高效、洁净的发电方式,既适合于作分布式电源,又可在将来组成大容量中心发电站,是2l世纪重要的发电方式。制约燃料电池走向大规模商业化的主要因素是:高价格和寿命问题。

2.1燃料电池的应用形式

(1)现场热电联供,常用的容量为200kw一1mw。

(2)分布式电源,容量比现场用燃料电池大,约(2—20)mw。

(3)基本负荷的发电站(中心发电站),容量为(100—300mw)。

(4)燃料电池还可用于100w—100kw多种可移动电源、便携式电源、航空电源、应急电源和计算机电源等。

2为什么要在我国电力系统发展燃料电池发电技术?

2.1采用燃料电池发电是提高化石燃料发电效率的重要途径之一

以高温燃料电池组成的联合循环发电系统,可使发电效率达到60—75(lhv),这一目标将在2005年左右实现。预计到2010年,发电效率可超过72%。煤气化燃料电池联合循环(igfc)的发电效率可达到62%以上。以燃料电池组成的热电联产机组的总热效率可达到85%以上。燃料电池本体的发电效率基本不随容量的变化而变化,这使得燃料电池既可用作小容量分散电源,又可用于集中发电应用范围广泛。

2.2燃料电池发电可有效地降低火力发电的污染物和温室气体排放量

燃料电池发电中几乎没有燃烧过程,nox排放量很小,一般可达到(o.139一0.236)kg/mw·h以下,远低于天然气联合循环的nox排放量(1kg/mw·h一3kg/mw.h)。由于燃料进入燃料电池之前必须经过严格的净化处理,碳氢化合物也必须重整成氢气和co,因此,尾气中s02、碳氢化合物和固态粒子等污染物排量也污染物的含量非常低。与常规燃煤发电机组相比,c02的排放量可减少40%一60.在目前co2分离和隔绝技术尚不成熟的状况下,通过提高能源转换效率减少co2排放是必然的选择。

2.3采用燃料电池发电可提高供电的灵活性和可靠性

燃料电池具有高效率、低污染、低噪声、模块化结构、体积小、可靠性高等突出特点,是理想的分布式电源。与目前一些可做为分布式电源的内燃机相比,燃料电池的发电效率更高、污染更低。在250kw—lomw的功率范围内,具有与目前数百兆瓦中心电站相当甚至更高的发电效率。作为备用电源的柴油发电机由于污染和噪声大不宜在未来的城市中应用。低温燃料电池不仅发电效率高,而且启动快、变负荷能力强,是很好的备用电源。现代社会对供电的可靠性和环境的兼容性要求越来越高,高效、低污染的分布式电源系统日益受到重视。近年来美国、加拿大、台湾相继发生因自然灾害或人为因素造成的大面积停电,许多重要用户长期不能恢复供电,给社会和经济造成了巨大的损失。北约轰炸南联盟,使电力系统严重受损。这些由不可抗力引起的电网破坏无不使人引发出一个重要的思考:提高我国电力系统供电的可靠性和供电质量,虽然主要依靠电网的改造和技术革新,但如果在电网中有许多分布式电源在运转,供电的可靠性将会大大提高。

对于象军事基地、指挥中心、医院、数据处理和通讯中心、商业大楼、娱乐中心、政府要害部门、制药和化学材料工业、精密制造工业等部门,对电力供应的可靠性和质量要求很高。目前采用的备用电源效率低、污染严重、电压波动大。而采用燃料电池作为分布式电源向这些部门提供电力,会使供电的可靠性和电力质量大大提高。他们将是燃料电池发电技术的第一批用户。

对于边远地区,负荷小且分散,若建设完善的电网,不仅投资大,线损大,且电网末端地区电力质量不稳定。对于这些区域若辅助燃料电池发电的分布式电源,更能有效地解决这些地区的电力供应问题。燃料电池的重量比功率和体积比功率均比常规的小型发电装置大,因此,它也是理想的移动电源,适合于各种建设工地、野外作业和临时急用。

2.4发展燃料电池发电技术是提高国家能源和电力安全的战略需要

美国已将燃料电池发电列为国家安全关键技术之一。美、日之所以能在燃料电池技术方面处于世界领先地位,与国家从战略高度予以组织、资助和推动密不可分。在目前复杂的国际环境下,高技术的垄断日趋严重,掌握清洁高效发电的高新技术对未来国家的能源和电力安全具有重要的战略意义,而燃料电池发电技术,正是这种高效清洁的高新发电技术之一。燃料电池突出的优点,以及发达国家竟相投入巨资研究开发的行动,足以说明燃料电池发电技术在21世纪会起到越来越重要的作用。

2.5发展燃料电池发电技术是国电公司“加强技术创新,发展高科技,形成高新技术产业”的需要

燃料电池发电技术是电力工业中的高新技术,己受到普遍重视。美国燃料电池发电技术的研究开发主要由美国能源部组织实施,其中一个重要的目的就是形成新的高技术产业,为美国的经济注入新的活力。日本的东京电力公司、关西电力公司及其它公用事业单位是日本燃料电池开发及商业化的主要承担者和推动者,其目的也是为电力公司注入新的经济增长点以获得巨大的经济效益和社会效益。

国家电力公司处在完成“两型”、“两化”、“进入世界500强”的历史时刻,恰逢党中央国务院号召全国各行业“加强技术创新,发展高科技,实现产业化”的有利时机,在国家电力公司内不失时机地进行燃料电池发电技术的研究开发是非常必要的。采取引进、消化、吸收和再创新的技术路线,以高起点,在尽可能短的时间内初步形成自主产权的燃料电池发电关键技术,不仅可以使我国在燃料电池发电技术领域与国外的差距大大缩小,而且,对国家电力公司进行发电系统的结构调整、技术创新、形成高新技术产业、实现跨越式发、提高国际竞争能力都具有非常重要的意义。

2.6燃料电池发电技术在我国有广阔的发展前景

未来二十年,随着我国“西气东送”,全国天然气管网的不断完善及液化天然气(lng)的广泛应用,燃用天然气的燃料电池发电将会有很大市场。煤层气也是燃料电池的理想燃料。我国丰富的煤层气资源也将是燃料电池发电的巨大潜在能源之一。燃料电池可与常规燃气一蒸汽联合循环结合,形成更高效率的发电方式。与煤气化联合循环(igcc)结合,形成数百兆瓦级的大型、高效、低污染的中心发电站,比igcc效率更高,污染更小。

燃料电池可与水电、风电和太阳能发电等结合,在高出力时,利用电解水制氢,低出力时用燃料电池发电,达到既储能,又高效发电的目的。采取气化或厌氧处理的方法将生物质变为燃料气,通过燃料电池发电,提高能源转换效率,并降低污染物排放量。对一些经济欠发达但有丰富的沼气资源的地区,利用燃料电池发电技术有可能更有有效地解决这些地区的电力供应问题。

2.7与国外有较大的差距

在燃料电池发电技术方面,我国与国际先进水平有较大的差距。在mcfc和sofc技术方面,国外已分别示范成功了2mw和100kw的燃料电池发电机组,而我国在这方面才刚刚起步,2000年才可望研制出2kw左右的试验装置。在pafc和pefc技术方面,国内与国外的差距更大。倘若我们现在不开始研究开发燃料电池发电技术,等到燃料电池完全成熟后再引进,不但会受制于人,还将付出更大的经济代价,更谈不上尽快形成燃料电池发电的产业化。若不能形成燃料电池的产业化并在电力系统广泛应用,那么,也谈不上提高发电效率和降低污染物的排放。只有从现在开始,在国外的基础上,高起点研究,经过10—20年的努力,有可能在国电公司形成燃料电池的产业和广泛的商业应用。

2.8在我国电力系统发展燃料电池发电技术是市场经济条件下的迫切要求

分散式电源作为大电网的有效补充己得到许多国家的重视,而电源提供者的多元化更是一种趋势。我国电网的容量大、技术水平和可靠性还较低、抵御各种灾害的能力较差,在这种情况下,小型高效的燃料电池分布式电源随着技术的商业化市场潜力巨大。

倘若电力系统不及时进行研究开发,在未来几年内,有可能被国外企业和国内其它其它行业或民营企业占领燃料电池分散电源市场。在市场经济条件下,国电公司既是用户,又是开发者。对于燃料电池这样重要的发电高新技术,应不失时机地着手研究开发,联合国内一些基础研究单位,争取纳入国家的攻关计划,获得国家支持,在尽可能短的时间内,形成燃料电池发电技术研究开发的优势,开发燃料电池发电关键技术和成套技术,形成国电公司的高新技术产业,既可优化调整电力结构,又能满足市场的不同需求。

3国外燃料电池发展计划及商业化的预测

研究美、日、欧洲等国家和地区燃料电池的发展进程及商业化的预测,对我们制定燃料电池的发展战略和预测应用前景会有一定的参考价值。

3.1美国燃料电池发电技术研究开发状况

(1)美国燃料电池发电技术的研究开发计划

1997年,美国总统克林顿颁发了"改善气候行动计划”,燃料电池被确定为一项关键技术,联邦政府为此制定了一项“美国联邦燃料电池发展计划”,目的是通过燃料电池的商业化来减少温室气体排放量。在这项计划中,对每一个燃料电池的新用户资助l000/kw的优惠。结果,仅在1998年,就有42台200kwpafc发电机组投入运行。

美国政府鼓励在一些对环境敏感的地区建立燃料电池发电站。此外,政府已促使美国所有的军事基地安装200kw燃料电池发电机组。通过这些措施,加速燃料电池的商业化,并提高国家能源的安全性。美国政府投入巨资研究开发燃料电池发电技术的另一个目的,就是要保持美国在这一领域的领先地位。随着商业化过程不断深入,将逐步形成新的高技术产业,为美国的经济注入新的活力,提供更多的就业机会。

美国doe的燃料电池发展计划如下:

pafc己商业化,不再投入资金进行研究开发。pafc目前的发电效率为40%一45(lhv),热电联产的热效率为80%(lhv)。

已完成250kw和2mwmcfc的现场示范,预计2002年进行20mw的示范;2003年左右,使250kw和mw级mcfc达到商业化;2010年,燃用天然气的250kw一20mwmcfc分散电源达到商业化,100mw以上mcfc的中心电站也进入商业化;2020年,100mw以上燃煤mcfc中心发电站进入商业化。mcfc技术目标是运行温度为650℃,发电效率达到60%(lhv),组成联合循环的发电效率为70(lhv),热电联产的热效率达到85(lhv)以上。

目前,己完成25kw和100kwsofc现场试验,正在进行sofc的商业化设计。预计2002年左右,进行mw级sofc示范;2003年左右,100kw一1mwsofc进行商业化:2010年,250kw一20mw燃用天然气的sofc以分布式电源形式进入商业化,100mw以上燃用天然气的sofc以中心电站形式进入商业化;2020年,100w及以上容量的燃煤s0fc以中心电站的形式进入商业化。sofc技术目标是:运行温度为1000℃,发电效率达到62%(lhv),组成联合循环的发电效率达到72%(lhv),热电联产的热效率达到85(lhv)以上,燃煤时发电效率可达到65%(lhv),这一目标预计2010完成。

