时间:2023-01-17 11:14:48
开篇:写作不仅是一种记录,更是一种创造,它让我们能够捕捉那些稍纵即逝的灵感,将它们永久地定格在纸上。下面是小编精心整理的12篇光纤通信论文,希望这些内容能成为您创作过程中的良师益友,陪伴您不断探索和进步。

论文摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文探讨了光纤通信技术的主要特征及应用。
1.光纤通信技术
光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。
光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。
2.光纤通信技术的特点
(1)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。
(2)损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。
(3)抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。
(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。
除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。
3.光纤通信技术在有线电视网络中的应用
20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用SDH+光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目。
有线电视网络在全国各地已基本形成,在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。很多地区的CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。但是现在建设的CATV大多是单向传输,上行信号不能在现有的有线电视网中传送。可以通过电信网PSTN中语音通道或数据通道形成上行信号的传送,也可以通过语音接入系统来完成。将电话接到各用户,这样各用户间即可以打电话,也可以利用广电自己的综合信息网中的宽带传输系统构成广电网中自己的上行信号的传送,组成了双向应用的Internet网。
现在光通信网络的容量虽然已经很大,但还有许多应用能力在闲置,今后随着社会经济的不断发展,作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力,推动通信网络的继续发展。因此,光纤通信技术在应用需求的推动下,一定不断会有新的发展。
参考文献:
[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息,2006,(4)
[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信,2004,(2)
1.常规教学为基础
教学团队探究讲课艺术,改进课堂教学方法,提高授课的互动性,启发学生以“科学研究”的思维思考课本中的知识。教学内容上,注重教学内容的科学性、先进性、新颖性与启发性,及时更新充实教学内容;同时制作较高质量的多媒体课件,通过文字、图片以及动画等多种形式丰富课堂教学。
2.实例研讨作穿插
课堂授课适时引入生活中常见实例,如光纤入户、高清视频点播技术等,由此展开研讨式教学。通过对生活中实例的分析,把抽象的理论变成具体的实际,以此切入并开展课堂讨论,激发学生兴趣。同时,针对实例为学生提供课后实践,使其对问题的理解更深入。
3.热点问题当点缀
结合当前的光纤通信的热点问题,如光纤通信网的安全性、全光网等问题,对热点问题进行深入剖析,形成与课程相配套的实例资料集,对热点问题开展课堂讨论调动学生积极性,以小组为单位鼓励学生进行问题分析总结、讲解,并鼓励学生撰写小论文,以此激发学生的学习兴趣,提高学生自主学习和独立思考的能力。。通过研讨式教学,学生良好的思考习惯建立起来,学习态度由被动转为主动,实现了学习过程的立体化。
二、研讨式教学效果分析
相对于传统灌输式教学方式,研讨式教学建立了融洽的师生关系,激发了学生的创造欲望。研讨式教学为每一位学生发挥个性提供了良好的平台,学生的个性得到尊重,创新意识和能力得到解放,学生更加积极主动的观察思考。在师生关系上,实现了从主客关系到主主关系的转变;在教学目标上,实现从“授人以鱼”到“授人以渔”的转变;教学方式上,实现从“讲授式”到“研讨式”的转变;在教学形式上,实现从“一言堂”到“群言堂”的转变;在教学评价上,实现从“一张试卷定高下”到按学生的实际表现和能力来综合评定成绩的转变。研讨式教学实现了对学生各方面能力的全面培养,其中包括学生的自学能力、思维能力、表达能力、创新能力等等,达到真正提高学生综合素质的目的。
