时间:2023-02-23 03:22:42
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇神经网络论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

关键词经济活动预测模型人工神经网络
经济活动诸如商品价格走势、生产活动的产量预测、加工的投入产出分析、工厂的成本控制等方面都是重要的技术经济层面。定量化的经济活动分析是经济学研究的必由之路,而建模是量化分析的基础,这是因为模型为科学分析和质量、成本等控制提供了理论依据。本文针对经济活动中大多数研究对象都具有的非线性特点,给出了用人工神经网络(ArtificialNerveNetwork)模型建立经济活动的预测模型的原理和方法,并描述了神经网络与各种先进的建模方法相结合的模型化方法,为经济活动的分析、预测与控制提供了理论基础。
1神经网络模型方法
现实的经济系统是一个极其复杂的非线性系统,客观上要求建立非线性模型。传统上使用回归与自回归模型刻画的都是线性关系,难于精确反映因变量的变化规律,也终将影响模型的拟合及预报效果。为揭示隐含于历史记录中的复杂非线性关系必须借助更先进的方法———人工神经网络(ANN)方法。
人工神经网络具有并行处理、自适应、自组织、联想记忆及源于神经元激活函数的压扁特性的容错和鲁棒性等特点。数学上已经证明,神经网络可以逼近所有函数,这意味着神经网络能逼近那些刻画了样本数据规律的函数,且所考虑的系统表现的函数形式越复杂,神经网络这种特性的作用就越明显。
在各类神经网络模型中,BP(Back-Propagation误差后向传播)神经网络模型是最常用的也是最成熟的模型之一。本质上,BP模型是对样本集进行建模,即建立对应关系RmRn,xk∈Rm,ykRn。数学上,就是一个通过函数逼近拟合曲线/曲面的方法,并将之转化为一个非线性优化问题来求解。
对BP神经网络模型,一般选用三层非循环网络。假设每层有N个处理单元,通常选取连续可微的非线性作用函数如Sigmoid函数f(x)=1/(1+e-x),训练集包括M个样本模式{(xk,yk)}。对第P个训练样本(P=1,2,…,M),单元j的输入总和记为apj,输出记为Opj,则:
apj=WQ
Opj=f(apj)=1/(1+e-apj)(1)
对每个输入模式P,网络输出与期望输出(dpj)间误差为:
E=Ep=((dpj-Opj)2)(2)
取BP网络的权值修正式:
Wji(t+1)=Wji(t)+?浊?啄pj+?琢(Wji(t)-Wji(t-1))(3)
其中,对应输出单元?啄pj=f’,(apj)(dpj-Opj);对应输入单元?啄pj=f’,(apj)?啄pkWkj;
?浊是为加快网络收敛速度而取值足够大又不致产生振荡的常数;?琢为一常数项,称为趋势因子,它决定上一次学习权值对本次权值的影响。
BP学习算法的步骤:初始化网络及学习参数;提供训练模式并训练网络直到满足学习要求;前向传播过程,对给定训练模式输入,计算网络的输出模式,并与期望比较,如有误差,则执行下一步,否则返回第二步;后向传播过程,计算同一层单元的误差?啄pj,按权值公式(3)修正权值;返回权值计算公式(3)。BP网络的学习一般均需多周期迭代,直至网络输出与期望输出间总体的均方根误差ERMS达到一定要求方结束。
实践中,BP网络可能遇到如下问题:局部极小点问题;迭代收敛性及收敛速度引起低效率问题。此外还有,模型的逼近性质差;模型的学习误差大,记忆能力不强;与线性时序模型一样,模型网络结构及节点作用函数不易确定;难以解决应用问题的实例规模与网络规模之间的矛盾等。为克服这样的一些问题,同时为了更好地面向实际问题的特殊性,出现了各种基于神经网络模型或与之结合的模型创新方法。
2灰色神经网络模型
灰色预测和神经网络一样是近年来用于非线性时间序列预测的引人注目的方法,两种方法在建模时都不需计算统计特征,且理论上可以适用于任何非线性时间序列的建模。灰色预测由于其模型特点,更合用于经济活动中具有指数增长趋势的问题,而对于其他变化趋势,则可能拟合灰度较大,导致精度难于提高。
对于既有随时间推移的增长趋势,又有同一季节的相似波动性趋势,且增长趋势和波动性趋势都呈现为一种复杂的非线性函数特性的一类现实问题,根据人工神经网络具有较好的描述复杂非线性函数能力特点,用其对季节性建模;最后根据最优组合预测理论,建立了兼有GM(1,1)和ANN优点的最优组合预测模型。该模型能够同时反映季节性时间序列的增长趋势性和同季波动性的双重特性,适用于一般具有季节性特点的经济预测。
首先,建立GM(1,1)模型,设时间序列x(0)=(x(0)(1),x(0)(2),?撰,x(0)(n)),作一阶累加生成:
x(1)=(x(1)(1),x(1)(2),?撰,x(1)(n))(4)
其中x(1)(k)=(x(0)(i),k=1,2,?撰,n
构造一阶线性灰色微分方程并得到该方程的白化微分方程:
+ax=u
用最小二乘法求解参数a,u,得到x(1)的灰色预测模型:
(1)(k+1)=(X(0)(1)-u/a)e-ak+u/a,(k=0,1,2,?撰)(5)
其次,根据上节方法建立BP人工神经网络模型。
第三,将两模型优化组合。设f1是灰色预测值,f2是神经网络预测值,fc是最优组合预测值,预测误差分别为:e1,e2,ec,取w1和w2是相应的权系数,且w1+w2=1,有fc=w1f1+w2f2,则误差及方差分别为ec=w1e1+w2e2,Var(ec)=w21Var(e1)+w22Var(e2)+2w1w2cov(e1,e2)
对方差公式求关于w1的极小值,并取cov(e1,e2)=0,即可得到组合预测权系数的值。
2基于粗糙集理论的神经网络模型
粗糙集理论与模糊集理论一样是研究系统中知识不完全和不确定问题的方法。模糊集理论在利用隶属函数表达不确定性时,为定义一个合适的隶属函数,需要人工干预,因而有主观性。而粗糙集理论由粗糙度表示知识的不完全程度,是通过表达知识不精确性的概念计算得到的,是客观的,并不需要先验知识。粗糙集通过定义信息熵并进而规定重要性判据以判断某属性的必要性、重要性或冗余性。
一般来说,BP神经网络模型对模型输入变量的选择和网络结构确定等都基本凭经验或通过反复试验确定,这种方法的盲目性会导致模型质量变差。用粗糙集理论指导,先对各种影响预测的因素变量进行识别,以此确定预测模型的输入变量;再通过属性约简和属性值约简获得推理规则集;然后以这些推理规则构造神经网络预测模型,并采用加动量项的BP的学习算法对网络进行优化。有效改善了模型特性,提高了模型质量。其建模步骤为:由历史数据及其相关信息历史数据构造决策表;初始化;对决策表的决策属性变量按划分值域为n个区域的方式离散化;采用基于断点重要性的粗糙集离散化算法选择条件属性变量和断点(分点),同时计算决策表相容度,当决策表相容度为1或不再增加时,则选择条件属性变量和分点过程结束;由选择的条件属性变量及其样本离散化值构造新的决策表,并对其约简,得到推理规则集;由推理规则集建立神经网络模型;对神经网络进行训练;若神经网络拟合误差满足要求,则结束,否则,增加n。必须指出,区间分划n太小,会使得拟合不够,n太大,即输出空间分得太细,会导致过多的区域对应,使网络结构过于复杂,影响泛化(预测)能力。
3小波神经网络模型
人工神经网络模型存在的网络结构及节点函数不易确定问题,结合小波分析优良的数据拟合能力和神经网络的自学习、自适应特性建模,即用非线性小波基取代通常的非线性S型函数。
设非线性时间序列变化函数f(t)∈L2(R),定义其小波变换为:
Wf(a,b)==f(t)?渍()dt(6)
式中,?渍ab(t)称为由母小波?渍t(定义为满足一定条件的平方可积函数?渍(t)∈L2(R)如Haar小波、Morlet小波、样条小波等)生成的依赖于参数a、b的连续小波,也称小波基。参数a的变化不仅改变小波基的频谱结构,还改变其窗口的大小和形状。对于函数f(t),其局部结构的分辩可以通过调节参数a、b,即调节小波基窗口的大小和位置来实现。
用小波级数的有限项来逼近时序函数,即:
(t)=wk?渍()(7)
式中(t),为时间序列y(t)的预测值序列;wk,bk,ak分别为权重系数,小波基的平移因子和伸缩因子;L为小波基的个数。参数wk,bk,ak采用最小均方误差能量函数优化得到,L通过试算得到。
4模糊神经网络模型
模糊集合和模糊逻辑以人脑处理不精确信息的方法为基础,而人工神经网络是以大量简单神经元的排列模拟人脑的生理结构。二者的融合既具有神经网络强大的计算能力、容错性和学习能力,又有对于不确定、不精确信息的处理能力,即同时具有底层的数据处理、学习能力和高层的推理、思考能力。
一种应用模糊理论的方法是把模糊聚类用来确定模糊系统的最优规则数,从而确定模糊神经网络的结构。这样确定的网络结构成为四层:第一层为直接输入层;第二层为模糊化层,对输入做模糊化处理;第三层为模糊推理层,对前层模糊结果做模糊推理;第四层为非模糊化层,可以采用重心非模糊化法,产生网络输出。该网络采用动态处理法,增强了其处理能力,且适用性强、精度高。