美国是最早研究开发pefc的国家,但在大容量化和商业应用方面已落后于加拿大。目前美国生产的质子交换膜仍居世界领先水平。美国在pefc的开发方面是面向家庭用分散式电源,实现热电联供。plugpower公司与ge合作,计划2001年使10kwpefc进入商业化,价格达到s750—1000/kw,大批量生产后,使pefc的价格达到$350/kw。

(2)市场预测

美国能源部(doe)对美国潜在的燃料电池市场的预测认为:在2005年一2010年,美国年需求燃料电池发电容量约2335mw一4075mw。现在美国的燃料电池年生产能力为60mw,商业化的价格为$2000一$3000/kw,若年生产能力达到100mw/a,商业化的价格则可达到$l000—$1500/kw。若能达到(2000—4000)mw/a的生产能力,燃料电池的原材料费仅$200一$300/kw。那么燃料电池的价格则有可能达到$900—$l100/kw,此时可完全与常规的发电方式竞争。

3.2日本燃料电池发电技术的发展进程及应用前景预测

(1)发展进程

日本在pafc研究方面,走的是一条引进合作、消化吸收、再提高的路线。1972年东京煤气公司从美国引进两台pafc燃料电池发电机组,大阪煤气公司也在1973年引进两台pafc机组。日本政府于1981年设立了以开发节能技术为宗旨的“月光计划”,燃料电池发电是其中一项重要内容。此后,日本国内的电力公司、煤气公司和一些大型的制造厂纷纷投入燃料电池的研究开发,并与美国ifc合作,使日本的pafc得到更大的发展。目前,日本的pafc技术已赶上了美国,商业化程度超过了美国。5mw(富士电机制造)和11mw(东芝与ifc合制)均在日本投运,日本公司制造的pafc机组已运行了近100多台。

日本有关mcfc的研究是从1981年开始的,通过自主开发并与美国合作。1987年10kwmcfc开发成功,1993年100kw加压型mcfc开发成功,1997年开发出1mw先导型mcfc发电厂,并投入运行。mcfc已被列为日本“新阳光计划”的一个重点,目标是2000年一2010年,实现燃用天然气的10mw一50mw分布式mcfc发电机组的商业化,并进行100mw以上燃用天然气的mcfc联合循环发电机组的示范,2010年后,实现煤气化mcfc联合循环发电,并逐步替代常规火电厂。

日本的sofc技术也是从1981年的“月光计划”开始研究的,立足于自主开发。1989年一1991年,开发出l00w一400wsofc电池堆,1992年一1997年开发出l0kw平板型sofc。sofc的研究进展也远远落后于nedo原来的计划。“新阳光计划”中预计2000年一2010年,使sofc达到mw级,并形成联合循环发电。日本的pefc也被列入“新阳光计划”,目前开发的容量为(1—2)kw。

(2)政府采取的措施

日本政府在“月光计划”和“新阳光计划”中,先后资助了3台200kw、2台lmw和l台5mw的pafc;1台100kw和1台1mw的mcfc示范电站研究开发、建设及运行。

在通产省和nedo的统一组织和管理下,使公用事业单位(电力公司和煤气公司)和开发商及研究单位紧密结合,实现燃料电池研究开发和商业示范应用一体化。日本电力公司和煤气公司,过去十年来安装了约80多台燃料电池机组,装机容量达到20.1mw,燃料电池及电厂的费用主要由业主承担,但是制造商和政府也各承担一部分。这种政府和企业联合研究开发的方式促进了日本燃料电池的发展。使用燃料电池发电享有许多优惠政策:燃料电池的相关设备,在未超过一定规模时,其工程计划仅须申报即可动工。对500kw以下的常压燃料电池生产与使用的审批手续大大简化。在医院、旅馆、办公大楼等安装的燃料电池发电机组,政府提供的经费资助。新建的燃料电池发电设备享有10的免税额,并获有30%的加速折旧。对装设于电力公司或自备发电用的燃料电池项目,日本开发银行将提供投资额40%的低息贷款。

(3)市场预测

1990年,日本通产省发表了“长期电源供需展望”报告,预计日本国内的燃料电池发电容量到2000年约2250mw;2010年约10720mw,电力系统用5500mw,其中约有2400mw是mcfc和sofc高温型燃料电池;2010年煤气化mcfc和sofc达到实用化;发电效率达到50%一60%。由于燃料电池发电技术仍有许多技术上的难题没有突破,进展速度低于预期值,因此日本目前已将原目标做了修正,预计2000年燃料电池装机容量将达到200mw,其中分布式电源l12mw,工业用热电联产型为88mw;2010年将达到2200mw,其中分布式电源型为735mw,工业用热电联产型为1465mw。

3.3其它国家和地区的发展进程

目前,欧洲的燃料电池发电技术远远落后于美国和日本。80欧洲又重新开始研究燃料电池发电技术。它们采用向美国、日本购买电池组,自行组装发电厂的方式来发展pafc发电技术。1990年成立了一个“欧洲燃料电池集团(efcg)”。意大利已完成了一座1mw的pafc示范工程,由ifc供应,bop由欧洲制造。意大利、西班牙与美国ipc合作,于1993年在米兰建了一座l00kwmcfc电厂,1996年投运。德国正在开发250kwmcfc。德国西门子公司于1998年收购了美国西屋公司的管形sofc技术后,现在拥有世界上最先进的平板型和管形sofc技术。

加拿大在pefc方面居世界领先地位,在继续开发交通用pefc的同时,目前也将pefc应用于固定电站,已建成250kwpefc示范电站,目标是在近几年内使250kw级pepc商业化。澳大利亚在1993年一1997年,共投资3000万美元,研究开发平板型sofc,目前正在开发(20一25)kwsofc电池堆。韩国电力公司于1993年从日本购进一座200kwpafc进行示范运行。

3.4国外发展燃料电池发电技术的经验总结

回顾国外燃料电地发展的道路,有许多值得我们吸取和借鉴的经验。下面归纳几点:

美国在燃料电池发电技术的研究开发方面始终处于世界领先地位。除了雄厚的财力之外,还有三方面重要的原因:一是政府将燃料电池发电技术视为提高火力发电效率、减少污染物和温室气体排放的重要措施,列入政府的“改变气侯技术战略”中,并大力投入资金和力量研究开发;二是燃料电池技术提高到“国家能源安全并大力投入资金和力量研究开发;二是将燃料电池技术提高到“国家能源安全关键技术”的战略高度,dod和doe均投入资金研究开发;三是对燃料电池的应用前景充满信心,希望能形成新的高技术产业,给美国的经济注入新的活力,政府和企业共同投入资金研究开发,力图保持领先地位。

日本走的是一条通过与美国合作、引进技术并消化吸收实现产业化的路线,并在pafc的商业化方面己超过了美国,在mcfc的研究开发方面也接近美国。成功的重要经验也是政府对燃料电池给予高度重视,先后列入了“月光计划”和“新阳光计划”,大力投入研究开发。另一条经验是研究机构、企业和用户联合,组成从研究、开发到商业应用一体化集团,既承担研究开发的风险,也享受成功的优惠。

加拿大ballard公司在pefc方面成功的经验告诉我们:只要坚定不移地进行研究开发,一个小公司也能在10—20年内成为举世瞩目的燃料电池技术拥有者。

燃料电池起源于欧洲,但是,现在欧洲的燃料电池技术已远远落后于美国和日本。主要原因是政府和企业对燃料电池发电技术重视不够。目前,欧洲已经意识到这一点,成立了—个燃料电池发电技术集团,引进美国、日本的技术,并进行研究开发。

4各种燃料电池发电技术综合比较

(1)afc:与其它燃料电池相比,afc功率密度和比功率较高,性能可靠。但它要以纯氢做燃料,纯氧做氧化剂,必须使用pt、au、ag等贵金属做催化剂,价格昂贵。电解质的腐蚀严重,寿命较短,这些特点决定了afc仅限于航天或军事应用,不适合于民用。

(2)pafc:以磷酸做为电解质,可容许燃料气和空气中c02的存在。这使得pafc成为最早在地面上应用或民用的燃料电池。与afc相比它可以在180℃一210℃运行,燃料气和空气的处理系统大大简化,加压运行时,可组成热电联产。但是,pafc的发电效率目前仅能达到40%一45%(lhv),它需要贵金属铂做电催化剂;燃料必须外重整:而且,燃料气中c0的浓度必须小于1%(175℃)一2(200℃),否则会使催化剂中毒;酸性电解液的腐蚀作用,使pafc的寿命难以超过40000小时。pafc目前的技术已成熟,产品也进入商业化,做为特殊用户的分散式电源、现场可移动电源和备用电源,pafc还有市场,但用作大容量集中发电站比较困难。

(3)mcfc:在650℃一700℃运行,可采用镍做电催化剂,而不必使用贵重金属:燃料可实现内重整,使发电效率提高,系统简化;co可直接用作燃料;余热的温度较高,可组成燃气/蒸汽联合循环,使发电容量和发电效率进一步提高。与sofc相比,mcfc的优点是:操作温度较低,可使用价格较低的金属材料,电极、隔膜、双极板的制造工艺简单,密封和组装的技术难度相对较小,大容量化容易,造价较低。缺点是:必须配置c02循环系统;要求燃料气中h2s和co小于0.5ppm;熔融碳酸盐具有腐蚀性,而且易挥发;与sofc相比,寿命较短;组成联合循环发电的效率比sofc低。与低温燃料电池相比,mcfc的缺点是启动时间较长,不适合作备用电源。mcfc己接近商业化,示范电站的规模已达到2mw。从mcfc的技术特点和发展趋势看,mcfc是将来民用发电(分散电源和中心电站)的理想选择之一。

(4)sofc:电解质是固体,可以被做成管形、板形或整体形。与液体电解质的燃料电池(afc、pafc和mcfc)相比,sofc避免了电解质蒸发和电池材料的腐蚀问题,电池的寿命较长(已达到70000小时)。co可做为燃料,使燃料电池以煤气为燃料成为可能。sofc的运行温度在1000℃左右,燃料可以在电池内进行重整。由于运行温度很高,要解决金属与陶瓷材料之间的密封也很困难。与低温燃料电池相比,sofc的启动时间较长,不适合作应急电源。与mcfc相比,sofc组成联合循环的效率更高,寿命更长(可大于40000小时);但sofc面临技术难度较大,价格可能比mcfc高。示范业绩证明sofc是未来化石燃料发电技术的理想选择之一,既可用作中小容量的分布式电源(500kw一50mw),也可用作大容量的中心电站(>l00mw)。尤其是加压型sofc与微型燃气轮结合组成联合循环发电的示范,将使sofc的优越性进一步得到体现。

(5)pefc:pepc的运行温度较低(约80℃),它的启动时间很短,在几分钟内可达到满负荷。与pafc相比,电流密度和比功率都较高,发电效率也较高(45%一50(lhv)),对co的容许值较高(<10ppm)。pefc的余热温度较低,热利用率较低。与pafc和mcfc等液体电解质燃料电池相比,它具有寿命长,运行可靠的特点。pefc是理想的可移动电源,是电动汽车、潜艇、航天器等移动工具电源的理想选择之一。目前,在移动电源、特殊用户的分布式电源和家庭用电源方面有一定的市场,不适合做大容量中心电站。