三、结语
1光纤通信技术的定义。
电力通信中光纤通信技术,就是采取光导纤维作为传输介质对各种不同信号进行传输的形式,光纤通信技术承载量相当大,且安全可靠,在人们生活与生产中的应用效益足已证明其使用价值不可限量。光纤通信技术通常采用电气绝缘体进行制作,在制造过程中均采取多芯组成光缆,这样既可使通信的质量得到有效保证,又缩小了信息传输过程中所占据的空间。
2光纤通信技术的优势。
光纤通信技术同传统的通信方式进行相比,在技术方面有很多闪光点,同时在应用中也发挥着它不可代替的作用,光线通信技术在当前的应用中包括有三大类。
(1)波分复用技术
该技术主要是选取异同信道光波的形式。在进行实际操作过程中,通常绝大多数采取单模光纤损耗低区,然后与宽带资源相互结合,最终让其分成多个不同信道,在一般情况之下进行耦合与分离不同的光波时需要采取分波器。
(2)光纤传感技术
该技术在进行传输相应的信息时需要采取传感器,能够理解为传感器扮演着一个中介的角色,该种方式的能量消耗与传统方式相比之下,消耗相对较小,通常其包含有功能型与非功能型。
(3)光纤接入技术
该技术是目前实际应用中相对较广的一种,它能够对各种与窄带业务的问题与事故加以有效处理,而且该技术还可以非常高效地对各种不同的多媒体图像及数据信息进行有效解决。
二、光纤通信技术在电力通信系统中的实际应用
电力通信系统中应用光纤通信网是一个纷繁复杂、难度相当大的工程。随着社会经济的不断发展,电力通信水平也面临着一轮全新的挑战,而当前极具发展潜力的光纤技术被普遍应用于其中,其发挥的作用不言而喻。
1光纤复合相线。
光纤复合相线主要是指在输电线路相线中光纤单元复合的一种电力光缆。它可以预防架空线路遭受限制或阻碍,以此避免遭到雷击破坏,并且运行的相线也可更好地保证地线以绝缘方式正常运行,更加节省电力电能。
2光纤复合地线。
电力系统的传输过程中,在地线里带有部分光纤单元。不但它们可以尽情发挥地线的功能,也具有光纤材料的各种优点,无需特别的保护和维修,方便、稳定且安全。但是该种线路依然存在一些不足之处,就是要投入较大的建设成本。所以该种类型的光纤广泛应用于改造旧线路与建设新线路上。其能预防外界力量的破坏,可以对电线系统加以保护;再者也能够充分地利用传播中的数据信息,进而可实现架空地线的各种不同标准与需求。
3自承式光缆。
该种类型的光缆拥有异同的分类,比如:全介质自承式与金属自承式。全介质自承式光缆的质量小,直径小,密度也相对小,其构造具有全绝缘性,并且它的光学特征和功能还相对比较稳定,能在控制停电中所出现的损失有一定的优势,是一种拥有功能特殊的光纤原料。金属自承式的光缆结构比较简明又单纯,且所投入的成本也比较低廉,也不用把热容量或短路电流等问题纳入到整个系统运行中进行考虑,正由于该种类型的光缆具备诸多优点,所以使得它们被广泛地应用到实际中。
4电力特种光缆。
该种通信光缆属于特征与性能相对特别的一类,其支架的建设主要依靠线路杆塔资源作为基础。其含有的种类主要有:MASS/ADSS/OPGWOPAC等,其中ADSS/OPGW从目前来看应用方面相当普遍,这是由于自身构造与安装形态相对复杂、特殊,该种光缆可有效避免遭到外界力量的破坏。该种光缆自身的材料成本相对昂贵,但由于该种光缆是在沿着电力系统自身的线路杆塔上展开施工的,所在也可以有利于对成本投入的节约。ADSS类型的光缆可以在强电场与长跨距中得到很好的应用,不会给铁塔造成负面影响,而且是一种质量相对较轻的绝缘介质,该种光缆的优点是维修和维护相当方便,安装过程中无需切断电源。而OPGW光缆其安全系数相对较高,很难盗取,它的具体的优势在于使用周期长、传输信号的损耗度低,重建频率与维修率较低,而其不足之处表现于难以经受雷击。
三、光纤通信技术在电力通信中的发展方向
1新型光纤的应用。
目前IP的业务量节节攀升,电信网络也需不断创新与发展,而光纤正是其发展的根本所在。当前都是远距离信号传输,传输质量有很高的要求,原来的单模光纤很难满足发展需求,因此研究与开发新型光纤是电力系统迅速发展的需要。随着现在干线网要求的逐步提高与城域网建设的不断发展,无水吸收峰光纤与非零色散光纤该两种新型的光纤已经在社会各界得到广泛应用。
2使用光接入网。
随着网络技术的进步与创新,网络的传输与交换也逐渐推陈出新。而智能化网络具有数字化、高度集成、主宰网络的优势,其将是网络发展的必然趋势。在现在网络的接入通常采用双绞线,双绞线即便其传输质量表现较为卓越,可还是稍逊色于光纤的传输效果。若运用光接入网的话,就会降低维护与管理网络的成本,乃至能够开发光透明网络,让真正的多媒体得以实现。
3光联网的未来。
若光联网得到应用与发展,光网络将拥有巨大的容量、网络节点很多、网络范围非常广,并且网络的透明度也随之有所增加,可将各种不同的信号加以连接,提高网络的灵活性。部分欧美发达国家已在光联网上投入了很大的资金、人力与物力,我国目前也在该方向进行探索与研究。光联网在将来的通信中光联网将会发挥其巨大的效用,促进电力通信的迅猛发展。