5结语
除上述几种结合式神经网络方法之外,人工神经网络模型在算法设计方面一直在取得巨大的进步。神经网络模型方法是一种先进的具有智能的非线性建模方法,其在自然科学、经济现象、社会活动等方面的应用正在不断深化,把神经网络方法引入经济活动的分析和预测中,并紧密联系诸多先进的建模方法,是使工业经济、商业经济及其对经济本质规律的研究等各项工作推向前进的重要理论武器。
参考文献
1数据的预处理
由于数据的获取难度较大,因此本文借用了相关文章的数据[4],选取了湖南省十一个省市的数据作为研究的样本,为了确保输入数据(包括训练以及将来要预测的数据)在比较接近的范围里,我们需要对数据进行归一化处理。本文的数据主要包括输入数据和期望输出数据,输入数据主要是湖南省十一个市的电子政务指标数据,包括16个输入维度,输出的是对电子政务系统的评价结果,主要包括:好、较好、一般、较差、差五个结果。利用下面的线性函数转换方法完成数据的归一化。公式中的P为归一化处理后的数据,P1为原始数据,P1min为原始数据中的最小值,P1max为原始数据中的最大值。通常情况下,用于测试的输入数据所对应的输出数据不是量化数据,比如本文中所提到的好、较好、一般、较差、差五个结果。因此本文的输出数据主要使用的是专家评价得出的分数,来对电子政务绩效做出评价,分数评价结果的对应关系为:1-3为差,3-5为较差,5-7为一般,7-9为较好,9以上为好。经过归一化处理过的指标数据和通过专家评价得出的评价结果如表2所示。
2输入层、输出层及隐层节点的设计
由于一个三层的前向网络具有以任意精度逼近任意一个非线性函数的能力,因此,只需构造一个输入层、一个隐层和一个输出层的3层神经网络。本文中的电子政务绩效评价指标体系共包括成本效益、服务对象、内部运营及学习与发展四个指标维度,然后又将其细分成16项三级指标,也就是说神经网络输入层的维度为16,即输入层神经元个数Pn=16。输出层输出的结果是我们对电子政务系统的评价,而我们把评价结果好、较好、一般、较差、差作为网络的唯一输出,因此,输出层神经元个数为r=1。1988年Cybenko[11]大量的研究表明在三层神经网络中一个隐藏层就可以实现任意分类的问题,以任何精度来实现任意非线性的输入和输出的映射。本文将隐藏层设置为一层。隐藏层节点的选择也是一个复杂的问题,如果隐层节点数比较少的话,则有可能导致网络训练者性能很差;如果选择较多的隐层节点数,虽然能够降低系统误差,但是会使网络训练的时间增加,而且也极易使训练陷入局部极小点而得不到最优点,最终会导致训练出现“过拟合”的现象。其中n为输入层节点数,m为输出层节点数,a为1~10之间的常数。
3基于BP神经网络的电子政务绩效评价模型的设计
利用BP神经网络对电子政务绩效进行评价的主要步骤有:第一步:根据电子政务发展过程中的相关影响因素,选取合适的电子政务绩效评价的指标数据,利用相关的算法对指标数据进行标准化处理[5],将处理后的指标数据x1,x2,x3,⋯,xn作为输入BP神经网络的输入值。第二步:在输入层输入数据以后,数据会在神经网络中正向传播,数据在隐藏层进行一层一层的处理,然后会把处理后的数据传向输出层,输出层得到的数据就是实际的输出值Y。第三步:当输出层得到实际的输出值以后,会和期望值进行比较,如果输出值和期望值不相等,那么会根据相关的公式计算出误差,然后把误差信号按照原来的路径进行反向的传播,通过不断的循环的传播来调整隐藏层神经元的权重,从而使误差越来越小。第四步:不断的重复前面的第二步和第三步,一直到误差可以小到某个阈值,然后停止训练和学习,只有选择的样本足够多时,神经网络的训练才更精确,输入的样本数据不同,得到的输出向量也会不同,当所有的数据样本的数据值和期望值误差最小的时候,综合评价结果更为接近,神经网络的权重值Wij就是BP神经网络通过训练和自适应的学习得到的一个内部的表示。对选取的样本进行训练以后,我们就可以利用BP神经网络的训练模型对电子政务绩效进行评价,而且可以对大规模的电子政务进行绩效评价,因为神经网络具有一定鲁棒性[6],那么会导致出现主观综合评价值在一定的程度会与实际值存在少量偏差,但是这个偏差不会影响评价结果。
4应用粒子群算法优化BP神经网络模型
1995年两位美国学者对鸟群的群体迁徙和觅食的过程进行了模拟,从而提出了一种智能的优化算法-粒子群优化算法[7](ParticleSwarmOptimization,PSO),随着近年来粒子群算法的不断应用,已经逐渐成为一种新的优化算法。粒子相继两次位置的改变取决于粒子当前位置相对于其历史最佳位置和群体历史最佳位置的变化。因此,若把网络的权值看作是PSO算法中粒子的位置,则在网络训练过程中,相继两次权值的改变可视作粒子的位置的改变。因而类比公式3,网络的权值改变量计算公式。
5实例分析
首先利用基本的BP神经网络对选取的样本进行训练,这里选取了长沙、株洲、娄底、岳阳、永州、郴州、怀化、湘西等八个城市作为训练样本,训练之前要对训练参数进行基本设置,由于输入层和输出层节点数分别为16和1,那么隐藏层节点数可以选择5-14个,利用MATLAB经过多次实验,最终将隐藏层节点数确定为12个最为合适,误差相对较小。利用PSO优化过的BP神经网络对十一个市的样本进行训练和测试,为了保证测试结果的一致性,这里我们依然选取以下八个城市作为训练的样本:长沙、株洲、娄底、岳阳、永州、郴州、怀化、湘西,然后利用剩余的城市作为测试样本。训练过程如图3所示,得到的实际输出和期望输出如表4所示。优化后的数值更加接近期望值,而且误差会比PSO优化前的BP神经网络的训练更小,优化前后的测试的结果对比如表5所示。本文在结合了BP神经网络和粒子群优化算法建立了PSO-BP电子政务绩效评价模型,取得了较为满意的结果,然而本课题依然遇到了诸多的困难和问题,比如:数据获取困难;另外本文算法中的许多参数都是用了默认值,没有考虑到优化前后初始权值和阈值的不一致性是否会影响结果,这也同样成为了后续的研究重点。
作者:刘宏单位:辽宁师范大学管理学院
研究区潘庄区块位于沁水盆地南部向西北倾的斜坡带上,构造主要以褶皱为主,断层稀少.山西组的3号煤层是本区内稳定发育的主采煤层,也是CM1煤层气井的目标煤层.该煤层属于厚煤层,厚度变化范围3.15~7.30m,平均6.11m.埋深介于156.27~695.20m之间.顶板岩性主要为泥岩、粉砂岩、粉砂质泥岩,底板主要为粉砂岩和泥岩.
2BP神经网络简介
2.1BP神经网络结构BP神经网络结构由输入层、隐含层和输出层组成,其中隐含层可以有多层.在工程预测中,经常使用的是3层BP神经网络结构(图2).这种神经网络结构的特点是:每一层内的神经元之间无任何连接,相邻层神经元之间具有单向连接,隐含层的激励函数采用非线性的S型函数,输出层的激励函数为线性函数.
2.2BP算法原理BP算法是一种监督式的学习算法.其主要思想为:对于n个输入学习样本:P1,P2,…,Pn,已知与其对应的输出样本为:T1,T2,…,Tn,学习的目的是用网络的实际输出A1,A2,…,An与目标矢量T1,T2,…,Tn之间的误差来修改其权值,使Al(l=1,2,…,n)与期望的Tl尽可能地接近,使网络输出层的误差平方和达到最小.它是通过连续不断地在相对误差函数斜率下降的方向上计算网络权值和偏差的变化而逐渐逼近目标的.每一次权值和偏差的变化都与网络误差的影响成正比,并以反向传播的方式传递到每一层。BP神经网络时间序列预测模型,即先利用BP神经网络的非线性逼近技术隐性的求解函数f,并以此为依据预测未来值.
3神经网络模型构建及检验
为了精确预测煤层气井产能、优化排采制度,本文基于时间序列预测思想构建了BP神经网络预测模型,整个设计过程由MATLAB7.11软件编程实现.
3.1神经网络基本参数确定在实际生产中,煤层气井产气量主要受控于产水量和井底流压,而且这两个参数数据资料丰富,易于收集.因此,以每天产水量和井底流压为基础向量,基于时间序列预测思想构建了14个网络输入向量(表1).神经网络预测模型初步设定为一个14-X-7的3层BP网络.其中输入层节点数为14,对应14个输入向量;X为隐含层节点数,由经验公式[12]可得出其取值范围为6~15;输出层节点数为7,对应输出向量分别为未来7d中每天的产气量;初始权值为(-1,1)之间的随机数,初始学习率为0.1;隐含层激励函数为双曲正切函数,输出层激励函数为pureline函数,训练函数为trainlm函数.
3.2神经网络模型的构建选取CM1井2009年2月14日至2009年9月8日连续207d的排采数据为原始样本数据.其中,前200d的排采数据为训练样本,后7d的排采数据为检验样本.网络训练目标误差设定为0.0002,最大迭代次数设定为500次.将原始数据归一化后输入到网络中进行训练,隐含层最佳节点数采用试凑法确定为13(表2).因此,BP神经网络预测模型的最佳网络结构为14-13-7(图4).