5结论

选择适合于我国电力系统发展的燃料电池发电技术,应综合考虑以下几点:较高的发电效率;环保性能好;既能作为高效、清洁的分布电源,又具有形成大容量的联合循环中心发电站的发展潜力;既能以天然气为燃料,又具有以煤为燃料的可能性;技术的先进性及商业化进程;运行的可靠性和寿命;降低造价的潜力;国内的基础。综合考虑以上几点,对适合于我国电力系统发展的燃料电池发电技术,提出以下几点选择意见:

(1)优先发展高温燃料电池发电技术。即选择mcfc和sofc为我国电力系统燃料电池发电技术的主要发展方向,这两种燃料电池既能以天然气为燃料作为高效清洁的分布电源,又具有形成大容量的联合循环中心发电站(以天然气或煤为燃料)的发展潜力。

(2)mcfc和sofc各有特点,都存在许多问题,尚未商业化。若考虑技术难度和成熟程度以及商业化的进程,对于mcfc,应走引进、消化吸收、研究创新,实现国产化的技术路线,并尽快投入商业应用:对于sofc,应立足于自主开发,走创新和跨越式发展的技术发展路线。

(3)随着氢能技术的发展,pefc在移动电源、分散电源、应急电源、家庭电源等方面具有一定优势和的市场潜力,国家电力公司应密切跟踪研究。

(4)afc不适合于民用发电。pafc技术目前已趋于成熟,与mcfc、sofc和pefc比较,已相对落后。因此,afc和pafc不应做为国家电力公司研究开发的方向。

燃料电池技术论文范文6

在刚刚结束的北京奥运会上,无论在奥运中心区附近,还是在马拉松比赛现场,细心的人们会发现几辆外形上并不起眼的上海大众“帕萨特领驭”轿车;只有喷涂在车身侧面的“FUEL CELL燃料电池轿车”标志,在不经意之中泄露出其秘密。

与传统的由汽油发动机带动的轿车不同,驱动这些车辆的是氢燃料电池。在这个全新的动力系统中,借助催化剂铂(Pt),氢原子中的两个电子被电离形成电流,并通过电机为汽车提供驱动力;同时失去电子的氢质子则穿过质子交换膜,与来自空气的氧原子结合为水。

替代了传统油箱的氢罐,可储存3公斤压缩氢气。按照每百公里消耗1公斤计,领驭依靠这套动力系统一次即可行驶300公里。虽然这一里程仍低于传统轿车的500多公里,但其运行速度已达到每小时140公里以上,完全可以满足奥运会的需要。

本届奥运会上,共有20辆这样的轿车投入运行。据《财经》记者了解,这也是中国氢燃料电池轿车首次从实验阶段迈进商业化示范运行的大门。

进军氢动力

实际上,这并不是燃料电池汽车与北京乃至中国的第一次“亲密接触”。

早在两年多前,2006年6月,三辆单价为180万美元的奔驰Citaro氢燃料电池公共汽车已驶上北京街头。这一由联合国开发计划署(UNDP)、全球环境基金(GEF)和科技部共同支持的中国燃料电池公共汽车商业化示范项目,使中国成为最先开展燃料电池公共汽车示范运行的国家之一。

用氢来代替传统的汽油,可解能源供应之困。此外,氢燃料电池产生的惟一产物只有水,更可免除温室气体排放的担忧。从理论上讲,氢燃料电池汽车无疑是今后汽车动力的最完美选择。

燃料电池虽已经问世170年,但真正在商业上获得应用,则开始于半个世纪之前美国宇航局(NASA)的空间项目。此后,尤其是上世纪70年代后,随着石油危机的影响,人们逐渐开始考虑将其作为汽车动力加以应用。

其中的先驱,无疑就是被誉为“燃料电池之父”的加拿大科学家杰佛里巴拉德(Geoffrey Ballard)。早在1979年,他就创建了巴拉德动力系统公司(Ballard Power Systems),以推动氢燃料电池在运输等行业的应用。

到了上世纪90年代,该公司已经开始与全球汽车巨头之一的梅赛德斯-奔驰公司在氢燃料电池领域合作。除了公交汽车,该公司目前也已经小批量生产了60余辆A级氢燃料电池汽车F-Cell。

不只是奔驰,近年来,几乎所有汽车巨头都已投入到这场竞赛之中。

日本本田汽车生产的FCX Clarity,作为第一辆美国政府认可达到碰撞测试标准的燃料电池车,已开始通过租赁方式开拓市场。美国通用汽车旗下的雪佛兰Equinox氢燃料电池车型,也正在美国进行“车行道”计划的示范运行。

此外,福特汽车的08款Fusion轿车,则创造了每小时325.535公里的氢燃料电池车时速记录。日本丰田汽车的FCHV-adv型氢燃料电池混合动力车,也依靠一罐氢气创造了830公里的路程记录。就连刚刚进入国际巨头行列的韩国现代汽车,也在美国等国家启动了燃料电池驱动的途胜(Tucson)多功能运动轿车(SUV)的巡展。

不仅是北京奥运会,今年7月在北海道召开的八国集团首脑峰会(G8)期间,燃料电池汽车也大出风头。丰田为峰会准备了78辆混合动力和氢燃料电池车,本田的FCX Clarity还被授予“G8领袖座驾”称号。

在巴拉德勾画的未来图景中,总有一天,清洁的燃料电池汽车将成为公路上的“主角”。遗憾的是,直到今年8月2日,75岁的他在温哥华去世时,这一梦想仍未成为现实。

成本桎梏

阻碍氢燃料电池车真正上路的最大路障,非天价成本莫属。催化剂是燃料电池的重要组件,目前仍多采用纳米级的铂制作;由于铂在地球上非常稀缺,因此其价格也十分高昂。

对于中国企业而言,这种挑战是双重的。虽然燃料电池汽车的很多材料都已实现了国产化,但中国最大的燃料电池生产企业――上海神力科技的新闻发言人金磊告诉《财经》记者,从性价比和稳定性角度考虑,包括催化剂、质子交换膜在内的很多关键材料,仍然要依赖进口。

更重要的是,目前燃料电池很多关键组件、部件的生产,都还停留在实验室阶段,其成本与已大规模工业化生产的传统汽车相比,自然是一个天文数字。

据《财经》记者了解,目前中国一套轿车燃料电池动力系统的价格,大概在100万元人民币;而一套与公共汽车配套的燃料电池系统,则高达300万元。

实际上,动力系统还仅仅是天价成本的一个组成部分,要让这种汽车真正上路,需要投资的还很多,比如加氢站的建设等。

到底是应该先有氢燃料电池车还是先有加氢站,中国“973”高技术计划氢能基础研究项目首席科学家、清华大学核能与新能源技术研究院教授毛宗强对《财经》记者表示,这实际上是一个“鸡与蛋”的古老命题。

对于目前的能源公司而言,石油生意仍能保持很好的盈利,并不急于投资氢这样的新能源。

而另一方面,由于现有的传统汽车制造技术已经基本成熟,一旦加氢站不能建设起来,就没人会愿意冒“趴窝”的风险去买氢燃料电池车。

目前,美国、日本、德国、荷兰、西班牙等不少国家,都已经建成或者正在建设加氢站,但整体数量仍非常有限,远不足以支持整个传统汽车向氢燃料电池时代的转型。

今年7月,美国国家研究理事会(NRC)的一份题为《向替代运输技术的过渡――聚焦氢》的报告中就指出,到2035年,美国需要累积为氢基础设施投资将近1390亿美元,到2050年这一数字则将增长为4150亿美元。

而在中国,基础就更为薄弱。仅在北京中关村永丰高新技术开发区和上海安亭建有两家加氢站。这两个加氢站分别由清华大学和同济大学开发和运营,除了在示范运行期间向氢燃料电池车提供加氢服务,其余时间仅为清华和同济大学在这一领域的研发服务。

同济大学汽车学院院长,“863”节能与新能源汽车项目总体专家组成员余卓平教授在接受《财经》记者采访时就提出设想:假如中国能在某个城市建几十个加氢站,实现在这个城市里燃料电池车自如的加氢运行,就可以有几万辆车投产,成本将会降低,很快氢燃料电池车的优势就会显现出来。

“随着技术的发展,中国也总要有人来破这个局。”余卓平说。

争议中前行

伴随氢燃料电池车的发展,氢的来源也成为争议的焦点。

现在国内加氢站的氢,主要是由天然气、煤等化石能源制成。在批评者看来,不能摆脱化石燃料的氢燃料电池车,当然不能标榜自己的清洁性。

不过,清华大学毛宗强教授在接受《财经》记者采访时表示,氢的将来必将摆脱化石能源,正因为此,才考虑将氢作为未来的能源方式。

电解水制氢是出现在中学化学教科书中的实验过程,同样适用于产业化运用。毛宗强对《财经》记者强调,用水电制氢、核电制氢、太阳能发电制氢,甚至直接的光电解制氢和核反应堆废热制氢,这些方法尽管现在成本仍较高,但未来氢能的出路正是与可再生能源结合。

清华大学汽车安全与节能国家重点实验室副主任、汽车系教授陈全世接受《财经》记者采访时也解释说,把用电低谷时段多余的电利用起来制氢,并不会增大电网的压力。毕竟,与电相比,氢最大的优势在于方便储存和运输。

同时,随着技术的进步,高成本的门槛也在逐步降低。比如,采用非贵金属材料作为催化剂的设想或许将变为现实。

日前出版的美国《科学》杂志上,澳大利亚莫纳什大学(Monash University)电镀材料科学中心的科学家就宣布,成功地用一种聚合物(PEDOT)替代了铂催化剂。科学家用涂有PEDOT涂层的多孔材料作为电极,在实验运转了1500小时后,其催化效率达到了与铂催化剂同样的性能。

“当然,这一成功还只是在初级的实验室阶段。”虽然文章的作者詹森博士(Winther Jensen)在接受《财经》记者采访时承认,这一技术要真正应用到燃料电池汽车上,可能还需要五年左右的时间。但随着寻找替代品的探索继续以及产能的不断提升,其成本的下降或许仅仅是个时间问题。

尽管氢燃料电池车能够解决未来能源和环境的多重问题,但普遍的共识是,这一新动力车型距离商业化生产还有相当的距离。美国国家研究理事会在上述报告中就预测,氢燃料电池车数量的显著增长,至少要到2015年。

据《财经》记者了解,2015年到2020年,也是行业内基本达成共识的氢燃料电池车实现量产的时间。

而在氢燃料电池车还没有形成优势的过渡时期内,汽车行业或许仍将会呈现出一个多元的动力系统时代。其中最为典型的,就是混合动力(油-电)技术,因为技术上的跨度较小,如进行批量生产后其成本可以有效地控制。

当然,这种技术的节能,也有着很大的局限性。余卓平就对《财经》记者解释说,只有面对走走停停的城市路况,混合动力车的节能优势才能得以体现;而对于一直在行驶速度、发动机转速均比较合适的工况下运行的汽车,混合动力系统就难以发挥效用。

因此,对于中国而言,如何在产业化无法突飞猛进的前提下,保持住中国在燃料电池汽车方面的竞争力,从而为“氢经济时代”的到来真正做好准备,无论对于政府还是企业而言,都将是一个宏大的命题。