四、结语
一、光纤通信技术在高清晰多媒体领域的应用设备需求分析
集成光电子器件近年来随着光纤通信技术的广泛利用而得到了极大的发展,由部分走向集成化已经成为其可预期的发展趋势。32x32、64x64的MEMS光开关现在已经逐步实现了商用化,而兼具组装光电子器件和直接集成光电子器件的PLC平面光波导线路也正处于投入试用阶段。各种家庭,办公用满足高清要求的显示终端也正在大规模推行中。以高清数字电视为例,我国国家广播电视总局在2000年公布了关于HDTV的行业标准,采用1125/50/2:1格式,通常表达为1920/1080/50i格式。而高清数字电视的水平清晰度可以分为绝对清晰度和相对清晰度两种。水平方向上实际显示的线条(黑白线条)数量便是绝对清晰度,通常由于电视画面宽度与高度尺寸的不同,会导致水平方向能容纳相对而言更多的像素数量,而为了两个方向上可以用相同方法来表示其清晰度,通常会将水平方向的显示线条数量用以乘上画面的宽高比,从而得到其“电视线”。等离子显示器的选择应该区分专业工程用和民用的产品,用于高清晰多媒体高清电视会议用的专业工程等离子显示器的优势在于接口类型非常丰富,插槽式的设计使得其适用的接口类型更加广泛,此外RGBHV、AVI接口通常只有专业工程等离子显示器才有,所以高清晰多媒体应用与电视会议办公通常会采用专业工程用等离子显示器。
而高清晰多媒体应用之一的电视会议的投影机选择则需要满足物理分辨率在1920×1080p,不通过转换可以实现画面比例16:9,亮度高于3000ANSI;RGBHV、VGA分量,HDMI、DVI分量,串行控制接口RS232等都应该具备。而工程类投影机长时间使用所显示出的稳定性极佳,因此一般会选择工程类投影机。
二、技术需求分析光交换技术
由于光纤通信将光作为载体,要将其用于高清晰多媒体领域,需要解决的首要问题便是传输与光交换。其传输损耗因为使用的介质的改变而大大降低,使得传输问题不再那么棘手。光交换技术主要包括了光分组的产生技术,光分组后再生技术,光分组缓存技术等。而其最主要的目的是为各个端口提供光通道或是无限传输方式,以支持各类型数据的传输。而如今已经实现的光突发交换技术将DWDM技术所扩展的带宽进行了充分利用,可以不经由光电相互转化而直接实现“T比特级别光路由器”,为实现高清晰多媒体数据的传输提供了可能性。
光纤接入技术正是由于高清晰多媒体领域对于高质量视频通信媒体业务和高速数据通信的需求,使得光纤接入技术得以被关注,进而得以实现。光纤接入技术的优势在于其极大程度地降低了故障发生的频率,进而降低了维护费用与使用成本,促进了新设备的不断研发与升级。人民生活水平的日益提高,使其无法再满足于以往传统接入方式的传输速度,高清晰多媒体成为其竞相追逐的对象,而其费用的低廉使其适用度逐步拓展,所以光纤接入技术必将是光纤通信技术在高清晰多媒体领域应用与发展的必然趋势。
波分复用技术光纤传输容量的爆炸式膨胀正是得益于波分复用技术。以光波的不同波长作为低损耗窗口信道划分的重要依据,在其划分完毕之后,再用波分复用器将光载波再一次合并,进而在光纤通道中完成传输,最后在到达接收端时用复用器再将光波进行分离,这样便实现了在一个光纤中多路光信号的传输过程。这样的一个过程使得传输信息容量得到了极大扩展,大量复杂数据的传输在极短的时间内就可以完成,正符合高清晰多媒体的需求。
三、光纤通信技术在高清晰多媒体领域的发展展望
随着科技的不断发展,光纤通信技术的趋于成熟,其在高清晰多媒体领域的运用势必会越来越广泛,且所追求的目标将逐步转向服务质量的提高与对人们日益增长的物质文化需求的满足。光纤通信技术的巨大潜力让我们有理由相信,在不远的将来,它一定会朝着信息传输速度,传输容量,中继距离大幅提高的方向进一步前进,而无中继传输,全光纤网络也终将得以实现,从而使得高清晰多媒体领域所涉足的各类产品能够进入到人们的日常生活中去。而现今仍在研发阶段的新一代光纤也备受瞩目,新一代光纤一旦研发成功,将满足用户对于更高的传输速度与更长的传输距离的需求,而光纤通信技术所采用的新材质包括新一代的G.655、G.656等,如果批量投产与推广顺利,那么现阶段所实现的1260mm的光纤波段将得到进一步的延伸。全光网络发展的最终目标定位为全光纤网络系统的建立,未来的全光网络建成之后将会彻底转变传统的节点间全面光纤化,而是将整个通信网络联结为一个整体,实现现在难以想象的超高速与超高质量传输,以推进高清晰多媒体的普及。
作者:李志平单位:宁波一舟通信设备有限公司
一、综述