3.3网络模型训练及检验再次输入训练样本对确定的网络结构进行训练,当网络达到目标误差或最大迭代次数时,停止训练.网络训练完毕后,将检验样本输入到网络中,进行模型性能检验。检验样本最大绝对误差72m3/d,最小绝对误差17m3/d,相对误差范围-1.43%~1.60%,平均相对误差1.05%,表明网络模型预测性能良好,能够准确预测CM1煤层气井未来7d的产气量.
4CM1井排采制度优化
在煤层气井排采实践中,根据未来产气量变化或生产需要,何时应该增大或减少产水量,何时应该增大或减少井底流压,调控的具体量度应该是多少,这些问题至今都没有明确的结论.因此,本文针对所有可能出现的生产情况,设计了24种排采制度调整方案。针对CM1井实际排采情况,厘定了产水量、井底流压调控量度及产气量变化量临界值.其中,调控产水量小幅增大(减小)与大幅增大(减小)临界值定为0.2m3/d;调控井底流压小幅增大(减小)和大幅增大(减小)临界值定为0.1MPa;产气量变化量小幅增大(减小)和大幅增大(减小)临界值定为1000m3/d.而在实际操作中,选取产水量小幅增大(减小)的值为0.05m3/d,产水量大幅增大(减小)的值为0.5m3/d,井底流压小幅增大(减小)的值为0.05MPa,井底流压大幅增大(减小)的值为0.2MPa.采用所建立的BP神经网络预测模型对各方案产气量进行了模拟,以第21种调整方案“产水量小幅增大—井底流压小幅减小”的模拟结果为例(表5),其它方案模拟结果见表6.在第21种排采制度方案中,当产水量小幅增大0.05m3/d,井底流压小幅减小0.05MPa,预测产气量比实际产气量平均增大了537m3/d,比前一周产气量平均增大了469m3/d.显而易见,当决策者希望煤层气井未来日产气量能够增大500m3/d左右时,可执行产水量提高0.05m3/d,井底流压减小0.05MPa的排采制度.综上所述,煤层气井采取不同的排采制度,产气量变化决然不同,总体可分为四大类,即产气量大幅减小、小幅减小、小幅增大和大幅增大(表6).其中,使产气量大幅减小的排采制度方案有5种,小幅减小的有7种,小幅增大的7种,大幅增大的5种.这样就可以根据各调整方案预测结果,结合实际生产的需要,采用不同的排采制度,使煤层气井产气量朝着我们预期的方向发展.例如,如果期望未来7d产气量大幅增大,可以采用“产水量不变—井底流压大幅减小”、“产水量大幅增大—井底流压大幅减小”、“产水量小幅增大—井底流压大幅减小”等排采制度。
5结论
网络传递函数及算法的确定
BP神经网络神经元采用的传递函数通常取Sigmoid可微的单调递增函数,它可以实现输入到输出间的任意非线性映射,这个特性使得它在函数逼近等领域有着广泛的应用。因此,隐层神经元采取传递函数是正切Tansig函数,这样,整个网络的输出可以限制在一个较小的范围内;而输出层采取的是线性Purelin函数,可使整个网络输出取任意值。常用的BP神经网络算法是梯度下降法,但这种方法的线性收敛速度较慢。
然而,Levenberg-Marquardt优化方法(Trainlm函数)是高斯-牛顿法的改进形式,既有它的局部特性,也有梯度法的全局特性,故训练函数采取的是优化算法Trainlm函数。这个函数适合作函数拟合,收敛快、误差小,缺点是占用存储空间大且性能随网络规模增大而变差。
网络学习参数的确定
学习率决定着权值改变幅度值,为减小迭代次数,学习率在不导致系统误差振荡的情况下尽可能取较大值。通过多次修正,本模型中学习率大小取0.8。而动量系数在一定程度上抑制系统误差振荡,且避免系统误差突升突降情况的发生。动量系数采用先大后小的变参数学习策略较为理想,本模型学习率取0.9。
训练目标为0.0001。在神经网络的训练过程中,可能会出现训练不足或“过度训练”的情况。所谓过度训练,即出现训练中训练误差继续减小,但是验证误差逐渐增大。此时可以通过“提前终止”的方法来寻求最佳训练次数,以此来提高它的泛化能力。
网络的训练
通过文献查阅及实验测定的方式获取黏度样本为1774个。用于BP神经网络训练样本的温度及成分范围如表1所示。由表1可看出,样本的温度、成分及二元碱度范围较广,这有利于提高本预测模型的泛化能力。应用上述模型对1774个黏度样本进行初始化并训练,训练误差变化曲线如图1所示。由图1可看出,黏度训练误差收敛需要518步。神经网络均方误差函数为本模型模拟下的均方误差为mse=3.3775×10-4。由此看出,该模型收敛性良好。
黏度测定与模型预测分析
1黏度测定
通过RTW-10型熔体物性综合测定仪测定国内某3个厂的4种高炉渣,实验用渣的主要化学成分如表2所示,测定黏度与温度的关系如图2所示。由图2可看出,高炉渣黏度随温度的降低而升高,黏度曲线符合碱性渣的特性要求。
2模型预测分析
以图2中4条曲线较均匀地取93个实验数据点作为验证集,用于在神经网络训练的同时监控网络的训练过程。通过对高炉渣作仿真预测,得到高炉渣黏度的预测值。预测误差范围如表3所示,高炉渣黏度预测值与测量值的数据对比如图3所示。由表3和图3可看出,采用BP神经网络模型对4种高炉渣黏度预测的最大相对误差分别为9.87%、13.92%、5.20%和9.54%,它们的平均相对误差分别为2.75%、2.83%、1.31%和3.02%,总平均误差为2.36%,误差均控制在一个很好的水平以内。因此,BP神经网络模型对黏度的预报值有着较高的准确性。
结论
关键词人工神经网络供暖热网预测外时延内时延反馈型BP网络Elman网络
一些复杂的生产过程,如热网供热,由于其反应机理非常复杂,具有很强的非线性、大滞后、时变性和不确定性,难以建立被控对象的数学模型,至今仍很少实现闭环控制,只好有经验的操作人员进行调节。操作人员虽然没有被控对象的数学模型,但是由于他们比较熟悉供暖热网和设备,且在长期的现场工作中积累了丰富的操作经验,他们通过观察仪表指示的变化,如热网的从、回水温度、室外温度等参数,并且预估某些参数将要发生的变化,然后调整供热负荷,以保证热网供暖正常。这种人工控制方式一般也能达到较好的控制效果,但是由于操作人员的经验与能力的不同,或由于人的疲劳、责任心等原因,也时常会因操作不当造成热网供暖不正常,或在产生突发事件时,不能预测将会发展或延续扩大的严重故障,而引发更大的故障。
预测对于提供未来的信息,为当前人人作出有利的决策具有重要意义。现有的预测方法如时间序列分析中的AR模型预测方法,只适用于线性预测,而且,还需要对所研究的时间序列进行平稳性、零均值等假定,其适用范围受到一定的限制。近年来,人工神经网络以其高度的非线性映射能力,在某些领域的预测中得到广泛的关注。本文利用神经网络技术辨识供暖热网动态预报系统的模型,并对其进行了实际训练和测试,分别建立了外时延反馈型BP网络模型和内时延反馈型Elman网络的预测模型。
1外时延反馈BP网络
多层前向网络是研究和应用的最广泛也是最成功的人工神经元网络之一。多层前向网络是一种映射型网络。理论上,隐层采用Sigmoid激活函数的三层前向网络能以任意精度逼近任一非线函数,神经元网络可以根据与环境的相互作用对自身进行调节即学习,一个BP网络即是一个多层前向网络加上误差反向传播学习算法,因此一个BP网络应有三项基本功能:(1)信息由输入单元传到隐单元,最后传到输出单元的信息正向传播;(2)实际输出与期望输出之间的误差由输出单元传到隐单元,最后传到输入单元的误差反向传播;(3)利用正向传播的信息和反向传播的误差对网络权系数进行修正的学习过程。目前,多层前向网络的权系数学习算法大多采用BP算法及基于BP算法的改进算法,如带动量项的BP算法等。BP网络虽然有很广泛的应用,但由于它是一个静态网络,所以只能用于处理与时间无关的对象,如文字识别、空间曲线的逼近等问题。热网供暖的各项参数都是与时间有关系的,而且我们即将建立的供暖热网预报模型必须是一个动态模型。为此,必须在网络中引入记忆和反馈功能。可以有两种方式实现这一功能,一是采用外时延反馈网络,即反输入量以前的状态存在延时单元中,且在输入端引入输出量以前状态的反馈,如图1所示;另一种方式是采用内时延反馈网络,既在网络内部引入反馈,使网络本身构成一个动态系统,如下面将要介绍的Elman网络。
图1处延时反馈网络
2Elman网络
如前所述,在BP网络外部加入延时单元,把时间信号展开成空间表示后再送给静态的前向网络作为一类输入,从而实现时间序列建模和预测。然而,这种方式大大增加了输入节点个数因而导致了网络结构膨胀,训练精度下降,训练时间过长。