毕竟,在很多业内人士看来,在现任科技部部长万钢的推动之下,中国一直在将以氢燃料电池为代表的新能源汽车,作为中国迈入汽车核心技术先进的突破口。

尽快推动燃料电池汽车在中国的示范运行,无疑有着极为重要的意义。在清华大学汽车系教授陈全世看来,发现问题再寻求解决,正是示范运行的意义所在。

燃料电池技术论文范文7

1.引言

能源是经济发展的基础,没有能源工业的发展就没有现代文明。人类为了更有效地利用能源一直在进行着不懈的努力。历史上利用能源的方式有过多次革命性的变革,从原始的蒸汽机到汽轮机、高压汽轮机、内燃机、燃气轮机,每一次能源利用方式的变革都极大地推进了现代文明的发展。

随着现代文明的发展,人们逐渐认识到传统的能源利用方式有两大弊病。一是储存于燃料中的化学能必需首先转变成热能后才能被转变成机械能或电能,受卡诺循环及现代材料的限制,在机端所获得的效率只有33~35%,一半以上的能量白白地损失掉了;二是传统的能源利用方式给今天人类的生活环境造成了巨量的废水、废气、废渣、废热和噪声的污染。对于发电行业来说,虽然采用的技术在不断地升级,如开发出了超高压、超临界、超超临界机组,开发出了流化床燃烧和整体气化联合循环发电技术,但这种努力的结果是:机组规模巨大、超高压远距离输电、投资上升,到用户的综合能源效率仍然只有35%左右,大规模的污染仍然没有得到根本解决。多年来人们一直在努力寻找既有较高的能源利用效率又不污染环境的能源利用方式。这就是燃料电池发电技术。 燃料电池是一种将储存在燃料和氧化剂中的化学能,直接转化为电能的装置。当源源不断地从外部向燃料电池供给燃料和氧化剂时,它可以连续发电。依据电解质的不同,燃料电池分为碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)及质子交换膜燃料电池(PEMFC)等。燃料电池不受卡诺循环限制,能量转换效率高,洁净、无污染、噪声低,模块结构、积木性强、比功率高,既可以集中供电,也适合分散供电。

大型电站,火力发电由于机组的规模足够大才能获得令人满意的效率,但装有巨型机组的发电厂又受各种条件的限制不能贴进用户,因此只好集中发电由电网输送给用户。但是机组大了其发电的灵活性又不能适应户户的需要,电网随用户的用电负荷变化有时呈现为高峰,有时则呈现为低谷。为了适应用电负荷的变化只好备用一部分机组或修建抽水蓄能电站来应急,这在总体上都是以牺牲电网的效益为代价的。传统的火力发电站的燃烧能量大约有近70%要消耗在锅炉和汽轮发电机这些庞大的设备上,燃烧时还会排放大量的有害物质。而使用燃料电池发电,是将燃料的化学能直接转换为电能,不需要进行燃烧,没有转动部件,理论上能量转换率为100%,装置无论大小实际发电效率可达40%~60%,可以实现直接进入企业、饭店、宾馆、家庭实现热电联产联用,没有输电输热损失,综合能源效率可达80%,装置为集木式结构,容量可小到只为手机供电、大到和目前的火力发电厂相比,非常灵活。

燃料电池被称为是继水力、火力、核能之后第四电装置和替代内燃机的动力装置。国际能源界预测,燃料电池是21世纪最有吸引力的发电方法之一。我国人均能源资源贫乏,在目前电网由主要缺少电量转变为主要缺少系统备用容量、调峰能力、电网建设滞后和传统的发电方式污染严重的情况下,研究和开发微型化燃料电池发电具有重要意义,这种发电方式与传统的大型机组、大电网相结合将给我国带来巨大的经济效益。

2. 燃料电池的特点与原理

由于燃料电池能将燃料的化学能直接转化为电能,因此,它没有像通常的火力发电机那样通过锅炉、汽轮机、发电机的能量形态变化,可以避免中间的转换的损失,达到很高的发电效率。同时还有以下一些特点:

l 不管是满负荷还是部分负荷均能保持高发电效率;

不管装置规模大小均能保持高发电效率;

具有很强的过负载能力;

通过与燃料供给装置组合的可以适用的燃料广泛;

发电出力由电池堆的出力和组数决定,机组的容量的自由度大;

电池本体的负荷响应性好,用于电网调峰优于其他发电方式;

用天然气和煤气等为燃料时,NOX及SOX等排出量少,环境相容性优。

如此由燃料电池构成的发电系统对电力工业具有极大的吸引力。 燃料电池其原理是一种电化学装置,其组成与一般电池相同。其单体电池是由正负两个电极(负极即燃料电极和正极即氧化剂电极)以及电解质组成。不同的是一般电池的活性物质贮存在电池内部,因此,限制了电池容量。而燃料电池的正、负极本身不包含活性物质,只是个催化转换元件。因此燃料电池是名符其实的把化学能转化为电能的能量转换机器。电池工作时,燃料和氧化剂由外部供给,进行反应。原则上只要反应物不断输入,反应产物不断排除,燃料电池就能连续地发电。这里以氢-氧燃料电池为例来说明燃料电池的基本工作原理。

氢-氧燃料电池反应原理

这个反映是电觧水的逆过程。电极应为:

负极: H2 + 2OH- 2H2O + 2e-

另外,只有燃料电池本体还不能工作,必须有一套相应的辅助系统,包括反应剂供给系统、排热系统、排水系统、电性能控制系统及安全装置等。

燃料电池通常由形成离子导电体的电解质板和其两侧配置的燃料极(阳极)和空气极(阴极)、及两侧气体流路构成,气体流路的作用是使燃料气体和空气(氧化剂气体)能在流路中通过。

在实用的燃料电池中因工作的电解质不同,经过电解质与反应相关的离子种类也不同。PAFC和PEMFC反应中与氢离子(H+)相关,发生的反应为:

燃料极:H2 =2H+ + 2e- (1) 全体:H2+1/2O2 = H2O (3)

燃料电池技术论文范文8

【摘要】本文概述了燃料电池的工作特点和原理,介绍了发电系统的组成、国内外的研究现状,对我国应用燃料电池发电的资源条件进行了评估,展望了这一技术在电力系统的应用前景、将对电力系统产生的重要影响,它将使传统的电力系统产生重大的变革,它会使电力系统更加安全、经济。最后提出了发展燃料电池发电的具体建议。

1.引言

    能源是经济发展的基础,没有能源工业的发展就没有现代文明。人类为了更有效地利用能源一直在进行着不懈的努力。历史上利用能源的方式有过多次革命性的变革,从原始的蒸汽机到汽轮机、高压汽轮机、内燃机、燃气轮机,每一次能源利用方式的变革都极大地推进了现代文明的发展。

    随着现代文明的发展,人们逐渐认识到传统的能源利用方式有两大弊病。一是储存于燃料中的化学能必需首先转变成热能后才能被转变成机械能或电能,受卡诺循环及现代材料的限制,在机端所获得的效率只有33~35%,一半以上的能量白白地损失掉了;二是传统的能源利用方式给今天人类的生活环境造成了巨量的废水、废气、废渣、废热和噪声的污染。对于发电行业来说,虽然采用的技术在不断地升级,如开发出了超高压、超临界、超超临界机组,开发出了流化床燃烧和整体气化联合循环发电技术,但这种努力的结果是:机组规模巨大、超高压远距离输电、投资上升,到用户的综合能源效率仍然只有35%左右,大规模的污染仍然没有得到根本解决。多年来人们一直在努力寻找既有较高的能源利用效率又不污染环境的能源利用方式。这就是燃料电池发电技术。

    1839年英国的Grove发明了燃料电池,并用这种以铂黑为电极催化剂的简单的氢氧燃料电池点亮了伦敦讲演厅的照明灯。1889年Mood和Langer首先采用了燃料电池这一名称,并获得200mA/m2电流密度。由于发电机和电极过程动力学的研究未能跟上,燃料电池的研究直到20世纪50年代才有了实质性的进展,英国剑桥大学的Bacon用高压氢氧制成了具有实用功率水平的燃料电池。60年代,这种电池成功地应用于阿波罗(Appollo)登月飞船。从60年代开始,氢氧燃料电池广泛应用于宇航领域,同时,兆瓦级的磷酸燃料电池也研制成功。从80年代开始,各种小功率电池在宇航、军事、交通等各个领域中得到应用。

    燃料电池是一种将储存在燃料和氧化剂中的化学能,直接转化为电能的装置。当源源不断地从外部向燃料电池供给燃料和氧化剂时,它可以连续发电。依据电解质的不同,燃料电池分为碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)及质子交换膜燃料电池(PEMFC)等。燃料电池不受卡诺循环限制,能量转换效率高,洁净、无污染、噪声低,模块结构、积木性强、比功率高,既可以集中供电,也适合分散供电。

    大型电站,火力发电由于机组的规模足够大才能获得令人满意的效率,但装有巨型机组的发电厂又受各种条件的限制不能贴进用户,因此只好集中发电由电网输送给用户。但是机组大了其发电的灵活性又不能适应户户的需要,电网随用户的用电负荷变化有时呈现为高峰,有时则呈现为低谷。为了适应用电负荷的变化只好备用一部分机组或修建抽水蓄能电站来应急,这在总体上都是以牺牲电网的效益为代价的。传统的火力发电站的燃烧能量大约有近70%要消耗在锅炉和汽轮发电机这些庞大的设备上,燃烧时还会排放大量的有害物质。而使用燃料电池发电,是将燃料的化学能直接转换为电能,不需要进行燃烧,没有转动部件,理论上能量转换率为100%,装置无论大小实际发电效率可达40%~60%,可以实现直接进入企业、饭店、宾馆、家庭实现热电联产联用,没有输电输热损失,综合能源效率可达80%,装置为集木式结构,容量可小到只为手机供电、大到和目前的火力发电厂相比,非常灵活。

    燃料电池被称为是继水力、火力、核能之后第四电装置和替代内燃机的动力装置。国际能源界预测,燃料电池是21世纪最有吸引力的发电方法之一。我国人均能源资源贫乏,在目前电网由主要缺少电量转变为主要缺少系统备用容量、调峰能力、电网建设滞后和传统的发电方式污染严重的情况下,研究和开发微型化燃料电池发电具有重要意义,这种发电方式与传统的大型机组、大电网相结合将给我国带来巨大的经济效益。

    2. 燃料电池的特点与原理

    由于燃料电池能将燃料的化学能直接转化为电能,因此,它没有像通常的火力发电机那样通过锅炉、汽轮机、发电机的能量形态变化,可以避免中间的转换的损失,达到很高的发电效率。同时还有以下一些特点:

l 不管是满负荷还是部分负荷均能保持高发电效率;

不管装置规模大小均能保持高发电效率;

具有很强的过负载能力;

通过与燃料供给装置组合的可以适用的燃料广泛;

发电出力由电池堆的出力和组数决定,机组的容量的自由度大;

电池本体的负荷响应性好,用于电网调峰优于其他发电方式;