在此要讲到两个概念差模和共模。1.差模:如果电路中两个被测量点的电位差不能保持恒定,就会出现差模干扰的情况,这种干扰一般产生于电源的相线与相线所组成的回路里,它的相线间干扰信号电位相等。电路在高速转换的电流、电压和有关参数三者的不断作用下会有高频震荡,从而产生了传导干扰,电压或电流在导线中传输时必定要存在两根导线以上,这两根导线作为往返线路输送电力或电信号,一根输出一根输回,这样在两根导线上形成大小相等方向相反的两个电势,被称之为差模电路。2.共模:共模干扰也叫作共态干扰,输入电路对共模干扰的抵御能力一般用抑制比(CMRR)来体现,这种电压通常在仪表输入端的一端(负端或正端)对地之间的交流信号上作用,测量时可于仪表输入端的一端(负端或正端)和地之间跨接电压表,对地干扰通常在数伏至数十伏的区间内,如果电压或电流在这两根导线上传输时使得两根导线中的电流方向一致大小相等,那么在这一电路中就形成了共模电路,在共模干扰里,两个被测量的电路上的点电位相对大地同时出现同方向变动。这种干扰中,交流或直流的干扰电压作用在模数转换器两个输入端上,电压幅值随实际环境的不同而不同,一般在数伏左右,它是由电源的相线与地线所构成回路中的干扰。实际上传导干扰又有共模和差模之分,所谓共模干扰是指地线与相线干扰信号,线间的相位相同、电位相等,共模电路,在动力电缆中的危害,共模电路若同时加载两根不同的电缆中就会将谐振放大,使电路中电流倍增,或者说是两根缆中的电流形成同频倍增现象是原来的电流成倍放大,电压成倍放大。共模电路的发生导致动力电缆与通信光缆间出现故障烧毁带有钢芯的光缆,原因当电缆单相接地或发生零序电压时,两根或者三根电缆产生共模电路,并行的光缆在此时充当一根接地线的作用,共模电路中高电势沿着光缆钢芯释放能量,光缆终端盒末端放电,产生的弧光将盘纤盒烧毁。
二、解决方法
1.共模电感它的插入损耗与阻抗在地磁场作用下变得很高,在干扰抑制方面有着较好的效果,其初始导磁率也非常高,无共振插入损耗特性能在较宽的频率范围内体现。高初始导磁率:与铁氧体相比要超出5-20倍,所以它的插入损耗很大,比铁氧体更能抑制传导干扰。高饱和磁感应强度:比铁氧体高2-3倍。在电流强干扰的场合不易磁化到饱和。卓越的温度稳定性:较高的居里温度,在有较大温度波动的情况下,合金的性能变化率明显低于铁氧体,具有优良的稳定性,而且性能的变化接近于线性。灵活的频率特性:而且更加灵活地通过调整工艺来得到所需要的频率特性。通过不同的制造工艺,配合适当的线圈炸熟可以得到不同的阻抗特性,满足不同波段的滤波要求,使其阻抗值大大高于铁氧体。2.共模滤波器噪声信号可经由有源EMI滤波技术来做实时补偿。所谓有源共模EMI滤波器(英文缩写ACMF)在工作中是先收集共模信号,然后通过反馈,动态输出一个与所采样的噪声电流(电压)大小相等、方向相反的补偿电流(电压),其实质是为共模电流提供一个极低阻抗的内部回路。图1示出其原理图。其中,Path1指共模噪声源S1通过分布电容CD流入地的共模电流路径,在无滤波器时共模噪声inoise将通过CP全部注入地。ACMF将产生一个补偿电流,为inoise提供低阻抗分流支路Path2,从而使其尽量沿Path2路径流过。理想时icomp=-inoise,可使流入地的共模电流为零,从而达到衰减共模电流的目的,以满足电磁干扰的标准。
三、结束语
总的说来,任何一项技术的发展都是要与人类生活相适应的。目前作为新能源产业里技术最为成熟的发电产品,在运行中存在着种种已发现和未发现的问题。集电线路的箱变和动力电缆烧毁击穿是常有的事,地埋电缆与光缆并行光缆烧坏极为解决的事情。新问题的出现就会有新办法的解决,共模干扰在动力电缆中的存在及解决事在必为,而其新技术在向越来越有利于人类的方向发展,做出贡献、设备的进步都是在我们的研究中不断进步的。
作者:王育峰 单位:北京京能新能源内蒙古分公司
1光纤通信技术发展趋势
就目前的网络发现趋势来看,网络的综合化、集成化、智能化和高可靠性已成为必然的发展趋势。但是,目前基于电的时分复用方式技术已经到达瓶颈,但是光纤的可用带宽只利用可利用的不到1%,其潜力是很大的。单就基于光路的波分复用(WDM)来讲,目前的商业水平可达到270左右,研究实现的水平1000左右,理论可同时传播360亿路的电话。波分复用的在目前的研究水平上,理论极限大约是15000个波长。国外已有相关人员在一根光纤中传输了65536个光波,这充分说明了密集波分复用的无限可能性。我们有充分的理由相信,以后在光路方面的发展,将会使光纤通信技术更上一个台阶。
2光纤通信网络技术业务趋势
可以说IP技术改变了我们的生活,其依赖的光纤通信技术更可以实现我们更多的梦想。IP技术的核心是IP寻址,是基于TCP/IP协议,其中最主要的两个协议是IP协议和TCP协议,这两个协议保证了信息在网络中的可靠传输。未来的IP业务将承载的不只有文字,更有图像视频,构成未来网络的基础,实现一种基于光纤的智能化网络平台,以满足人们对网络的不同程度的需求。以IP技术为主流的数据业务,将会是当今世界信息化的发展方向。现在几乎已经把能否有效支持IP业务作为一项技术能否长久的标志。目前IP技术已经相当成熟,要拓展更多的IP业务,无疑需要网络开发商创造出性价比更高的低廉传输成本。光纤通信技术能很好的满足这方面的要求。因此,光纤网络技术将会是现代IP业务发展的基础和方向。