Elman动态网络是动态递归网络中较为简单的一种结构,如图2所示。
图2Elman网络
由输入层、隐含层、结构层(联系单元层)和输出层组成,结构层记忆隐含层过去的状态,并在下一时刻与网络的输入,一同输入隐含层,起到一步延时算子作用。因此,Elman动态递归网络具有动态记忆的功能,无需使用较多的系统状态作为输入,从而减少了输入层单元数。
3供热网络预报模型
根据研究问题的性质不同,选择不同的网络结构和激活函数,以便建立准确的神经网络预报模型。外时延反馈网络和内时延反馈网络都将其时延单元和反馈单元视为BP网络的输入参数,因此可以应用BP算法训练网络,其隐含层和输出层的节点激活函数可选择tansig、purelin函数,表达式为:
tansig函数:
purelin函数:f2(x)=kx
输出:
其中:xi----热网输入;
wji----由输入层节点i隐层节点j之间的权值;
θj----隐层节点j的阈值;
wkj----由隐层节点j至输出层节点k之间的权值;
θk----输出层层节点k的阈值。
从成因上分析供暖热网的影响因子,运用相关图法或逐步回归分析法等对初选影响因子进行显著性分析和检验,剔除不显著因子。在此基础上,研究基于人工神经网络的供暖热网实时预报模型的建模和预报问题。本文选用牡丹江西海林小区锅炉房2000年11月~2001年4月的部分测量数据进行建模及测试,预测在相应时刻的热网供水温度、回水温度及室外温度值。
3.1模型I:外进延反馈网络
输入参数为当前时刻与过去时刻的①室外温度(i)(i-1)(i-2)(i-3)(i-4);②供水流量(i)(i-1)(i-2)(i-3)(i-4);③补水流量(i)(i-1)(i-2)(i-3)(i-4);④供水温度(i)(i-1)(i-2)(i-3)(i-4);⑤回水温度(i)(i-1)(i-2)(i-3)(i-4);,共二十五个输入量。输出量为未来时刻的①室外温度(i+1)(i+2);②供水温度(i+1)(i+2);③回水温度(i+1)(i+2);共六个输出量。其中每一周期间隔15min。训练样本为前2000个数据组,测试样本为后2000个数据组。输出曲线有训练样本与计算数据比较曲线和测试样本与计算数据比较曲线。
网络结构共三层,输入层节点25个,隐层节点25个,输出层节点6个。取学习率η=0.7,动量因子a=0.3,训练精度ε=4.5e-3,经过1000次正反向传播和学习,网络训练满足设定条件,此时训练计算的均方差为0.00449767。将检验样本输入训练好的网络模型,其检验结果如图3、图4(因篇幅所限仅给出回水温度预报值)所示。
图3回水温度一步预报曲线
实线:计算数据;虚线:实际数据
图4回水温度二步预报曲线
实线:计算数据;虚线:实际数据
3.2模型II:内时延反馈Elman网络。
输入参数为当前时刻的①室外温度(i);②供水流量(i));③补水流量(i);④供水温度(i);⑤回水温度(i);,共五个输入量。输出量为未来时刻的①室外温度(i+1)(i+2);②供水温度(i+1)(i+2);③回水温度(i+1)(i+1);共六个输出量。其中每一周期间隔15min。训练样本为前2000个数据组,测试样本为后2000个数据组。输出曲线有训练样本与计算数据比较曲线和测试样本与计算数据比较曲线。
网络结构共三层,输入层节点25个,隐层节点25个,输出层节点6个。取学习率η=0.7,动量因子a=0.3,训练精度ε=4.5e-3,经过1000次正反向传播和学习,网络训练满足设定条件,此时训练计算的均方差为0.0044999。将检验样本输入训练好的Elman网络模型,其检验结果如图5、图6(因篇幅所限仅给出回水温度预报值)所示。
图5回水温度一步预报曲线
实线:计算数据;虚线:实际数据
图6回水温度二步预报曲线
实线:计算数据;虚线:实际数据
表1列出了外时延反馈网络(模型I)与内时延反馈Elman网络(模型II)的训练与测试结果的部分数据。
预测模型I、II的比较表1输入层节点数隐层层节点数输出层节点数训练次数训练时间(s)训练精度训练样本误差测试样本误差
模型I25256415236.7010.004497673.09982.2628
模型II5256199140.5420.00449993.19741.4620
4结论
从测试结果可以看出,对同一动态系统预测模型的辨识,外时延反馈网络与内时延反馈Elman网络的逼近能力基本相同,而且都具有很强的跟踪能力。但是Elman网络的结构要比外时延反馈网络简单得多,而且在训练过程中,外时延反馈网络延迟步数要通过多次的训练才能找到最佳值,本预测模型就是在取到四步延迟后才得到最佳值,而Elman网络就省却了这一部分工作;此外在本动态系统模型的辨识过程中也可以看出,无论是采用外时BP网络,还是采用内时延Elman网络辨识动态系统的模型,都必须恰当的引入输出参数的反馈,才能保证系统的动态跟踪能力;本文选用了牡丹江西海林小区锅炉房2000年冬季的部分测量数据进行建模及测试,用前20天的数据进行预测模型辨识,用后20天的数据进行预测模型测试,得到了比较令不满意的预测结果,热网供水温度及室外温度的预测结果也是很好的,只是由于篇幅关系同有绘出。
通过上述的系统辨识与实测,说明用外时延反馈网络或内时延反馈Elman网络建立供热系统的动态预测模型是可行的,解决了供热系统对象中非线性、大滞后、时变性等问题,为进一步的供热系统优化控制奠定了基础。
参考文献
1袁曾任,人工神经网络及其应用,清华大学出版社,1999
2李士勇,模糊控制·神经控制和智能控制论,哈尔滨工业大学出版社,1996
3张乃尧,阎平凡,神经网络与模糊控制,清华大学出版社,1998
4董德存,张树京,用于NARMAX参数辨识的一种神经网络方法,铁道学报,1994
5谢新民,蒋云钟等,基于人工神经元网络的河川径流时时预报研究,水利水电技术,1999,(9)
6李勇,孙艳萍等,用于故障预测的BP网络模型及改进,东北电力学院淡报,1999,(1)
7郭创新等,一种鲁棒BP算法及其在非线性动态系统辨识中的应用,信息与控制,1996,(6)
8赖晓平,周鸿兴,云昌钦,混合模型神经网络在短期负荷预测中的应用,控制理论与应用,2000,17(1)69~72
9王玉涛,夏靖波,周建常,王师,基于神经网络模型的时间序列预测算法及其应用,信息与控制,1998,27(6):413~417
只有清楚地了解电梯控制系统的运行原理才能够及时准确的诊断出电梯故障原因,因此清楚的了解电梯运行原理,每一个电梯维修人员必须要做到。电梯运行过程总体上可分为以下几个阶段:第一、登记层外召唤信号和登记内选指令阶段;第二、电梯门关闭或者电梯按照系统指令停运阶段;第三、启动阶段;第四、在到达信号记录的楼层前进行减速制动;第五、平层开门阶段。在整个过程中电梯需要从外界接收信号并处理,然后完成相应的指令或者输出信号,由此可以将电梯看作是一个完整的独立的系统,只需要外界给予相应的信号就可以自动的做出动作。电梯系统内部复杂的构件紧密的结合在一起,正是如此才使得电梯系统故障具有了复杂性、层次性、相关性以及不确定性的特点。
二、神经网络技术基本原理
生物学上的神经是由一个个简单的神经元相互连接进而形成了复杂的庞大的神经系统,同理,神经网络就是由大量简单的处理单元相互连接形成的复杂的智能系统。单独的处理单元类似于一个神经元,是一个可以接受不同信息但是只输出一种信息的结构单位。神经网络系统与生物学神经系统相似的是具有自我修改能力,它可以同时接收大量的数据并进行统一的分析处理,进而输出相应的处理结果。这就使得神经网络系统具有了高度容错性、高度并行性、自我修改性、学习性以及高度复杂性,也正是由于这些特性才使的利用神经网络技术能够及时准确的查明电梯故障原因并得出故障解决方案。电梯故障诊断中应用的神经网络模型分为三个层次:输入层、接收外部信号或者是电梯自我检测信息(如载重信息);隐含层、对接收到了大量数据进行相应的分析处理;输出层、将记录着动作命令的数据传送出来。在电梯出现故障时,首先可以通过神经网络模型快速确定故障发生在哪一层达到节约时间的目的。但是神经网络也会因为收敛速度过于慢、训练强度太大或者是选择的网络模型不好等问题导致诊断结果受到影响。
三、神经网络模型在电梯故障诊断中的应用分类