用天然气和煤气等为燃料时,NOX及SOX等排出量少,环境相容性优。

    如此由燃料电池构成的发电系统对电力工业具有极大的吸引力。

    燃料电池按其工作温度是不同,把碱性燃料电池(AFC,工作温度为100℃)、固体高分子型质子膜燃料电池(PEMFC,也称为质子膜燃料电池,工作温度为100℃以内)和磷酸型燃料电池(PAFC,工作温度为200℃)称为低温燃料电池;把熔融碳酸盐型燃料电池(MCFC,工作温度为650℃)和固体氧化型燃料电池(SOFC,工作温度为1000℃)称为高温燃料电池,并且高温燃料电池又被称为面向高质量排气而进行联合开发的燃料电池。另一种分类是按其开发早晚顺序进行的,把PAFC称为第一代燃料电池,把MCFC称为第二代燃料电池,把SOFC称为第三代燃料电池。这些电池均需用可燃气体作为其发电用的燃料。

    燃料电池其原理是一种电化学装置,其组成与一般电池相同。其单体电池是由正负两个电极(负极即燃料电极和正极即氧化剂电极)以及电解质组成。不同的是一般电池的活性物质贮存在电池内部,因此,限制了电池容量。而燃料电池的正、负极本身不包含活性物质,只是个催化转换元件。因此燃料电池是名符其实的把化学能转化为电能的能量转换机器。电池工作时,燃料和氧化剂由外部供给,进行反应。原则上只要反应物不断输入,反应产物不断排除,燃料电池就能连续地发电。这里以氢-氧燃料电池为例来说明燃料电池的基本工作原理。

氢-氧燃料电池反应原理

这个反映是电觧水的逆过程。电极应为:

负极: H2 + 2OH- 2H2O + 2e-

正极: 1/2O2 + H2O + 2e- 2OH-

电池反应:H2 + 1/2O2==H2O

    另外,只有燃料电池本体还不能工作,必须有一套相应的辅助系统,包括反应剂供给系统、排热系统、排水系统、电性能控制系统及安全装置等。

    燃料电池通常由形成离子导电体的电解质板和其两侧配置的燃料极(阳极)和空气极(阴极)、及两侧气体流路构成,气体流路的作用是使燃料气体和空气(氧化剂气体)能在流路中通过。

    在实用的燃料电池中因工作的电解质不同,经过电解质与反应相关的离子种类也不同。PAFC和PEMFC反应中与氢离子(H+)相关,发生的反应为:

燃料极:H2 =2H+ + 2e- (1)

空气极:2H+ + 1/2O2 +2e-= H2O (2)

全体:H2+1/2O2 = H2O (3)

氢氧燃料电池组成和反应循环图

    在燃料极中,供给的燃料气体中的H2 分解成H+ 和e- ,H+ 移动到电解质中与空气极侧供给的O2发生反应。e- 经由外部的负荷回路,再反回到空气极侧,参与空气极侧的反应。一系例的反应促成了e- 不间断地经由外部回路,因而就构成了发电。并且从上式中的反应式(3)可以看出,由H2 和O2 生成的H2O ,除此以外没有其他的反应,H2 所具有的化学能转变成了电能。但实际上,伴随着电极的反应存在一定的电阻,会引起了部分热能产生,由此减少了转换成电能的比例。

    引起这些反应的一组电池称为组件,产生的电压通常低于一伏。因此,为了获得大的出力需采用组件多层迭加的办法获得高电压堆。组件间的电气连接以及燃料气体和空气之间的分离,采用了称之为隔板的、上下两面中备有气体流路的部件,PAFC和PEMFC的隔板均由碳材料组成。堆的出力由总的电压和电流的乘积决定,电流与电池中的反应面积成比。

单电极组装示意图

    PAFC的电解质为浓磷酸水溶液,而PEMFC电解质为质子导电性聚合物系的膜。电极均采用碳的多孔体,为了促进反应,以Pt作为触媒,燃料气体中的CO将造成中毒,降低电极性能。为此,在PAFC和PEMFC应用中必须限制燃料气体中含有的CO 量,特别是对于低温工作的PEMFC更应严格地加以限制。

磷酸型燃料电池基本组成和反应原理

    磷酸燃料电池的基本组成和反应原理是:燃料气体或城市煤气添加水蒸气后送到改质器,把燃料转化成H2、CO和水蒸气的混合物,CO和水进一步在移位反应器中经触媒剂转化成H2和CO2。经过如此处理后的燃料气体进入燃料堆的负极(燃料极),同时将氧输送到燃料堆的正极(空气极)进行化学反应,借助触媒剂的作用迅速产生电能和热能。

    相对PAFC和PEMFC,高温型燃料电池MCFC和SOFC则不要触媒,以CO为主要成份的煤气化气体可以直接作为燃料应用,而且还具有易于利用其高质量排气构成联合循环发电等特点。

    MCFC主构成部件。含有电极反应相关的电解质(通常是为Li与K混合的碳酸盐)和上下与其相接的2块电极板(燃料极与空气极),以及两电极各自外侧流通燃料气体和氧化剂气体的气室、电极夹等,电解质在MCFC约600~700℃ 的工作温度下呈现熔融状态的液体,形成了离子导电体。电极为镍系的多孔质体,气室的形成采用抗蚀金属。

    MCFC工作原理。空气极的O2(空气)和CO2 与电相结合,生成CO23- (碳酸离子),电解质将CO23-移到燃料极侧,与作为燃料供给的H+ 相结合,放出e-,同时生成H2O和CO2 。化学反应式如下:

燃料极:H2 + CO23- = H2O+2e- + CO2 (4)

空气极:CO2 + 1/2O2 +2e-=CO23- (5)

全 体:H2 + 1/2O2 =H2O (6)

    在这一反应中,e- 同在PAFC中的情况一样,它从燃料极被放出,通过外部的回路反回到空气极,由e- 在外部回路中不间断的流动实现了燃料电池发电。另外,MCFC的最大特点是,必须要有有助于反应的CO23-离子,因此,供给的氧化剂气体中必须含有碳酸气体。并且,在电池内部充填触媒,从而将作为天然气主成份的CH4 在电池内部改质,在电池内部直接生成H2 的方法也已开发出来了。而在燃料是煤气的情况下,其主成份CO 和H2O反应生成H2,因此,可以等价地将CO作为燃料来利用。为了获得更大的出力,隔板通常采用Ni和不锈钢来制作。

    SOFC是以陶瓷材料为主构成的,电解质通常采用ZrO2 (氧化锆),它构成了O2- 的导电体Y 2O3 (氧化钇)作为稳定化的YSZ(稳定化氧化锆)而采用。电极中燃料极采用Ni与YSZ复合多孔体构成金属陶瓷,空气极采用LaMnO3 (氧化镧锰)。隔板采用LaCrO3 (氧化镧铬)。为了避免因电池的形状不同,电解质之间热膨胀差造成裂纹产生等,开发了在较低温度下工作的SOFC。电池形状除了有同其他燃料电池一样的平板型外,还有开发出了为避免应力集中的圆筒型。SOFC的反应式如下:

燃料极:H2 + O2- = H2O + 2e- (7)

空气极:1/2O2 + 2e- =O2- (8)

全 体:H2 + 1/2O2 =H2O (9)

    燃料极,H2 经电解质而移动,与O2- 反应生成H2O和e-。空气极由O2和e- 生成O2-。全体同其他燃料电池一样由H2 和O2 生成H2O。在SOFC中,因其属于高温工作型,因此,在无其他触媒作用的情况下即可直接在内部将天然气主成份CH4 改质成H2 加以利用,并且煤气的主要成份CO可以直接作为燃料利用。

表1 燃料电池的分类

类型

磷酸型燃料电池(PAFC)

熔融碳酸盐型燃料电池(MCFC)

固体氧化物型燃料电池(SOFC)

质子交换膜燃料电池(PEMFC)

燃料

煤气、天然气、甲醇等

煤气、天然气、甲醇等

煤气、天然气、甲醇等

纯H2、天然气

电解质

磷酸水溶液

KliCO3溶盐

ZrO2-Y2O3(YSZ)

离子(Na离子)

电极

阳极

多孔质石墨(Pt催化剂)

多孔质镍(不要Pt催化剂)

Ni-ZrO2金属陶瓷(不要Pt催化剂)

多孔质石墨或Ni(Pt催化剂)

阴极

含Pt催化剂+多孔质石墨+Tefion

多孔NiO(掺锂)

LaXSr1-XMn(Co)O3

多孔质石墨或Ni(Pt催化剂)

工作温度

~200℃

~650℃

800~1000℃

~100℃

    近20多年来,燃料电池经历了碱性、磷酸、熔融碳酸盐和固体氧化物等几种类型的发展阶段,燃料电池的研究和应用正以极快的速度在发展。AFC已在宇航领域广泛应用,PEMFC已广泛作为交通动力和小型电源装置来应用,PAFC作为中型电源应用进入了商业化阶段,MCFC也已完成工业试验阶段,起步较晚的作为发电最有应用前景的SOFC已有几十千瓦的装置完成了数千小时的工作考核,相信随着研究的深入还会有新的燃料电池出现。

    美日等国已相继建立了一些磷酸燃料电池电厂、熔融碳酸盐燃料电池电厂、质子交换膜燃料电池电厂作为示范。日本已开发了数种燃料电池发电装置供公共电力部门使用,其中磷酸燃料电池(PAFC)已达到"电站"阶段。已建成兆瓦级燃料电池示范电站进行试验,已就其效率、可运行性和寿命进行了评估,期望应用于城市能源中心或热电联供系统。日本同时建造的小型燃料电池发电装置,已广泛应用于医院、饭店、宾馆等。

    3. 燃料电池发电系统

    3.1. 利用天然气的发电系统

    MCFC需要供给的燃料气体是H2,它可由天然气中的CH4 改质生成,其反应在改质器中进行。改质器出口的温度为600℃,符合MCFC的工作温度,可以原样直接输送到燃料极侧。

    另一方面,空气极侧需要的O2通过空气压缩机供给。另一个反应因素CO2,空气极侧反应等量地再利用发电时燃料极产生的CO2。除了有CO2 外,燃料极排出气体还含有未反应的可燃成份,一起输送到改质器的燃烧器侧,天然气改质所必需的热量就由该燃烧热供给。这种情况下,排出的燃料气体会含有过多的H2O,将影响发热量,为此通常是先将排出燃料气体冷却,将水份滤去后再输送到改质器的燃烧侧。从改质器燃烧侧出来的气体与来自压缩机的空气相混合后供给空气极侧。

    实际的电池因内部存在电阻会发热,故通过在空气极侧中流过的大量氧化气体(阴极气体,即含有O2、CO2 的气体)来除去其发生的热。通常是按600℃供给的气体在700℃下排出,这一指标可通过在空气极侧进行流量调整来控制,为此采用阴极气体的再循环,即,空气极侧供给的气体为以改质器燃烧排气与部分空气极侧排出气体的混合体,为了保持电池入口和出口的温度为最佳温度,可将再循环流量与外部供给的空气流量一起调整。

    来自空气极侧的排气为高温,送入最终的膨胀式透平,进行动力回收,作为空气压缩动力而应用。剩余的动力,由发电机发电回收,从而可以提高整套系统的效率。另外,天然气改质所必需的H2O(水蒸汽)可从排出的燃料气体中回收的H2O来供给。