3光纤网络通信技术发展方向
从30多年前光纤的问世开始,光纤的传输速率就在不断的提高。有统计表明,在过去的10年中,光纤的传输速率提高了100倍左右。预计在未来的十年,还将再提高100倍左右。IP技术使得三网融合,包括通信网、有线电视网和计算机网络,成为可能。这就需要更高速可靠的信息传播途径,因此,必须让传递信息的介质能够支持这些业务。就目前来看,互联网的通信基本上可以分为三类:人与人,如IP电话;计算机与人,如网页服务;计算机与计算机,如邮件。这些通信对网络的要求也不尽相同。因此,建立一个全新透明的全光路网络就会是此类技术发展的必由之路,我们称之为光联网。这不但会使传统的互联网业务更加可靠便捷,而且会促进一些无法预料到的新业务产生。不难想到,基于光路的波分复用(WDM)技术,将会是未来光联网道路上的先驱。光联网将会将会实现以下几个基本功能:1)超高速的传输速率;2)灵活的网络重组;3)网络层的透明性,对下层网络传输机制透明;3)更易的扩展性,允许网络节点和数据量的不断增长;4)更快速的网络恢复速度;5)同时实现光路和应用层的联网,使其有更健壮的物理层恢复能力。鉴于光联网的巨大优势和潜力,目前一些发达国家已经投入了巨大的人力、财力和物力对其进行研究和实施。光联网将会是电联网以后又一个互联网的革命。这不光对我们国民经济发展有重要意义,而且对国家的信息安全有着重要的战略意义。我们能够预测到,在不久的将来,随着光纤通信网络技术的迅速发展,人们的通信能够朝着传输速率更高、信号更加稳定的方向发展,人们在各种复杂情况之下的通讯要求也能够不断地得以满足。
4结语
综上所述,本文从光纤技术谈起,介绍了光纤技术的概念、技术现状、技术发展方向以及业务应用等,充分说明了光纤通信技术将会迎来一个发展的,是下一代网络——“光联网”的重要基石。未来的光纤通信网络技术将会朝着超高速率、基于光路的复用方式的系统前进,它的技术变革将会很大程度上改变未来电信行业及基于IP技术的网络业务的格局,甚至对国家的发展都有着重要的战略意义。
作者:魏巍 单位:江西方兴科技有限公司
1遥泵系统中RGU的工作原理
EDF能对光信号进行放大的根本原因是EDF中的铒离子存在于不同的能级中,当它存在于高能级同时有一个光子通过时,该光子可以刺激它释放掉一部分能量而回到更加稳定的低能级。被释放掉的那部分能量会以新光子的形式传递出去。而释放出来的光子与激发它的光子的波长、频率、相位、偏振态和传输方向等完全一致,从而实现了信号光的放大。EDF的增益与光纤中铒离子浓度、掺杂半径、光纤长度、泵浦波长及功率、信号波长及功率等因素有关[2]。铒离子吸收发射截面图参见图。
2遥泵系统中拉曼效应的基本原理
同纤遥泵同时还利用了光纤的拉曼效应对信号光进行放大。拉曼效应是在光纤中传输高功率信号时发生的非线性效应(受激拉曼散射),泵浦光子的能量产生了一个与信号光同频率的光子和一个声子,高功率信号的一部分能量经拉曼效应传递给信号光,实现对信号光的放大[3]。拉曼增益强度与泵浦光强和泵浦光与信号光的频率差有很大关系,差值为13THz时,这种增益达到极点。因此,要放大1530~1605nm的工作波长,最佳泵浦源波长在1420~1500nm波段,遥泵的泵浦光波长为1480nm,产生的拉曼效应能够对信号光进行放大[3]。光纤中的受激拉曼增益谱如图4。EDFA泵浦光的波长一般为980和1480nm,其中1480nm波长的泵浦光具有更高的泵浦效率。遥泵系统中的RGU距离泵浦源较远(一般在50~100km),考虑到980nm波长的光在光纤中衰减较大,而1480nm波长的泵浦光具有更高的效率,因此一般选用1480nm波长的泵浦光。在单波系统中,远端RGU一般采用同向泵浦的方式。同向泵浦示意图参见图3。
3遥泵系统在电力系统超长距离传输中的应用
在埃塞俄比亚复兴大坝输变电工程中,由Gerd水电站至Dedesa变电站的光缆长度约为363km,采用G.655D光纤(康宁的Leaf大有效面积光纤)。由于光缆长度过长,整个系统的衰耗很大,必须在系统中采用遥泵放大技术。整个系统由光放大器、预放大器、EFEC、CoRFA(前向拉曼放大器)和遥泵等放大器件组成。超长距离无中继传输遥泵放大方案配置如图5所示。全段光纤的参数如下:光纤衰减系数为0.20dB/km,光缆衰减为72.6dB,固定接头衰减系数为0.01dB/km,固定接头衰减为3.63dB,活动连接器衰耗为1dB,光通道代价为2dB,光缆衰减富余度为5dB,总衰减为84.23dB,光纤色散系数为4.5ps/(nm•km),总色散为1633.5ps/nm,光放大器发送功率为17dBm,SBS+前向喇曼等效增益为8dB,加预放后接收灵敏度为-38dBm,后向拉曼等效增益为6dB,EFEC功率增益为8dB,遥泵功率增益为9dB,功率电平富余度为1.77dBm。