神经网络模型已经成为了如今电梯故障诊断中应用最广泛的技术模型,相比于传统方式它具有诊断速度快、故障原因命中率高的优点,因此引起了各方面专业人士的强烈关注,并在他们的不懈努力下得到了发展与创新。它跨越多个专业领域、通过对各种复杂的高难度工作的不断的发展与改进出现了越来越多的应用模型,下面主要介绍了当前应用最普遍的BP网络模型,并且简单的引入并介绍了近年来新兴的模糊神经网络模型和遗传小波神经网络模型。
(一)BP网络模型
BP神经网络作为神经网络应用最广泛的一种,它多应用的误差反向传播算法使其在模式识别、诊断故障、图像识别以及管理系统方面具有相对先进性。基于BP网络的电梯故障诊断技术就是通过学习故障信息、诊断经验并不断训练,并将所学到的知识利用各层次之间节点上的权值从而表达出来。BP网络系统的主要诊断步骤主要可以分为三步。第一步:对输入输出的数据进行归一化处理,将数据映射到特定的区间。第二步:建立BP网络模型,训练BP网络模型。第三:通过已经训练好的网络模型对原来的样本进行全面的检测。算法步骤:a、在一定的取值范围内对数据进行初始化;b、确定输入值数值大小,计算出预期输出量;c、用实际输出的值减去上一步得到的数值;d、将上一步得到的误差分配到隐含层,从而计算出隐含层的误差;e、修正输出层的权值和阈值,修正隐含层的权值;f、修正隐含层的阈值,修正隐含层和输入层的权值。
(二)遗传小波神经网络模型
遗传算法运用了生物界的优胜劣汰、适者生存的思想对复杂问题进行优化,适用于复杂的故障,起到了优化简化问题的作用。对局部数据进行详细的分析是小波法最大的特点,所以它被誉为“数字显微镜”。遗传算法小波神经网络就是运用小波进行分解的方法分解模拟故障信号,将得到的数据进行归一化,将归一化后的数值输入到神经网络模型中。它融合了神经网络、小波分析和遗传算法三者所有的优点。基于遗传小波神经网络的电梯故障诊断的一般步骤为:测试节点信号采样、小波分解、故障特征量提取、归一化得到训练样本集、遗传算法优化、得到故障类型。遗传小波神经网络模型在故障原因复杂、数据信息量巨大的电梯系统的应用中能够发挥更大的作用。
(三)模糊神经网络模型
模糊神经网络模型就是创新性的将神经网络与模糊理论结合到一起。它采用了广义的方向推理和广义的前向推理两种推理方式。与其它两种模型不同的是,它的语言逻辑、判断依据和结论都是模糊的。但是它的数据处理能力还有自我学习能力并没有因此而变差,反而更加丰富了它的定性知识的内容。在处理实际问题的过程中,首先要建立所有可能发生的故障的完整集合,其次将所有的故障发生原因归入到同一个集合中去,最后就是建立故障和原因的关系矩阵。分别叫做模糊故障集、模糊原因集、模糊关系矩阵。相较于BP网络模型,这种模型更加的简单易行,充分发挥了神经网络和模糊逻辑的优点,不会因为故障原因过于复杂而失去诊断的准确性,在原本丰富定性知识和强大数据处理能力的基础上具有了很大的自我训练能力。
四、结语
【关键词】PID控制 神经网络 系统辨识 模型构建
1 神经元基础模型分析
单神经元是一种被称为MoCulloch-Pitts(1943年)模型的人工神经元。它是模仿生物神经元的结构和功能、并从数学角度进行描述的一个基本单位,由人脑神经元进行抽象简化后得到。人工神经元是神经网络的最基本的组成部分。
2 基于神经网络的辨识
系统辨识(System Identification)是现代控制理论中一个很重要的组成部分。在现代的控制过程中,由于系统越来越复杂,被控对象的实际数学模型已经无法进行精确的给定与描述,故需要一门控制理论,在掌握被控对象的变化规律下,由另一种方法确定一个近似的、易于描述与控制的数学模型来近似代替这个不可知的复杂模型。
根据L.A.Zadel的系统辨识的定义(1962),辨识就是在分析输入和输出数据的基础上,从一组给定的模型类(Model Set)中,按照一定的规则,确定一个与所测系统等价的模型,如果所测系统模型未知,那么这个等价的模型就可以来近似代替系统模型。从定义中可以得到辨识的三要素:输入输出数据、模型类、等价准则。
神经网络对非线性函数的逼近能力非常好,当神经网络满足一定条件时,可以以任意精度逼近任意非线性连续的函数或者分段连续的函数。因此,用神经网络来完成非线性系统辨识功能是一个很好的选择。
神经网络系统辨识一般有并联型和串-并联型两种辨识结构。并联模型由待辨识系统、神经网络、误差反馈实现。串―并联型模型由待辨识系统、时延网络、误差反馈与神经网络实现,这两种系统都可以实现通过误差对系统进行在线调整,但是后者用待辨识系统的输入输出数据作为辨识信息,并用误差进行校正,能使系统更收敛、稳定,因此,串―并联型模型应用较多。
这两种模型均属于正向模型,是利用多层前馈神经网络(指BP网络类型的神经网络),通过训练与学习,建立一个模型,使其能表达系统的正向动力学特性。另外还有一种逆模型,前提是其拟辨识的非线性系统可逆,因为并不是所有的系统都满足这一点,故其应用没有正向模型广泛。
基本结构的的Elman神经网络是阶层结构,类似于一般的多层前馈神经网络,也有输入层,隐含层和输出层。但除此之外,Elman神经网络还有一层特殊的结构单元―衔接层,衔接层中的节点一一对应于隐含层中的节点,隐含层的输出经过一步延迟后反馈到衔接层,将隐含层过去的状态与神经网络下一时刻的输入一起作为隐含层单元的输入,从而使得Elman神经网络具有了动态记忆能力。
3 基于神经网络的非线性自整定PID控制
PID控制是发展最早的经典控制算法之一,而且PID控制器一直是控制领域的基本控制方式,其算法简单,可靠性高,利用系统的偏差,基于比例(P)、积分(I)、微分(D)来进行控制。
3.1 PID控制基本原理
经典PID控制器系统如图1所示。
经典的PID控制器是一种线性控制器,该系统由PID控制系统与被控对象组成。它将输入值rin(t)与实际输出值yout(t)的偏差e(t)作为控制量输入,将偏差的比例(P)、积分(I)和微分(D)进行线性组合,作为被控对象的控制量u(t),对其进行控制。其控制器的输入输出关系可用式3来描述。
在计算机技术日益普及的现代工业生产过程中,将PID控制算法等控制方法应用于计算机中,组成计算机控制系统,能够完成更多更复杂的计算与控制。由于计算机处理的是数字量,故需将PID控制算法数字化。
3.2 基于神经网络的非线性PID自整定原理及设计
将神经网络应用于PID参数的自整定方案设计如图2所示。
其中NNC与NNI神经网络均采用递归神经网络,经过上面的研究我们知道Elman神经网络具有很好的跟踪特性,故在这里应用Elman神经网络,并用梯度下降法进行修正。NNI是神经网络系统辨识过程,在上面已经介绍过,所以在下面只介绍神经网络控制器NNC的学习算法。
我们知道,u(k)的求出需要u(k-1),e(k),e(k-1),e(k-2)四个数据,神经网络的作用在于在线调整Kp、KI、KD三个系数,故神经网络的输出为这三个数。给定神经网络的输入为u(k-1),y(k-1),隐含层个数为hc个(可以改变)。其学习算法如下:
3.2.1 前向计算
基于递归神经网络的非线性自整定PID控制器算法过程归纳如下:
(1)设定初始状态与参数初始值,包括NNC系统的连接权值wc、vc,学习速率,和一些中间变量的初始化。
(2)进行离线辨识过程,在训练有限步数后,使得y(k)与充分逼近,取此时的连接权值,用于在线过程。
(3)用上一步得到的连接权值用NNI进行在线辨识,求出系统输出y(k),并进行修正,
记录下修正后的的值。
(4)给定系统的输入yr(k),求出y(k)与yr(k)的误差E(k)。
(5)用u(k)、y(k)作为NNC的输入,求出PID控制器的三个参数,并用式3-9求出下一步的输入u(k+1),前两步时e(k-1)、e(k-2)未知,默认初始值为0。并用梯度下降法进行连接权值的修正,也即NNC网络的输出的修正,完成PID控制器的参数在线自调整。
(6)使k=k+1,返回第三步重新计算,直到完成设定的训练步数上限。
4 结论
通过以上分析可以看出本论文提出Elman神经网络进行非线性自整定PID控制器的设计,并加入神经网络的非线性系统辨识过程,用辨识过程中的中间值参与参数自整定环节,可以使自整定环节更加精确,从而提高系统的工作性能。
参考文献
[1]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002,17-49.
[2]朱庆A.BP多层神经网络在控制中的应用[D].广西:广西大学,2004(05).