    这种系统的效率可达55~60%。在整套出力中MCFC发电量份额占90%。绝大部分的发电量是由MCFC生产的。如果考虑到排气形成的动力回收和若干的附加发电,广义上也可以称为联合发电。

    在使用PAFC的情况下,若以煤炭为燃料发电时就不容易了,采用天然气时,其构成类似于MCFC机组,基本上是由电池本体发电。原因是PAFC排出气体温度较低,与其进行附加发电不如作为热电联产电源。

    SOFC能和较高温度的排气体构成附加发电系统,由于SOFC不需要CO2 的再循环等,结构简单,其发电效率可以达到50~60%。

    3.2 利用煤炭的发电系统

    以MCFC为例进行介绍。煤炭需经煤气化装置生成作为MCFC可用燃料的CO及H2,并在进入 MCFC前除去其中含有的杂质(微量的杂质就会构成对MCFC的恶劣影响),这种供给MCFC精制煤气,其压力通常高于MCFC的工作压力,在进入MCFC供气前先经膨胀式涡轮机回收其动力。涡轮机出口气体,经与部分来自燃料极(阳极)排出的高温气体(约700℃)相混合,调整为对电池的适宜温度(约600℃)。该阳极气体的再循环是,将排出的燃料气体中所含的未反应的燃料成分返回入口加以再利用,借以达到提高燃料的利用率。向空气极侧供给O2和CO2是通过空气压缩机输出的空气和排出燃料气体相混合来完成的。但是,碳酸气是采用触媒燃烧器将未燃的H2 及CO变换成H2O和CO2后供给的。

    实际的燃料电池,内部电阻会发热,将通过在空气极侧流过的大量的氧化剂气体(阴极气体,即含有O2和CO2的气体)而除去。通常通过调整空气极侧的流量,把以600℃供给的气体在700℃排出。为此采用了阴极气体再循环,使空气极侧的排气形成约700℃的高温。因此,在这个循环回路中设置了热交换器,将气体温度冷却到600℃,形成电池入口适宜的温度,与来自触媒燃烧器的供给气体相混合。空气极侧的出入口温度,取决于再循环和来自压缩机的供给空气流量和再循环回路中的热交换量。

    排热回收系统(末级循环),是由利用空气极侧排气的膨胀式涡轮机和利用蒸汽的汽轮机发电来构成。膨胀式涡轮机与压缩机的相组合,其剩余动力用于发电。蒸汽是由来自其下流的热回收和煤气化装置以及阴极气体再循环回路中的蒸汽发生器之间的组合产生,形成汽水循环。

    这种机组的发电效率,因煤气化方式和煤气精制方式等的不同而有若干差异。利用煤系统SOFC其构成是复杂的。但若用管道气就简单多了,主要的是采用煤炭气化系统造成的,其效率为45~55%。

    4.我国燃料电池的发展状况

    我国的燃料电池研究始于1958年,原电子工业部天津电源研究所最早开展了MCFC的研究。70年代在航天事业的推动下,中国燃料电池的研究曾呈现出第一次高潮。其间中国科学院大连化学物理研究所研制成功的两种类型的碱性石棉膜型氢氧燃料电池系统(千瓦级AFC)均通过了例行的航天环境模拟试验。1990年中国科学院长春应用化学研究所承担了中科院PEMFC的研究任务,1993年开始进行直接甲醇质子交换膜燃料电池(DMFC)的研究。电力工业部哈尔滨电站成套设备研究所于1991年研制出由7个单电池组成的MCFC原理性电池。"八五"期间,中科院大连化学物理研究所、上海硅酸盐研究所、化工冶金研究所 、清华大学等国内十几个单位进行了与SOFC的有关研究。到90年代中期,由于国家科技部与中科院将燃料电池技术列入"九五"科技攻关计划的推动,中国进入了燃料电池研究的第二个高潮。质子交换膜燃料电池被列为重点,以大连化学物理研究所为牵头单位,在中国全面开展了质子交换膜燃料电池的电池材料与电池系统的研究,并组装了多台百瓦、1kW-2kW、5kW和25kW电池组与电池系统。5kW电池组包括内增湿部分其重量比功率为100W/kg,体积比功率为300W/L。

    我国科学工作者在燃料电池基础研究和单项技术方面取得了不少进展,积累了一定经验。但是,由于多年来在燃料电池研究方面投入资金数量很少,就燃料电池技术的总体水平来看,与发达国家尚有较大差距。我国有关部门和专家对燃料电池十分重视,1996年和1998年两次在香山科学会议上对我国燃料电池技术的发展进行了专题讨论,强调了自主研究与开发燃料电池系统的重要性和必要性。近几年我国加强了在PEMFC方面的研究力度。

    2000年大连化学物理研究所与中科院电工研究所已完成30kW车用用燃料电池的全部试验工作。北京富原公司也宣布,2001年将提供40kW的中巴燃料电池,并接受订货。科技部副部长徐冠华一年前在EVS16 届大会上宣布,中国将在 2000 年装出首台燃料电池电动车。我国燃料电池的研究工作已表明:1.中国的质子交换膜燃料电池已经达到可以装车的技术水平;2.大连化学物理研究所的质子交换膜燃料电池是具有我国自主知识产权的高技术成果;3.在燃料电池研究方面我国可以与世界发达国家进行竞争,而且在市场份额方面,我国可以并且有能力占有一定比例。

    但是我国在PAFC、MCFC、SOFC的研究方面还有较大的差距,目前仍处于研制阶段。

    此前参与燃料电池研究的有关概况如下:

    4.1. PEMFC的研究状况

    我国最早开展PEMFC研制工作的是长春应用化学研究所,该所于1990年在中科院扶持下开始研究PEMFC,工作主要集中在催化剂、电极的制备工艺和甲醇外重整器的研制,已制造出100W PEMFC样机。1994年又率先开展直接甲醇质子交换膜燃料电池的研究工作。该所与美国CaseWesternReserve大学和俄罗斯氢能与等离子体研究所等建立了长期协作关系。

    中国科学院大连化学物理所于1993年开展了PEMFC的研究,在电极工艺和电池结构方面做了许多工作,现已研制成工作面积为140cm2的单体电池,其输出功率达0.35W /cm2。

    清华大学核能技术设计院1993年开展了PEMFC的研究,研制的单体电池在0.7V时输出电流密度为100mA/cm2,改进石棉集流板的加工工艺,并提出列管式PEMFC的设计,该单位已与德国Karlsrube研究中心建立了一定的协作关系。

    天津大学于1994年在国家自然科学基金会资助下开展了PEMFC的研究,主要研究催化剂和电极的制备工艺。

    复旦大学在90年代初开始研制直接甲醇PEMFC,主要研究聚苯并咪唑膜的制备和电极制备工艺。

    厦门大学近年来与香港大学和美国的CaseWesternReserve大学合作开展了直接甲醇PEMFC的研究。

    1994年,上海大学与北京石油大学合作研究PEMFC("八五"攻关项目),主要研究催化剂、电极、电极膜集合体的制备工艺。

    北京理工大学于1995年在兵器工业部资助下开始了PEMFC的研究,目前单体电池的电流密度为150mA/cm2。

    中国科学院工程热物理研究所于1994年开始研究PEMFC,主营使用计算传热和计算流体力学方法对各种供气、增湿、排热和排水方案进行比较,提出改进的传热和传质方案。

    天津电源研究所1997年开始PEMFC的研究,拟从国外引进1.5kW的电池,在解析吸收国外先进技术的基础上开展研究。

    华南理工大学于1997年初在广东省佛山基金资助下开展了PEMFC的研究,与国家科委电动车示范区建设相配合作了一定的研究工作。其天然气催化转化制一氧化碳和氢气的技术现已申请国家发明专利。

    中科院电工研究所最近开展了电动车用PEMFC系统工程和运行模式研究,拟与有色金属研究院合作研究PEMFC/光伏电池(制氢)互补发电系统和从国外引进PEMFC装置。

    1995年北京富原公司与加拿大新能源公司合作进行PEMFC的研制与开发,5kW的PEMFC样机现已研制成功并开始接受订货。

    4.2. MCFC的研究简况

    国内开展MCFC研究的单位不太多。哈尔滨电源成套设备研究所在80年代后期曾研究过MCFC,90年代初停止了这方面的研究工作。

    1993年中国科学院大连化学物理研究所在中国科学院的资助下开始了MCFC的研究,自制LiAlO2微粉,用冷滚压法和带铸法制备出MCFC用的隔膜,组装了单体电池,其性能已达到国际80年代初的水平。

    90年代初,中国科学院长春应用化学研究所也开始了MCFC的研究,在LiAlO2微粉的制备方法研究和利用金属间化合物作MCFC的阳极材料等方面取得了很大进展。

    北京科技大学于90年代初在国家自然科学基金会的资助下开展了MCFC的研究,主要研究电极材料与电解质的相互作用,提出了用金属间化合物作电极材料以降低它的溶解。

    中国科学院上海冶金研究所近年来也开始了MCFC的研究,主要着重于研究氧化镍阴极与熔融盐的相互作用。

    1995年上海交通大学与长庆油田合作开始了MCFC的研究,目标是共同开发5kW~10kW的MCFC。

    中国科学院电工研究所在"八五"期间,考察了国外MCFC示范电站的系统工程,调查了电站的运行情况,现已开展了MCFC电站系统工程关键技术的研究与开发。

    4.3. SOFC的研究简况

    最早开展SOFC研究的是中国科学院上海硅酸盐研究所他们在1971年就开展了SOFC的研究,主要侧重于SOFC电极材料和电解质材料的研究。80年代在国家自然科学基金会的资助下又开始了SOFC的研究,系统研究了流延法制备氧化锆膜材料、阴极和阳极材料、单体SOFC结构等,已初步掌握了湿化学法制备稳定的氧化锆纳米粉和致密陶瓷的技术。

    吉林大学于1989年在吉林省青年科学基金资助下开始对SOFC的电解质、阳极和阴极材料等进行研究,组装成单体电池,通过了吉林省科委的鉴定。1995年获吉林省计委和国家计委450万元人民币的资助,先后研究了电极、电解质、密封和联结材料等,单体电池开路电压达1.18V,电流密度400mA/cm2,4个单体电池串联的电池组能使收音机和录音机正常工作。

    1991年中国科学院化工冶金研究所在中国科学院资助下开展了SOFC的研究,从研制材料着手,制成了管式和平板式的单体电池,功率密度达0.09W/cm2~0.12W/cm2,电流密度为150mA/cm2~180mA/cm2,工作电压为0.60V~0.65V。1994年该所从俄罗斯科学院乌拉尔分院电化学研究所引进了20W~30W块状叠层式SOFC电池组,电池寿命达1200h。他们在分析俄罗斯叠层式结构、美国Westinghouse的管式结构和德国Siemens板式结构的基础上,设计了六面体式新型结构,该结构吸收了管式不密封的优点,电池间组合采用金属毡柔性联结,并可用常规陶瓷制备工艺制作。

    中国科学技术大学于1982年开始从事固体电解质和混合导体的研究,于1992年在国家自然科学基金会和"863"计划的资助下开始了中温SOFC的研究。一种是用纳米氧化锆作电解质的SOFC,工作温度约为450℃。另一种是用新型的质子导体作电解质的SOFC,已获得接近理论电动势的开路电压和200mA/cm2的电流密度。此外,他们正在研究基于多孔陶瓷支撑体的新一代SOFC。