该遥泵系统采用同纤遥泵的工作方式。RPU发送的泵浦光功率为30.5dBm(波长为1480nm),RGU的有效输入泵浦功率为9~10dBm,考虑一定的余量,要求最终到达RGU的泵浦功率约为12dBm。波长为1480nm的泵浦光在G.655D光纤中的衰减系数约为0.24dB/km(含光纤熔接头损耗),因此RGU距RPU泵浦源的最佳距离L=(30.5-12)/0.24=77.08km。即需在距变电站约77km处,选择一个交通方便、便于维护的输电线路铁塔,将RGU安装在该铁塔上。我们将上述理论计算结果输入OTA(光传输系统分析)软件进行验算得知,当RGU距后端泵浦源的距离为77km时,前置放大器输出信号的OSNR(光信噪比)为13.85dB,符合系统设计要求。由OTA软件计算出的RGU距后端泵浦源的最优距离为89km,EDF的最佳长度约为27.8m,泵浦源功率为1000mW,前置放大器输出信号的理论OS-NR为15.97dB。
4结束语
遥泵放大技术是目前实现350km以上无中继光纤传输的最有效的技术之一。虽然目前遥泵放大技术在电力系统中还没有正式运用,但多年来电力系统开设了许多遥泵放大系统的试验光纤线路,经过多年的实践检验,遥泵技术已经逐步完善。在近期投入运行的多条长距离、大容量的特高压直流线路中有望正式采用该技术。遥泵技术在电力系统超长距无中继传输线路中的应用将会越来越广泛。
作者:王辉王琴张勇单位:中国电力工程顾问集团中南电力设计院国网湖北省电力公司运行检修公司国网湖北省电力公司信息通信公司
1.DPSK传输系统模型
在DPSK光纤通信系统中,发射机主要由差分编码器、激光源、MZ调制器组成,接收机则包括MZ干涉仪、平衡检测器和一个电低通滤波器,传输媒介由一段或多段光纤组成,在每个中继站有一个光放大器用来补偿光纤的传输损耗,本文使用前置补偿的方法。DPSK传输系统的模型如图1至3所示。DPSK调制码型为占空比为67%的RZ-DPSK(CSRZ-DPSK)码,原始信号用40Gb/s的伪随机二进制序列表示。系统工作波长为1550nm,传输距离为1200km,传输链路由15个环路段组成,每个环路段包括一段80km的单模光纤(SMF)和一段17km的色散补偿光纤(DCF),使色散得到完全补偿。SMF的前置掺饵光纤放大器(EDFA)用于补偿环路段的衰减,并规定SMF的入纤光功率为4dB,DCF的前置EDFA规定DCF的入纤光功率为0dB,EDFA的噪声指数为4dB,电滤波器为四阶低通滤波器,截止频谱为32GHz。
2.仿真结果分析
2.1调制格式的色散容限我们用眼图张开度代价衡量不同调制格式对色散效应的容限。测量调制格式的色散容限时,所采用的传输链路与图1稍有不同,只保留一段80km的SMF光纤,SMF光纤的参数设置中,去掉非线性效应和偏振模色散效应。保持光纤长度不变,通过改变SMF中色散系数的大小,测量接收信号的眼图和背靠背信号眼图,计算眼图张开度代价(EOP)。EOP与色散值关系曲线如图4所示。通过比较达到规定EOP时所允许的最大色散值,可对比图中四种调制格式的色散容限。由图4可以看出,在40Gb/s的单信道光传输系统中,各种调制格式的色散容限的上升趋势基本相同,达到2dB眼图张开度代价时,NRZ信号的色散容限最大,RZ-DPSK信号的色散容限最小。RZ格式相对于NRZ格式,其脉宽较小,频谱较宽,所以受色散效应的影响比NRZ大。CSRZ-DPSK的频谱宽度介于NRZ-DPSK和RZ-DPSK之间,所以它的色散容限高于RZ调制格式。由上面的仿真中知道,在传输系统中都必须考虑色散补偿,因为普通的SMF每公里的色散值为17ps/nm/km,不管使用哪种调制格式,不加色散补偿时,其传输距离只能限制在几公里内[3]。
2.2调制格式的非线性容限在高速光纤传输系统中,非线性效应会导致光纤传输特性的劣化,如信噪比降低,信号失真等。对于单信道系统,自相位调制(SPM)是最主要的非线性效应[4]。搭建一个类似图1结构的40Gb/s单信道光传输系统,传输距离为160km。在色散完全补偿(不考虑偏振模色散)的情况下,使用SMF和DCF前面的放大器规定其入纤功率。通过改变SMF的入纤光功率的大小(引起光纤非线性的大小变化),测量受其影响的接收信号眼图张开度,与背靠背眼图张开度比较,得到眼图张开度代价(EOP)。下图为传输距离为160km时,NRZ、NRZ-DPSK、33%RZ-DPSK和CSRZ-DPSK四种调制格式的眼图张开度代价随SMF入纤光功率大小的变化曲线。通过比较达到规定EOP时所允许的最大SMF入纤光功率,可对比图中四种调制格式的非线性容限。从图中可看出,在40Gb/s的单信道光传输系统中,达到2dB眼图张开度代价时,RZ-DPSK的非线性容限最大;其次是CSRZ-DPSK和NRZ-DPSK;NRZ的非线性容限最小。通过NRZ-DPSK与NRZ两者的对比,验证了DPSK的抗非线性性能比NRZ好;通过NRZ-DPSK与RZ-DPSK的对比,验证了RZ码型的抗非线性性能比NRZ码型好。DPSK的非线性容限较高,是因为DPSK调制格式利用相邻相位差来传递信息,在幅度上采用恒包络调制,对于自相位调制(SPM),恒包络调制每个码元功率均分,所以产生的非线性相移基本一致,在接收端相邻码元之间的相位差保持不变,所以SPM对DPSK调制格式的影响比较小[5]。