论文名称:基于BP神经网络的技术创新预测与评估模型及其应用研究
课题来源:单位自拟课题或省政府下达的研究课题
选题依据:
技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估,可以使企业对未来的技术发展水平及其变化趋势有正确的把握,从而为企业的技术创新决策提供科学的依据,以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下,企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中,企业的技术创新决定着企业生存和发展、前途与命运,为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。
二、本课题国内外研究现状及发展趋势
现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。
(1)趋势外推法。指利用过去和现在的技术、经济信息,分析技术发展趋势和规律,在分析判断这些趋势和规律将继续的前提下,将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家RaymondPearl提出的Pearl曲线(数学模型为:Y=L∕[1+A?exp(-B·t)])及英国数学家和统计学家Gompertz提出的Gompertz曲线(数学模型为:Y=L·exp(-B·t))皆属于生长曲线,其预测值Y为技术性能指标,t为时间自变量,L、A、B皆为常数。Ridenour模型也属于生长曲线预测法,但它假定新技术的成长速度与熟悉该项技术的人数成正比,主要适用于新技术、新产品的扩散预测。
(2)相关分析法。利用一系列条件、参数、因果关系数据和其他信息,建立预测对象与影响因素的因果关系模型,预测技术的发展变化。相关分析法认为,一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的,这样,通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种:导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。
(3)专家预测法。以专家意见作为信息来源,通过系统的调查、征询专家的意见,分析和整理出预测结果。专家预测法主要有:专家个人判断法、专家会议法、头脑风暴法及德尔菲法等,其中,德尔菲法吸收了前几种专家预测法的长处,避免了其缺点,被认为是技术预测中最有效的专家预测法。
趋势外推法的预测数据只能为纵向数据,在进行产品技术创新预测时,只能利用过去的产品技术性能这一个指标来预测它的随时间的发展趋势,并不涉及影响产品技术创新的科技、经济、产业、市场、社会及政策等多方面因素。在现代商业经济中,对于产品技术发展的预测不能简单地归结为产品过去技术性能指标按时间的进展来类推,而应系统综合地考虑现代商业中其他因素对企业产品技术创新的深刻影响。相关分析法尽管可同时按横向数据和纵向数据来进行预测,但由于它是利用过去的历史数据中的某些影响产品技术创新的因素求出的具体的回归预测式,而所得到的回归预测模型往往只能考虑少数几种主要影响因素,略去了许多未考虑的因素,所以,所建模型对实际问题的表达能力也不够准确,预测结果与实际的符合程度也有较大偏差。专家预测法是一种定性预测方法,依靠的是预测者的知识和经验,往往带有主观性,难以满足企业对技术创新预测准确度的要求。以上这些技术创新预测技术和方法为企业技术创新工作的开展做出了很大的贡献,为企业技术创新的预测提供了科学的方法论,但在新的经济和市场环境下,技术创新预测的方法和技术应有新的丰富和发展,以克服自身的不足,更进一步适应时展的需要,为企业的技术创新工作的开展和企业的生存与发展提供先进的基础理论和技术方法。
目前,在我国企业技术创新评估中,一般只考虑如下四个方面的因素:(1)技术的先进性、可行性、连续性;(2)经济效果;(3)社会效果;(4)风险性,在对此四方面内容逐个分析后,再作综合评估。在综合评估中所用的方法主要有:Delphi法(专家法)、AHP法(层次分析法)、模糊评估法、决策树法、战略方法及各种图例法等,但技术创新的评估是一个非常复杂的系统,其中存在着广泛的非线性、时变性和不确定性,同时,还涉及技术、经济、管理、社会等诸多复杂因素,目前所使用的原理和方法,难以满足企业对技术创新评估科学性的要求。关于技术创新评估的研究,在我国的历史还不长,无论是指标体系还是评估方法,均处于研究之中,我们认为目前在企业技术创新评估方面应做的工作是:(1)建立一套符合我国实际情况的技术创新评估指标体系;(2)建立一种适应于多因素、非线性和不确定性的综合评估方法。
这种情况下,神经网络技术就有其特有的优势,以其并行分布、自组织、自适应、自学习和容错性等优良性能,可以较好地适应技术创新预测和评估这类多因素、不确定性和非线性问题,它能克服上述各方法的不足。本项目以BP神经网络作为基于多因素的技术创新预测和评估模型构建的基础,BP神经网络由输入层、隐含层和输出层构成,各层的神经元数目不同,由正向传播和反向传播组成,在进行产品技术创新预测和评估时,从输入层输入影响产品技术创新预测值和评估值的n个因素信息,经隐含层处理后传入输出层,其输出值Y即为产品技术创新技术性能指标的预测值或产品技术创新的评估值。这种n个因素指标的设置,考虑了概括性和动态性,力求全面、客观地反映影响产品技术创新发展的主要因素和导致产品个体差异的主要因素,尽管是黑匣子式的预测和评估,但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合,输出一个经非线性变换后较为精确的预测值和评估值。
据文献查阅,虽然在技术创新预测和评估的现有原理和方法的改进和完善方面有一定的研究,如文献[08]、[09]、[11]等,但尚未发现将神经网络应用于技术创新预测与评估方面的研究,在当前产品的市场寿命周期不断缩短、要求企业不断推出新产品的经济条件下,以神经网络为基础来建立产品技术创新预测与评估模型,是对技术创新定量预测和评估方法的有益补充和完善。
三、论文预期成果的理论意义和应用价值
本项目研究的理论意义表现在:(1)探索新的技术创新预测和评估技术,丰富和完善技术创新预测和评估方法体系;(2)将神经网络技术引入技术创新的预测和评估,有利于推动技术创新预测和评估方法的发展。
本项目研究的应用价值体现在:(1)提供一种基于多因素的技术创新定量预测技术,有利于提高预测的正确性;(2)提供一种基于BP神经网络的综合评估方法,有利于提高评估的科学性;(3)为企业的技术创新预测和评估工作提供新的方法论和实用技术。
四、课题研究的主要内容
研究目标:
以BP神经网络模型为基础研究基于多因素的技术创新预测和评估模型,并建立科学的预测和评估指标体系及设计相应的模型计算方法,结合企业的具体实际,对指标和模型体系进行实证分析,使研究具有一定的理论水平和实用价值。
研究内容:
1、影响企业技术创新预测和评佑的相关指标体系确定及其量化和规范化。从企业的宏观环境和微观环境两个方面入手,密切结合电子商务和知识经济对企业技术创新的影响,系统综合地分析影响产品技术创新的各相关因素,建立科学的企业技术创新预测和评估指标体系,并研究其量化和规范化的原则及方法。
2、影响技术创新预测和评估各相关指标的相对权重确定。影响技术创新发展和变化各相关因素在输入预测和评估模型时,需要一组决定其相对重要性的初始权重,权重的确定需要基本的原则作支持。
3、基于BP神经网络的技术创新预测和评估模型研究。根据技术创新预测的特点,以BP神经网络为基础,构建基于多因素的技术创新预测和评估模型。
4、基于BP神经网络的技术创新预测和评估模型计算方法设计。根据基于BP神经网络的技术创新预测和评估模型的基本特点,设计其相应的计算方法。
5、基于BP神经网络的技术创新预测和评估模型学习样本设计。根据相关的历史资料,构建基于BP神经网络的技术创新预测和评估模型的学习样本,对预测和评估模型进行自学习和训练,使模型适合实际情况。
6、基于BP神经网络的技术创新预测和评估技术的实证研究。以一般企业的技术创新预测与评估工作为背景,对基于BP神经网络的技术创新预测和评估技术进行实证研究。
创新点:
1、建立一套基于电子商务和知识经济的技术创新预测和评估指标体系。目前,在技术创新的预测和评估指标体系方面,一种是采用传统的指标体系,另一种是采用国外先进国家的指标体系,如何结合我国实际当前经济形势,参考国外先进发达国家的研究工作,建立一套适合于我国企业技术创新预测和评估指标体系,此为本研究要做的首要工作,这是一项创新。
2、研究基于BP神经网络的技术创新预测和评估模型及其计算方法。神经网络技术具有并行分布处理、自学习、自组织、自适应和容错性等优良性能,能较好地处理基于多因素、非线性和不确定性预测和评估的现实问题,本项目首次将神经网络技术引入企业的技术创新预测和评估,这也是一项创新。
五、课题研究的基本方法、技术路线的可行性论证
1、重视系统分析。以系统科学的思想为指导来分析影响企业技术创新发展和变化的宏观因素和微观因素,并研究影响因素间的内在联系,确定其相互之间的重要度,探讨其量化和规范化的方法,将国外先进国家的研究成果与我国具体实际相结合,建立我国企业技术创新预测和评估的指标体系。
2、重视案例研究。从国内外技术创新预测与决策成功和失败的案例中,发现问题、分析问题,归纳和总结出具有共性的东西,探索技术创新预测与宏观因素与微观因素之间的内在关系。
3、采用先简单后复杂的研究方法。对基于BP神经网络的技术创新预测和评估模型的研究,先从某一行业出发,定义模型的基本输入因素,然后,逐步扩展,逐步增加模型的复杂度。
4、理论和实践相结合。将研究工作与具体企业的技术创新实际相结合,进行实证研究,在实践中丰富和完善,研究出具有科学性和实用性的成果。
六、开展研究已具备的条件、可能遇到的困难与问题及解决措施
本人长期从事市场营销和技术创新方面的研究工作,编写出版了《现代市场营销学》和《现代企业管理学》等有关著作,发表了“企业技术创新与营销管理创新”、“企业技术创新与营销组织创新”及“企业技术创新与营销观念创新”等与技术创新相关的学术研究论文,对企业技术创新的预测和评估有一定的理论基础,也从事过企业产品技术创新方面的策划和研究工作,具有一定的实践经验,与许多企业有密切的合作关系,同时,对神经网络技术也进行过专门的学习和研究,所以,本项目研究的理论基础、技术基础及实验场所已基本具备,能顺利完成本课题的研究,取得预期的研究成果。
七、论文研究的进展计划
2003.07-2003.09:完成论文开题。
2003.09-2003.11:影响企业技术创新发展的指标体系研究及其量化和规范化。
2003.11-2004.01:基于BP神经网络的技术创新预测和评估模型的构建。
2004.01-2004.03:基于BP神经网络的技术创新预测和评估模型计算方法研究。
2004.03-2004.04:基于BP神经网络的技术创新预测和评估模型体系的实证研究。
2004.04-2004.06:完成论文写作、修改定稿,准备答辩。
主要参考文献:
[01]傅家骥、仝允桓等.技术创新学.北京:清华大学出版社1998
[02]吴贵生.技术创新管理.北京:清华大学出版社2000
[03]柳卸林.企业技术创新管理.北京:科学技术出版社1997
[04]赵志、陈邦设等.产品创新过程管理模式的基本问题研究.管理科学学报.2000/2.