    清华大学在90年代初开展了SOFC的研究,他们利用缓冲溶液法及低温合成环境调和性新工艺成功地合成了固体电解质、空气电极、燃料电极和中间联结电极材料的超细粉,并开展了平板型SOFC成型和烧结技术的研究,取得了良好效果。

    华南理工大学于1992年在国家自然科学基金会、广东省自然科学基金、汕头大学李嘉诚科研基金、广东佛山基金共一百多万元的资助下开始了SOFC的研究,组装的管状单体电池,用甲烷直接作燃料,最大输出功率为4mW/cm2,电流密度为17mA/cm2,连续运转140h,电池性能无明显衰减。

    中国科学院山西煤炭化学研究所在1994年开始SOFC研究,用超细氧化锆粉在1100℃下烧结制成稳定和致密的氧化锆电解质。该所从80年代初开始煤气化热解的研究,以提供燃料电池的气源。煤的灰熔聚气化过程已进入工业性试验阶段,正在镇江市建立工业示范装置。该所还开展了使煤气化热解的煤气在高温下脱硫除尘和甲醇脱氢生产合成气的研究,合成气中CO和H2的比例为1∶2,已有成套装置出售。

燃料电池技术论文范文9

【关键词】纯电动汽车;电池;能源;污染

【中图分类号】U469.7

【文献标识码】A

【文章编号】1672—5158(2012)10-0410-01

作为我们80后,对于汽车肯定不会感到陌生,特别是中国加入“世贸”之后车市的消费出现暴涨,且不断上升。汽车的产销量不断的增长,这也将引起一系列的问题,内燃机技术发展到今天已经可说是炉火纯青的地步了,想到再进一步改善是非常的困难了。我们都是知道无论是汽油机还是柴油机,都会排放一些对大气有害的气体,如:CO、HC、NOx等。虽然说排放标准不断的在提高,但是污染还是存在的,这将跟我们提倡的低碳生活有点格格不入,因此我们就必须找出其它代替品。

目前就有新燃料发动机,如:醇燃料汽车、氢燃料汽车、天然气燃料汽车、太阳能燃料汽车、混合动力汽车、电动车等等。在这些新能源汽车中,纯电动汽车将是我们发展的趋势,因为其他能源存在技术太难攻关、使用经济性和燃料来源等困难。而我国纯电动汽车的研发与国外基本处于同一起跑线上,技术水平与产业化差距较小,势必得到大力发展。

电动汽车是以电源为电动汽车的驱动电动机提供电能,电动机将电源的电能转化为机械能,通过传动装置或者直接驱动车轮和工作装置。电动汽车的优点是零排放、零污染,燃料来源方便,动力性良好等。但就目前而言,我国的新能源汽车产业仍面临着不容忽视的瓶颈问题,电动汽车的缺点也是显而易见的,目前电动汽车的发动机技术、自动变速箱技术有自主产权的不多,动力电源(电池)的寿命短,使用成本高。电池的储能量小,一次充电后行驶里程不理想,充电站的分布远不能与加油站相提并论,电动车的价格较贵。这就使纯电动汽车的推广出现一定的难度。但从发展的角度看,随着科技的进步,投入相应的人力物力,电动汽车的问题会逐步得到解决。扬长避短,电动汽车会逐渐普及,其价格和使用成本必然会降低。

现在处于内燃机跟纯电动汽车的过渡产物是HEV混合动力汽车,混合动力汽车的种类目前主要有3种。一种是以发动机为主动力,电动马达作为辅助,串联混合动力电动汽车原理。另外一种是,在低速时只靠电动马达驱动行驶,速度提高时发动机和电动马达相配合驱动的“串联、并联方式”。还有一种是只用电动马达驱动行驶的电动汽车“串联方式”,发动机只作为动力源,汽车只靠电动马达驱动行驶,驱动系统只是电动马达,但因为同样需要安装燃料发动机,所以也是混合动力汽车的一种。现在车市的混合动力车主要有:普瑞斯、思域、凯美瑞凯越等等。由于我们国家提倡低碳生活,国家的政策便大力的支持发展纯电动汽车,目前几乎所有的车企都积极的响应国家的号召,如:比亚迪的E6、奇瑞S18、长安奔奔MINI等等。虽然推出的车型很多,但也只是雷声大雨点小,技术有待提升,而且销量也是少之又少。

电动汽车并不是现代才有的产物,而电池是影响其发展的最重要因素。早在19世纪后半叶的1873年,英国人罗伯特·戴维森制作了世界上最初的可供实用的电动汽车。这比德国人戴姆勒和本茨发明汽油发动机汽车早了十几年。戴维森发明的电动汽车是一辆载货车,使用铁、锌、汞合金与硫酸进行反应的一次电池。其后,从1880年开始,应用了可以充放电的二次电池。从一次电子表池发展到二次电池,这对于当时电动汽车来讲是一次重大的技术变革,由此电动汽车需求量有了很大提高。1890年法国和英国的街道上行驶着电动大客车,维修方便。汽车动力电池难在“低成本要求”“高容量要求”及“高安全要求”三方面上。要想在较大范围内应用电动汽车,要依靠先进的蓄电池经过10多年的筛选,现在普遍看好的氢镍电池,铁电池,锂离子和锂聚合物电池。氢镍电池单位重量储存能量比铅酸电池多一倍,其它性能也都优于铅酸电池。但目前价格为铅酸电池的4-5倍,正在大力攻关让它降下来。铁电池采用的是资源丰富、价格低廉的铁元素材料,成本得到大幅度降低,也有厂家采用。锂是最轻、化学特性十分活泼的金属,锂离子电池单位重量储能为铅酸电池的3倍,锂聚合物电池为4倍,而且锂资源较丰富,价格也不很贵,是很有前景的电池。

现在国内的充电站还没有大规模地建立起来,国内锂电池研究存在三大问题:首先是制造的一致性问题。由于在锂电池的制造工艺和设备上存在差距,使得国内锂电池的生产工艺参差不齐,制造标准还达不到一致性,电动汽车所用的锂电池都是串联或并联在一起,如果一致性问题解决不好,那么所生产的锂电池也就无法大规模应用于电动汽车。其次是知识产权问题。目前国内在磷酸铁锂电池的研究上已经取得突破,但是由于美国在这方面有专利,所以虽然我们在一些环节上能够自主研发,但是在知识产权问题上,还不知如何应对。第三是原材料的筛选问题。现在用于锂电池生产的原材料不可能全部进口,主要还是取自国内,但是国内的原材料要通过国际认证,生产出的锂电池才能被国际认可,所以在原材料认证环节上目前还存在一些问题。

燃料电池技术论文范文10

[关键词]低碳经济;新能源汽车

中图分类号:V47 文献标识码:A 文章编号:1006-0278(2013)03-168-01

所谓低碳经济,是指在可持续发展理念指导下,通过技术创新、制度创新、产业转型、新能源开发等多种手段,尽可能地减少煤炭石油等高碳能源消耗,减少温室气体排放,达到经济社会发展与生态环境保护双赢的一种经济发展形态。

新能源汽车是指除汽油、柴油发动机之外所有其它能源汽车。我国2009年7月1日正式实施了《新能源汽车生产企业及产品准入管理规则》,明确指出:新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。

新能源汽车包括电动汽车、气体燃料汽车、生物燃料汽车、氢燃料汽车。

电动汽车顾名思义就是主要采用电力驱动的汽车,大部分车辆直接采用电机驱动,有一部分车辆把电动机装在发动机舱内,也有一部分直接以车轮作为四台电动机的转子,其难点在于电力储存技术。本身不排放污染大气的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著减少,由于电厂大多建于远离人口密集的城市,对人类伤害较少,而且电厂是固定不动的,集中的排放,清除各种有害排放物较容易,也已有了相关技术。

混合动力是指那些采用传统燃料的,同时配以电动机/发动机来改善低速动力输出和燃油消耗的车型。按照燃料种类的不同,主要又可以分为汽油混合动力和柴油混合动力两种。目前国内市场上,混合动力车辆的主流都是汽油混合动力,而国际市场上柴油混合动力车型发展也很快。

燃料电池汽车是指以氢气、甲醇等为燃料,通过化学反应产生电流,依靠电机驱动的汽车。其电池的能量是通过氢气和氧气的化学作用,而不是经过燃烧,直接变成电能或的。燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆是无污染汽车,燃料电池的能量转换效率比内燃机要高2-3倍,因此从能源的利用和环境保护方面,燃料电池汽车是一种理想的车辆。

氢动力汽车是一种真正实现零排放的交通工具,排放出的是纯净水,其具有无污染,零排放,储量丰富等优势,因此,氢动力汽车是传统汽车最理想的替代方案。与传统动力汽车相比,氢动力汽车成本至少高出20%。中国长安汽车在2007年完成了中国第一台高效零排放氢内燃机点火,并在2008年北京车展上展出了自主研发的中国首款氢动力概念跑车“氢程”。

燃气汽车是指用压缩天然气(CNG)、液化石油气(LPG)和液化天然气(LNG)作为燃料的汽车。近年来,世界上各国政府都积极寻求解决这一难题,开始纷纷调整汽车燃料结构。燃气汽车由于其排放性能好,可调正汽车燃料结构,运行成本低、技术成熟、安全可靠,所以被世界各国公认为当前最理想的替代燃料汽车。

生物燃料汽车——燃用生物燃料或燃用掺有生物燃料之燃油的汽车,与传统汽车相比,结构上无重大改动,排放总体上较低,包括乙醇燃料汽车和生物柴油汽车等。

氢燃料汽车——以氢为主要能量驱动的汽车。一般的内燃机,通常注入柴油或汽油,氢汽车则改为使用气体氢。

氢内燃机在汽车上的应用方式又有3种:纯氢内燃机、氢/汽油双燃料内燃机、氢-汽油混合燃料内燃机。

太阳能发电在汽车上的应用,将能够有效降低全球环境污染,创造洁净的生活环境,随着全球经济和科学技术的飞速发展,太阳能汽车作为一个产业已经不是一个神话。燃烧汽油的汽车是城市中一个重要的污染源头,汽车排放的废气包括二氧化硫和氮氧化物都会引致空气污染,影响我们的健康。现在各国的科学家正致力开发产生较少污染的电动汽车,希望可以取代燃烧汽油的汽车。

燃料电池技术论文范文11

关键词: 核电站;乏燃料池;喷淋

中图分类号:TM623 文献标识码:A 文章编号:1006-4311(2013)17-0048-02

1 背景

压水堆核电站中,在每个燃料循环末期,已达到燃耗的燃料将从堆芯中卸出,储存到位于安全壳外的乏燃料池中。乏燃料储存在水下的乏燃料格架中;通常为乏燃料池配置冷却系统,通过冷却泵和热交换器对池水进行循环冷却,带走乏燃料产生的衰变热,保证燃料安全;足够深度的池水覆盖还可以为操作人员提供辐射防护。乏燃料池采用抗震I类结构设计,SSE(安全停堆地震)工况下不会发生损坏而导致池水丧失。