传输距离的增加会造成非线性效应的累积,导致信号恶化,误码率增高。特别是在长距离传输系统中,ASE噪声功率随着光放大器数目的增多而增大,G-M效应(非线性相位噪声)对传输信号的干扰也越来越大,降低了信号的最大传输距离。为了进一步验证DPSK格式和OOK格式的非线性容限,我们研究了各种调制格式的接收性能和传输距离的关系。从图中可以看出,在40Gb/s长距离传输中,RZ-DPSK的Q值最高,其次是CSRZ-DPSK和NRZ-DPSK,而NRZ最低。随着传输距离的增加,四种调制格式的接收性能都呈下降趋势,NRZ格式在800km时Q值已在5dB以下,因此在长距离传输当中一般不采用NRZ,而DPSK有较高的非线性容限,在长距离传输系统中明显比传统的强度调制格式有优势,因而得到了广泛的应用。在基于DPSK的调制格式中,RZ-DPSK具有较好的非线性容限,因而能更好地抑制非线性相位噪声的影响,所以能传输更远的距离。
3.结语
本文通过光通信仿真软件OptiSystem7.0搭建了一个40Gb/s单信道1200km的光传输系统模型,并对DPSK格式在长距离高速率系统中的抗非线性效应和抗色散能力两个方面来进行了仿真研究,验证了DPSK比OOK更适合于在长距离高速率系统的传输。具体表述如下:(1)在40Gb/s的高速率长距离传输系统中,DPSK比NRZ的色散容限小,而CSRZ-DPSK的色散容限接近NRZ,说明载波抑制的DPSK能提高DPSK的抗色散能力。不管使用哪种调制格式,传输系统都必须考虑色散补偿,因为普通的SMF每公里的色散值为17ps/nm/km,不加色散补偿时,其传输距离只能限制在几公里内。(2)在40Gb/s的高速传输系统中,DPSK的抗非线性效应的能力明显高于NRZ。主要原因:DPSK调制格式利用相邻相位差来传递信息,在幅度上采用恒包络调制,使得自相位调制(SPM)对DPSK信号的影响比较小;DPSK调制格式采用平衡接收机,对光信噪比的要求比OOK调制格式低3dB。
作者:何嘉贤单位:广东电网公司佛山供电局
1光纤通信元器件与模块的基本种类分析
在获取网络及光纤区域网络上的模块与元器件的应用需要上存在这一定的差异,DWDM技术不是其中主要的发展方向和趋势。由于现阶段大多数的获取网和区域网距离高层次的发展程度上还有很大的距离,需要的一些传输频率普遍较低。比如,早已经确定出了现阶段非常热门的1Gb/s、OpticalEthernet标准,对于传输网络只能够单一频道的传输速率或者骨干的传输方式上,区域网络的传输方式上都已经能够很好的给予满足。
2光纤通信的被动元器件和模块技术分析
解多工器和DWDM光波长多工是光纤通信被动元器件和模块当中最为基本的器具所在,将一些不同的波长光分开到不同的光纤当中或是向着同一个光纤中合并,这就是解多工和多工两种形式。因为有较小的间距存在于DWDM频道之间,一般的时候会维持在100GHz或者50GHz。对于这种多工/解多工的任务,只有平头、陡裙、窄频的滤波器才能够予以胜任。可以对多种类型的技术进行使用,来将这种波长多工/解多工器制作出来,主要涵盖着阵列光波导元器件、传统绕射式光栅、光学镀膜、全光纤式元器件等。其中现阶段最为成熟的技术即为光学镀膜式的波长多工/解多工器。在光学镀膜式解多工器/波长多工中,光学镀膜式滤镜是关键的元器件之一。要将和要求相符合的DWDM滤镜制作出来,一定要确保有一百层存在于镀膜的层数当中,按照四分之一的波长来对每层的厚度进行确定,为了能够达到陡群和平头的要求,要对三个共振的空腔结构进行使用。并且最为重要的是要非常准确的确定出每层的厚度,需要有准确及时的厚度监控装置存在于制作当中。阵列式光波导元器件为制作DWDM波长多工/解多工器的第二种有效方式。在第一段结合处通过了入射光之后,由于绕射的作用,进而向着中间的阵列光波导中分布的入射,通过阵列光波导,光向着另一端中传导,不同变化率的线性相位改变会存在于不同频率的光中,在改变了这种线性相位之后,在第二段的结合处将会令不同频率的光在输出端的某一光波导中会重新的聚集。其中所谓的阵列天线就是其中的主要原理所在,在控制阵列波导的基础上,辐射光的方向对中盐阵列光波导的长度变化率和波导的间距能够适当的去选择,这样就会有定值的频道存在于频道的间距当中,这样在输出端的光波导阵列中就能够刚好聚焦入射进去,进而对DWDM多解工和多工的功能上能够很好的给予实现。全光纤式的元器件为第三种对DWDM解多工器/波多长工进行制作的方法,同时,又有两种大的种类存在于这类元器件中:串接光纤干涉仪式元器件和光纤光栅式元器件。在光纤的核心中,直接产生作用,对于一些周期性折射系数的光栅可以用UV光感器直接的感应出来,对布拉格绕射的作用上进行利用,能够将窄频发射式滤波器直接的制作出来。但是,由于是在一维光纤里面存在的一种反射式的滤波器,这样就很难分开入射光和其中的反射光,这样就需要对光纤干涉仪和旋光器的架构进行使用,不然光的损耗在其中就会非常的大。针对串接光纤干涉仪式的元器件,在对具有周期性穿透频谱的滤波器进行制作的过程中,对串接式光纤干涉仪进而就能够非常直接的进行使用,对光纤干涉仪两臂的长度借助适当的选择方式,对平头、陡群和窄频的要求上进而能够很好的给予完成。