[05]王亚民、朱荣林.风险投资项目ECV评估指标与决策模型研究.风险投资.2002/6
[06]赵中奇、王浣尘、潘德惠.随机控制的极大值原理及其在投资决策中的应用.控制与决策.2002/6
[07]夏清泉、凌婕.风险投资理论和政策研究.国际商务研究.2002/5
[08]陈劲、龚焱等.技术创新信息源新探.中国软科学.2001/1.pp86-88
[09]严太华、张龙.风险投资评估决策方法初探.经济问题.2002/1
[10]苏永江、李湛.风险投资决策问题的系统分析.学术研究.2001/4
<11>孙冰.企业产品开发的评价模型及方法研究.中国管理科学.2002/4
[12]诸克军、杨久西、匡益军.基于人工神经网络的石油勘探有利性综合评价.系统工程理论与实践.2002/4
[13]杨力.基干BP神经网络的城市房屋租赁估价系统设计.中国管理科学.2002/4
[14]杨国栋、贾成前.高速公路复垦土地适宜性评价的BP神经网络模型.统工程理论与实践.2002/4
[15]楼文高.基于人工神经网络的三江平原土壤质量综合评价与预测模型.中国管理科学.2002/1
[16]胥悦红、顾培亮.基于BP神经网络的产品成本预测.管理工程学报.2000/4
[17]陈新辉、乔忠.基于TSA-BP神经网络的企业产品市场占有率预测模型.中国农业大学学报.2000/5
[18]刘育新.技术预测的过程与常用方法.中国软科学.1998/3
[19]温小霓、赵玮.市场需求与统计预测.西安电子科技大学学报.2000/5
[20]朱振中.模糊理论在新产品开发中的应用.科学管理研究.2000/6
[21]KimB.Clark&TakahiroFujimoto.ProductDevelopmentPerformance–Strategy、OrganizationandManagementinIndustry.HarvardBusinessSchoolPress.Boson1993
[22]GobeliDH,BrownDJ.Improvingtheprocessofproductinnovation.Research,TechnologyManagement,1993.36(2):46-49
[23]SimonJ.Towner.Fourwaystoacceleratenewproductdevelopment.LongRangPlanning1994.27(2):57-65
[24]AbdulAli,etal.Productinnovationandentrystrategy.JournalofProductInnovationManagement1995.12(12):54-69
[25]EricVinHippel.ThesourcesofInnovation.OxfordUniversityPress.1988
[26]ShtubA,ZimermanY.Aneural-network-basedapproachforestimatingthecostofassembly.InternationalJournalofProductionEconomics,1993.32:189-207
[27]Wee-LiangTan,DattarreyaG.Allampalli,InvestmentCriteriaofSingaporeCapitalists,1997InternationalCouncilforSmallBusiness,SanFrancisco,California,June1997
[28]MichaelHenos,TheRoadtoVentureFinancing:GuidelinesforEntrepreneuts,R&DStraregistMagazine,Summer1991
[29]ChowGC,TheLargrangeMethodofoptimizationwithapplicationstoportfoliandinvestmentdecisions.JofEconomicDymamicsandControl1996
[30]Jensen,R..InformationCostandInnovationAdoptionPolicies,ManagementScience.Vol.34,No.2,Feb,1988
[31]R.K.Zutshi,T.W.Liang,D.G.Allampulli,SingaporeVentureCapitalistsInvestmentEvaluationCriteria:AReexamination.SmallBusinessEconomics13:9-26(1999)
[关键词]软件项目风险管理神经网络粗集
本篇论文的中心是基于粗集的人工神经网络(ANN)技术的高风险识别,这样在制定开发计划中,最大的减少风险发生的概率,形成对高风险的管理。
一、模型结构的建立
本文基于粗集的BP神经网络的风险分析模型,对项目的风险进行评估,为项目进行中的风险管理提供决策支持。在这个模型中主要是粗糙集预处理神经网络系统,即用RS理论对ANN输入端的样本约简,寻找属性间关系,约简掉与决策无关的属性。简化输入信息的表达空间维数,简化ANN结构。本论文在此理论基础上,建立一种风险评估的模型结构。这个模型由三部分组成即:风险辨识单元库、神经网络单元、风险预警单元。
1.风险辨识单元库。由三个部分功能组成:历史数据的输入,属性约简和初始化数据.这里用户需提供历史的项目风险系数。所谓项目风险系数,是在项目评价中根据各种客观定量指标加权推算出的一种评价项目风险程度的客观指标。计算的方法:根据项目完成时间、项目费用和效益投入比三个客观指标,结合项目对各种资源的要求,确定三个指标的权值。项目风险系数可以表述成:r=f(w1,w2,w3,T,T/T0,S/S0,U/U0),R<1;式中:r为风险系数;T、T0分别为实际时间和计划时间;S、S0分别为实际费用和计划费用;U、U0分别为实际效能和预计效能;w1、w2、w3分别是时间、费用和效能的加权系数,而且应满足w1+w2+w3=1的条件。
2.神经网络单元。完成风险辨识单元的输入后,神经网络单元需要先载入经初始化的核心风险因素的历史数据,进行网络中权值的训练,可以得到输入层与隐含层、隐含层与输出层之间的权值和阀值。
(1)选取核心特征数据作为输入,模式对xp=[xp1,xp2,.,xpn]T,dp(网络期望输出)提供给网络。用输入模式xp,连接权系数wij及阈值hj计算各隐含单元的输出。
m
Ypj=1/{1+exp[-(∑wijxpi-hj)]},i=1,2,.,m;j=1,2,Λ,n,
i=1
(2)用隐含层输出ypj,连接权系数wij及阈值h计算输出单元的输出
m
Yp=1/{1+exp[-(∑wjxpi-hj)]},i=1,2,.,m;j=1,2,Λ,n,
i=1
Yp=[y1,y2,……,yn]T
(3)比较已知输出与计算输出,计算下一次的隐含各层和输出层之间新的连接权值及输出神经元阈值。
wj(k+1)=wj(k)+η(k)σpσpj+α[wj(k)-wj(k-1)]
h(k+1)=h(k)+η(k)σp+α[h(k)-h(k-1)]
η(k)=η0(1-t/(T+M))
η0是初始步长;t是学习次数;T是总的迭代次数;M是一个正数,α∈(0,1)是动量系数。σp是一个与偏差有关的值,对输出结点来说;σp=yp(1-yp)(dp-yp);对隐结点来说,因其输出无法比较,所以经过反向推算;σpj=ypj(1-ypj)(ypwj)
(4)用σpj、xpj、wij和h计算下一次的输入层和隐含层之间新的连接权值及隐含神经元阈值。wij(k+1)=wij(k)+η(t)σpjxpi+α[wij(k)-wij(k-1)]
3.风险预警单元
根据风险评价系数的取值,可以将项目的风险状况分为若干个区间。本文提出的划分方法是按照5个区间来划分的:
r<0.2项目的风险很低,损失发生的概率或者额度很小;
0.2≤r<0.4项目的风险较低,但仍存在一定风险;
0.4≤r<0.6项目的风险处于中等水平,有出现重大损失的可能;
0.6≤r<0.8项目的风险较大,必须加强风险管理,采取避险措施;
0.8≤r<1项目的风险极大,重大损失出现的概率很高,建议重新考虑对于项目的投资决策。
总之,有许多因素影响着项目风险的各个对象,我们使用了用户评级的方式,从风险评估单元中获得评价系数五个等级。给出各风险指标的评价系数,衡量相关风险的大小。系数越低,项目风险越低;反之,系数越高,项目风险越高。
二、实证:以软件开发风险因素为主要依据
这里我们从影响项目风险诸多因素中,经项目风险系数计算,作出决策表,利用粗集约简,抽取出最核心的特征属性(中间大量复杂的计算过程省略)。总共抽取出六个主要的指标(PersonnelManagement/Training,Schedule,ProductControl,Safety,ProjectOrganization,Communication)确定了6个输入神经元,根据需求网络隐含层神经元选为13个,一个取值在0到1的输出三层神经元的BP网络结构。将前十个季度的指标数据作为训练样本数据,对这些训练样本进行数值化和归一化处理,给定学习率η=0.0001,动量因子α=0.01,非线性函数参数β=1.05,误差闭值ε=0.01,经过多次迭代学习后训练次数N=1800网络趋于收敛,以确定神经网络的权值。最后将后二个季度的指标数据作为测试数据,输入到训练好的神经网络中,利用神经网络系统进行识别和分类,以判断软件是否会发生危机。实验结果表明,使用神经网络方法进行风险预警工作是有效的,运用神经网络方法对后二个季度的指标数据进行处理和计算,最后神经网络的实际输出值为r=0.57和r=0.77,该软件开发风险处于中等和较大状态,与用专家效绩评价方法评价出的结果基本吻合。
参考文献:
[1]王国胤“Rough:集理论与知识获取”[M].西安交通大学出版社,2001
摘要:网络技术的快速发展使网络交易成为现代购物新模式。但是,网上交易的复杂性和虚拟性使网络信用风险加剧,在分析网络交易
>> 网络交易信用风险的防范分析 我国网络购物的信用风险研究 基于复杂网络的信用风险传染模型研究 基于神经网络的信用风险预警研究 信用风险分析方法的发展 网上交易信用风险评价研究:基于网上拍卖的卖方视角 银行间市场交易系统的信用风险模块设计研究 网络银行个人客户信用风险评价研究 网络借贷信用风险管理体系研究综述 信用风险研究分析 基于BP神经网络的农户小额信贷信用风险评估研究 基于模糊神经网络的企业信用风险评估模型研究 基于BP神经网络的商业银行信用风险评估模型研究 网络借贷平台信用风险的测度和控制研究 基于P2P网络借贷的信用风险管控研究 商业银行信用风险评价方法研究 基于信用风险与ABC分类方法分析的应收账款研究 基于 Fisher判别方法的信用风险评估实证研究 信用风险评估中的财务分析方法 信用风险的变革 常见问题解答 当前所在位置:.
[2]倪翠云.我国网络购物的信用风险研究[J].中国集体经济,2011(6):61-62.
[3]于鸣燕.人工神经网络在金融领域信用风险评估中的应用[D].南京理工大学,硕士论文,2007-06.
[4]冯炜.消费者网络购物信任影响因素的实证研究[D].浙江大学,博士论文,2010-06.
[5]洪琼.C2C交易模式下诚信问题的研究[D].安徽理工大学,硕士论文,2009-06.
[6]周艳美,李伟华.改进模糊层次分析法及其对任务方案的评价[J].计算机工程与应用,2008(5):212-214.
[7]刘巧玲,张金城.在线拍卖信用行为的博弈分析[J].商业研究,2007(8):211-214.