压水堆核电站的乏燃料池通常是大面积水池,一般设计容纳核电站大于15年运行所卸出的乏燃料组件。例如我国引进的西屋第三代压水堆核电技术——AP1000非能动先进压水堆核电机组设计中,乏燃料池表面积约为11.3m×5.2m,可以存放889个燃料组件。AP1000乏燃料池格架布置示意图见图1,其中I区通常用来储存新卸出的燃料,最保守的情况是最近卸出的整堆芯全部存放在I区。II区的乏燃料格架较密集,用来存放储存时间较长、衰变热较低的乏燃料。

AP1000首次为乏燃料池特别设计了喷淋系统,应对超设计基准事故或恐怖袭击下乏燃料池受损,池水排空的情况。AP1000乏燃料池喷淋系统由位于乏燃料池东、西墙上的各16个喷嘴及其供水管道、阀门组成,在超设计基准事故下向乏燃料池喷淋,以喷淋水蒸发的形式带走乏燃料组件产生的衰变热。

2 喷淋系统设计

喷淋系统的设计——包括喷嘴的数量、布置方式、喷淋流量等——应确保其覆盖区域达到整个乏燃料池表面,并有足够的有效流量,以保证带走可能储存在池中任何位置的乏燃料组件衰变热。喷淋覆盖面积和有效喷淋流量是评估喷淋系统性能的两个重要指标。

2.1 喷淋流量 储存在乏燃料池中的乏燃料衰变热随着储存时间的增加而减小(表1),假设喷淋水温度为35℃,以受热蒸发为水蒸气的形式带走热量,冷却燃料组件。表1中考虑最苛刻的情况,即池中已储满乏燃料组件。从表1可以看出,新卸载的整堆芯释放较大的衰变热,平均每个燃料组件所需的喷淋流量最大,达到0.118m3/hr;而乏燃料池需要的总喷淋流量达到约21m3/hr。AP1000设计中,有2组分别安装在东、西墙上的喷嘴,每组喷嘴由不同的水源供水,单组喷淋流量达到~91m3/hr,有足够的设计裕量。

然而,最“热”区域的燃料组件所需的最小冷却流量更高,因此在喷嘴选型、喷嘴分布等设计因素中都需要考虑在最热区域提供足够的有效流量,而不仅满足总流量要求。

2.2 喷淋覆盖面积 单个喷嘴的喷淋性能与喷嘴安装高度,供水压力,供水流量以及安装角度等因素有关。西屋对某一型号喷嘴的研究发现,在喷嘴流量保持不变的情况下,有效喷淋覆盖面积与安装高度的关系如图2所示。在一定高度范围内,喷嘴安装高度增加,喷淋的有效覆盖面积也增大。这与一般喷嘴的喷幅曲线的结果一致(图3)。依据特定的喷嘴性能,AP1000的喷嘴安装高度在燃料组件之上约7.5m处,并以与竖直方向呈30度的角度进行喷淋,以得到在宽度方向上最佳的覆盖距离。乏燃料池是大面积水池,长度方向上需要多个喷嘴共同喷淋才能确保完全覆盖。

2.3 单位面积上的有效流量 如前所述,为给乏燃料池最热区域提供足够的喷淋流量,需要了解单个喷嘴在喷淋覆盖区域内的单位面积有效流量,以确保每个燃料组件上都有足够的冷却流量,以带走衰变热。AP1000由于使用了消防水和非能动安全壳冷却水箱作为水源,因此供水压力在0.4~0.7MPa。基于此条件,西屋选取了4种可商业采购的喷嘴型号,在喷淋高度一定的情况下,对不同喷淋方向、不同喷淋角度、不同喷淋流量下的喷淋性能以试验方式进行了研究,得到不同喷嘴的喷淋覆盖面积和单位面积喷淋流量,部分试验结果如图5所示。

可以看出不同喷嘴的喷淋覆盖面积无论在长度、宽度和形状上均有较大不同,单位面积上的喷淋流量分布也不一致。型号1喷嘴的低流量区域位于喷淋覆盖区域的中心和四周,型号2喷嘴的低流量区域则位于喷嘴侧,高流量区域位于喷嘴对面侧。即使相同的喷嘴,喷淋方向不同时,喷淋性能也会有很大改变。

当多个喷嘴以一定的间距布置在乏燃料池墙壁上时,多个喷嘴之间还会产生互相影响,改变单位面积流量;研究发现,型号1类型的单个喷嘴产生的低流量区位于覆盖面积的中心(如图5),两个喷嘴间隔1.1m安装时,低流量区仅有一个,且位于两个喷嘴的中间位置。研究结果也表明,不同型号的喷嘴叠加的效果也不同;因此针对不同类型的喷嘴,其叠加喷淋性能也应分别进行试验研究,以便在设计时进行保守处理。

2.4 系统设计 喷淋流量、喷嘴数量、布置间距、喷淋角度等均在系统设计时确定。根据乏燃料池结构尺寸和乏燃料特性,基于试验得到的喷嘴喷淋性能,完成系统设计。可使用单一型号的喷嘴,通过调整布置方式来达到要求的喷淋效果;也可以同时使用多种型号的喷嘴达到要求的喷淋效果。

AP1000机组采用了不同型号的喷嘴,其布置示意如图6,单组喷嘴就能达到要求的喷淋流量和覆盖面积。为超设计基准事故后的乏燃料池提供冷却。

3 结论

AP1000第三代非能动压水堆核电站中首次为乏燃料池设置了喷淋系统,在超设计基准事故或恐怖袭击导致乏燃料池水排空时,为乏燃料提供冷却,防止燃料组件过热引起锆合金燃料棒损坏,释放放射性物质。

喷淋系统设计中的两个重要指标是喷淋覆盖面积和单位面积有效喷淋流量,基于喷嘴的喷淋性能表现,确定喷嘴型号、数量以及布置方式,达到为大面积乏燃料池喷淋,提供足够冷却流量的目的。

参考文献:

[1]孙汉虹等.第三代核电技术AP1000[M].北京:中国电力出版社,2010.

燃料电池技术论文范文12

余篇,这一期,和同学们一同简单回顾一下我们曾在

前面文章中提到的能源技术,希望能帮助大家勾勒

出一个较为完整的图景。

我们首先浅谈了人类利用能源的历史,文明的发

达程度和我们利用能源的广度和深度有着直接的联

系,可以直言不讳地说,能源是财富的来源,这不仅仅

体现在中东石油生产国和中国煤矿主的富有上,更

体现为我们的吃、穿、用、住方方面面都要依赖能源

的有效供给,一方面,我们为今天的文明而自豪,我们

有互联网,有高速铁路;另一方面,我们惊奇地发现,

今天的高度文明依然建立在我们无节制地燃烧这个

星球花上亿万年才固化的碳的基础上,在工业革命之

前,我们砍伐森林,烧制木炭,获得燃料,已经付出了

环境代价,如,我国在先秦时曾经青山绿水、植被葱

郁的黄河流域,到明清时期却变成了沟壑纵横的荒

山秃岭,水土流失严重,第一次工业革命事实上是被

煤炭烧起来的,英国的伦敦在这次工业革命之后,就

变为了雾都,之后的几次工业革命,一直到今天,人们

只是从一味燃烧煤炭,变为既烧煤炭也烧石油和天

然气,这导致了空气污染,现在世界上的雾都已经不

止一个了,温室效应也愈加明显,为了地球的明天,人

们需要戒掉对化石能源的依赖,所以今天我们倡导

低碳生活和使用低碳能源。

我们谈到了太阳能,太阳是一个巨大的炙热“火

球”,它的直径是地球的109倍,质量是地球的33万倍,

在太阳内部,剧烈的核聚变释放出大量能量,太阳内

核的温度高达1.5×10℃,太阳的能量以光波或者太

阳风的形式辐射到浩瀚的宇宙空间中,地球上的风

能、潮汐能、生物质能等可再生能源其实都来自太阳

能,我们提到过太阳能的利用,比如如何聚焦太阳光,

或者如何实现“光生电”,光电转换的媒介是半导体材

料,简单地说,电子得到了光子的能量,“兴奋”地跑

动起来,在电压的引导下形成电流,风能、水能、潮汐

能都是机械能,机械能转化为电能。是利用著名的

“变化的磁场产生电场”的磁生电原理。

我们之后聊到了能源的存储,介绍了几种主要

的电化学储能器件,我们首先谈到了电容器,电容器

是直接储存电能的装置,这是应用了将正、负电荷分

别隔离在两个电极上的原理,我们又重点介绍了电池

及其发展历史。包括从153年前发明的铅酸蓄电池到

21年前打人市场的锂离子电池,什么是电池?电池其

实是化学储能的装置,无论是充电还是放电,电池中

都有化学反应发生,而且是有“得失电子”过程的氧

化还原反应,电池的近亲——燃料电池的研制同样是

很有用的技术,电池和燃料电池的相同点是,它们都

利用氧化还原反应释放能量,主要的不同是,燃料电

池是通过不停输入气体或液体燃料来维持工作的,

是个开放的体系,不需要充电的过程:而电池通常是

密闭的体系,能量释放完之后,需要充电才可重复使

用。

我们谈到了储能器件的重要应用——电动车,电

动车主要有两种:混合动力电动车和纯电动车,电动

车是未来陆地交通的趋势,这是我国汽车产业的重要

发展机遇和超越传统汽车强国的契机,在过去的一个

世纪里,以内燃机为“心脏”的汽车是无可争辩的霸

主,在未来的几十年,甚至一两百年的时间内,电池、

电容器这些器件或将成为陆地交通工具的“心脏”,这

些领域是非常有前途的朝阳产业,当然,我们必须看

到,内燃机仍将是飞行器的动力,随着化石能源的日

渐枯竭,有限的化石能源将主要被利用到航空上,可

再生生物燃料将会逐渐在航空燃料领域表现出竞争

优势,电动交通,事实上有很多种方案,将来的电动车

市场将呈现出各种方案优势互补的局面,我们将很

难找到一种技术来满足人们的各种需要,这和化石燃

料的时代有很大不同,我们会习惯在多元化的选择中

找到适合自己的出行方式。

我们介绍了未来可能出现的电池技术,包括锂

硫电池、锂空气电池等,这些技术一旦达到商业化的

标准,将彻底改变这个领域的游戏规则,电动车续航

能力不足的问题将得到基本解决,这些领域是电池技

术竞争的主赛场之一,这里同样是创新的好平台,我

们现在还无法预测这些技术到底什么时候可以真正

成熟,或许需要五年、十年,甚至几十年的时间,我相

信这一天会出现的。

在最近几期,我们了解了几种大型蓄能技术,包

括抽水蓄能、压缩空气蓄能和飞轮蓄能,我们也了解

了一些化学蓄能方案。包括钠硫电池和氧化还原流

动电池,这些蓄能技术对于未来能源产业的发展至关

重要,是新能源技术重要的组成部分,能源科学离不

开材料学,材料学离不开化学和物理:所以希望同学

们在中学阶段努力学好这些学科,打好基础,更重要

的是培养自己广泛的科学兴趣,培养自己独立思考、

敢于挑战权威的意识,要多问“为什么”和“为什么

不”。

科技技术在进步,能源技术在发展,希望这些关

于能源及其发展的文章能激发大家对能源科学的兴