[8]张浩,洪琼.一种网络交易诚信风险的判别策略模型[J].中国集体经济,2010(34):93-94.
[9]崔百胜.基于Pair copula-GARCH-t的人民币汇率波动实证分析[J].上海师范大学学报(哲学社会科学版),2011,(3):32.
【关键词】自动掳管机;BP神经网络;颜色识别;聚类
1 神经网络
人工神经网络是模仿人脑工作方式而设计的一种机器,它可用电子或者光电元件来实现,也可以用软件在常规计算机上进行仿真;或者说NN是一种具有大量连接的并行分布式处理器,它具有通过学习获取知识并解决问题的能力,而且知识是分布存储在连接权(对应于生物神经元的突触)中,而不是像常规计算机那样按地址存在特定的存储单元中。尽管目前人们对大脑的神经网络结构、运行机制,甚至单个神经细胞的工作原理的了解还很肤浅,但是基于生物神经系统的分布式存储、并行处理、自适应学习这些现象,已经构造出有一定初级智能的人工神经网络,并且近几年来发展迅速,无论从理论上还是实际应用中都取得了丰硕的成果,目前已被应用到很多重要领域[6]。
其中,BP神经网络是一种多层前馈型的神经网络,是目前在神经网络的所有类型中发展最为成熟,应用最为广泛的网络。其网络的权值调整规则采用的是误差反向传播的算法,也因此而得名。BP神经网络已经广泛的被用于模式识别和图像处理,在实际工程中取得了良好的效果。
在BP神经网络的学习训练过程中信号是正向传播的,当输出层的实际输出与期望输出不符时,误差信号就会反向传播,并分摊给除输出层之外的各层的所有单元,作为修正各单元权值的依据。
2 颜色识别的实现
由于本课题研究的是颜色识别,而每种颜色都具有3个特征值即R、G和B,因此输入层的结点个数选为3。通过对纺织厂中所使用的纱管的颜色以及纱线的颜色的调查研究,本文将要识别的颜色可以分为红、蓝、绿、紫、黄、橙、橘、粉和白,共9种。所以输出层的结点个数为9。接下来就是隐层节点数的确定。
隐层节点的个数根据经验公式来确定:
式中,为隐层节点数,为输入节点数,为输出节点数,为调节参数,。由经验公式和输入以及输出节点的个数,并通过试凑的方法进行仿真比较,最终确定隐层结点的个数为11个时,网络的性能达到最好。
根据文献[8]选取2 200个色卡作为神经网络训练集,其在整个RGB 颜色空间的分布较为均匀,另外选取39个作为测试集。对此2 200个训练集用TCS230颜色传感器加测量电路进行对Red、Green、Blue频率值的测量,将测量结果RGB颜色空间转换至Lab颜色空间,转换后的结果作为样本集,对样本进行归一化处理,结果作为BP 神经网络的输入。
以转换后的2200个Lab值作为神经网络的测试训练集,并按照色差聚类于红、蓝、绿、紫、黄、橙、橘、粉和白9种颜色,和哪一种颜色的色差最小,则所测颜色聚于该色类:
当 ,为红、蓝、绿、紫、黄、橙、橘、粉和白9种颜色中的其中一类区间; 为待测颜色的Lab值同9种颜色的色差的最小值;其中 为要识别的对象对应于9种颜色的颜色聚类,即如果最终的色彩识别满足 = 1,那么待识别颜色对象为第 类颜色。
取训练集中经TCS230颜色传感器得到的颜色的频率值归一化后的特征矢量和相应的Lab颜色空间值作为训练对,对所建的BP 神经网络进行训练。通过实际仿真比较,综合考虑均方根误差和训练次数的变化情况,确定训练次数为3000次,平稳时目标值为0.001。图3所示为按设定的训练次数和目标误差进行训练后的学习率变化曲线,其中训练次数用横坐标表示,学习率用纵坐标表示。
3 结论
BP神经网络具有自适应、自学习的能力,目前已被广泛的应用到很多领域,具有强大的非线性分类能力。本文设计了一个用来识别颜色的BP神经网络模型,通过对网络的结构参数和初始值选择的改进,同时加入了动量项作为BP神经网络算法的改进,实现了克服传统网络容易陷入局部极小点以及收敛速度慢的缺陷。采用2200个颜色特征矢量进行网络的训练,39个颜色特征矢量进行网络的验证,对待识别的颜色设置了9个聚类中心。仿真结果表明:训练后的网络可以高精度的对颜色进行分类,分类结果符合人眼的视觉特征,所建模型对颜色的识别精度和速度很高,其中精度可以达到100%,能够满足自动掳管机颜色识别系统的要求。
参考文献:
[1]闫之烨.基于计算机视觉的苹果颜色分级系统的研究[D].南京:南京农业大学硕士论文.2003:1-6.
关键词:三容液位控制系统;过程控制;智能控制
中图分类号:G642.0
文献标志码:A
文章编号:1674-9324(2012)09-0024-02
本文研究的对象是我院过程控制实训室的三容液位过程控制实训系统,该实训系统是一套利用了自动化控制技术、计算机、通讯、自动化控制等技术的多功能实训装置。该实训系统为《过程控制》等课程服务。三容液位过程控制实训系统可根据情况需要灵活组态,模拟线性、非线性;一阶、阶次;单容、多容及耦合、非耦合等特性,并能在控制过程中直观地反映出系统动态反应,方便获得动静态性能指标,从而验证控制策略的优劣,因而研究三容液位过程控制实训系统的控制对实施和学习《自动化控制原理》课程有很好的指导意义。
一、三容液位过程控制实训系统的工作原理[1]
三容液位过程控制实训系统主要硬件构成为三个玻璃水箱、气动调节阀、差压变送器、电磁阀、电/气转换器、液位传感器、空气压缩机、水泵、计算机等,基本结构如图1所示。
图1 三容液位过程控制实训系统基本结构图
水流是经过手动阀v0后分成两路再经过气动调节阀vc1、vc2和手动阀v1~v6后进入三个水箱的。一路可以通过手动阀v1、v3、v5的开关不同来实现单容、双容和三容的控制。假设想控制3号水箱液位h3,让v5开,v1、v3关,则是单容水箱控制;若让v3开,v1、v5关,则为双容水箱控制;而若让v1开,v3、v5关,则为三容水箱控制。而调节阀vc2和手阀v2、v4、v6成为另一路水流的干扰环节,选择分别进入三个水箱的手动阀v2、v4、v6的开关不同,可改变加入干扰环节的位置,都也会影响实验的效果。
二、智能控制算法研究
1.BP网络PID控制器设计[2]。BP神经网络PID控制器主要利用了神经网络的非线性映射能力和自适应能力[3]。系统结构如图所示,控制器由两部分组成:(1)可通过自动调节参数实现对被控参数的闭环控制。(2)也可根据系统运行过程的状态自动调节参数达到某种性能指标的最优化。BP神经网络PID控制器结果如图2所示。
图2 BP神经网络PID控制结构图[4]
输出节点分别为可调PID控制器的三个参数KP、K1、KD,即
O1(3)(k)=Kp,O2(3)(k)=k1,O3(3)(k)=KD。各节点的输入输出关系为:
net■■(k)=■wij(3)oi(2)(k)-?兹l(3)ol(3)(k)=g[netl(3)(k)] 式(2-1)
上式按照沿着J(k)对wi(k)的负梯度方向检索调整即使用梯度下降法修正加权系数w(k),并引入惯性项,从而使BP算法的收敛速度得到提高,于是:
?荭wli(3)(k)=?浊?啄l(3)(k)oi(2)(k)?琢?荭wli(3)(k-1) 式(2-2)
其中,?啄l(3)(k)=e(k+1)·sgn■·■·g'[netl(3)(k)],(l=1,2,3)。
与此类似,可求得隐层权值系数的调节规律为:
?荭wij(2)(k)=?浊?啄i(2)(k)oj(1)(k)+?琢?荭wij(2)(k-1) 式(2-3)
其中,?啄i(2)(k)=f'[neti(2)(k)]·■?啄l(3)(k)wli(3)(k),(i=1,2,…,Q)。
式中,g'(·)=g(x)(1-g(x)),f'(·)=(1-f2(x))/2。 2.BP网络PID智能控制仿真研究。三容液位过程控制系统的线性数学模型为:
G(s)■ 0≤h≤30■ 30<h≤60■ 60<h≤70■ 70<h≤100
在MATLAB环境中,利用M语言编写控制程序。设定目标液位高度为单位阶跃输入,BP网络结构为2-3-
3,两套仿真的初始给定水位为:h1f=12cm,h2f=10cm,下面改变系统的干扰量,当t=195s时,将水箱3下面的出水阀门调节调节到原来的30;在t=345s时将出水阀拧到原来的60%,通过仿真我们得到输出响应曲线。
图3 BP神经网络智能PID控制输出相应曲线
通过以上仿真图我们可以看到采用BP神经网络PID控制器时,水位上升速度相对较慢,但是在BP神经网络PID控制器控制下系统超调量小,出现扰动时,能迅速的消除扰动。改变输入量以后,发现BP神经网络PID控制器跟踪特性仍然表现不错,系统输出与输入的误差几乎为零。说明BP神经网络PID控制器对参数具有很好的适应性,鲁棒性较好。
参考文献:
[1]赵科,王生铁,张计科.三容水箱的机理建模[J].控制工程,2006.
[2]卢娟.BP神经网络PID在三容系统中的控制研究[D].合肥:合肥工业大学硕士论文,2009.
[3]余建勇.网络控制系统及其预测控制算法研究[D].浙江工业大学硕士论文,2005.