3模块技术及光纤通信主动元器件
在模块和主动元器件方面,有这样几个重要的内容存在于具体的发展中:光传接模块技术、光放大器技术、选频激光、可调频激光、表面辐射激光技术等。光通信用激光光源的一种技术方式中就包括着表面辐射激光。因为存在着较短的共振箱,这样对单纵模的输出上就能够很好的给予完成,因此,窄频宽在其中是允许存在的;能够利用垂直的方式来发射输出光,因此对on-wafertest能够进行应用;因为存在着较为对称的辐射光模态,因此,向光纤中的耦合就能够非常容易的予以实现。因为存在这上述的一些特征,不管是构造的具体成本,还是元器件的在具体制程,和边射型激光比较起来都会非常的低。因此,造成边射型激光被用于短距离高速率的资料传输连接,被850nm的VESEL完全取代了。但是,现阶段还没有非常成熟的产品存在于长波长VESEL当中,因此,边射型激光还是该通信波段的核心所在。现阶段掺铒光纤放大器仍为光放大器的主要技术方式所在,可以是在L-band,也可以是在C-band上面,可以是拥有动态增益控制或者平坦化的复杂光放大器次系统。低成本是半导体光放大器的主要优点所在,但是,因为存在着较短的载子生命周期,因此,有着较大的非线性效应存在于其中,这样对很多波长不适合同时来进行放大。但是,在处理一些非线性信号的时候却非常的适用,集中3R技术就是其中的典型代表,就是将直接高速的信号直接的应用到光学层当中。Raman光放大器为另一种形式的放大器,这种类型的放大器就是对光纤的Raman效应进行合理使用,进而将放大的效果彰显出来,这样一个高功率的激发光源在其中是绝对不能缺少的。能够由激光发源的波长来决定光放大的波段,这是其中最为显著的优点所在,并且这种放大器有着分布式的特点,将光纤中的信号能够有效的降低下来,这样对传输信号时的非线性效应能够有效的降低下来,但是也有一定的不足之处,即为存在功率较高的激光发射源,并且还有较为昂贵的价格。
4结语
向着全光通信的方向发展,是现阶段光纤通信的主要发展状况。所以,光无源器件和光有源器件的结合,正在推动着光计算、光转换和光开关等技术的进步与发展,在以后的全光通信网络中是一种不可或缺的重要器件。分析现阶段的系统进展情况,仅需要调制器的光电集成器和DFB-LD就能够有效的完成高速光通信。同时需要有滤波器、阵列波导光栅和光分波合波器存在于其中,并且分析技术的主要发展情况,向着更密的信道间隔、更多的信道数和更高的信道速率发展,是WDM技术的主要发展方向,因此,在此基础上推动我国的光纤通信技术能够向着更加合理的方向发展。
作者:胡庆旦单位:湖南邮电职业技术学院
1.1光缆线路设计
在进行信息数据传输时,为了保证传输的稳定性和可靠性,使光纤在各种环境下都能够进行长期使用,需要将光纤制作成光缆。在进行光缆设计时要对光缆进行足够的保护,保证光纤不受外界因素的损坏,光缆的材质要选择重量较轻、便于施工和维护的材料。针对不同的传输环境,选择不同结构的光缆,从而将传输的线路进行优化处理。在进行光缆的安装时,要对光缆之间的挤压、磨损、扭转等进行规范操作,清除光缆附近的障碍物,进行电场强度控制,使其感应电场不超过规定值。由于110kV巍山智能变电站光缆的安装是在高电压的环境下进行安装,因此要格外注意人身安全和安装设备安全,在安装时要进行安全措施防护,保持作业的安全。要注意施工的环境,在施工结束后要在附近悬挂警示牌和设立相关的标志,及时进行光缆的维护等。
1.2通信系统设计
110kV巍山智能变电站的通信系统主要由传输设备、接入设备和电源设备组成,SDH传输设备是光纤系统的核心,所有的控制信号都要通过SDH进行转换才能进行数据的传输。PCM接入设备将传输设备中的2M信号转换为可控制传输的64K信号,而电源设备是通信系统正常运行的重要保证,只有电源提供稳定的电源,才能保证数据传输的可实现性和准确性。在进行通信设备施工时,要对施工人员进行大地放电,消除人体静电,以防止通信设备的损坏。通信设备对周围环境的要求很高,要设置专门的通信机房,安装防静电地板,同时要保证机房的温度和湿度恒定,将通信电池和设备相分隔开,以防止火灾的发生。巍山智能变电站的设计中采用了全封闭式的组合电器,具有很强的抗干扰功能,智能化远程遥控可以大大减少人为操纵的风险。
2现阶段变电站中光纤通信系统存在的问题
2.1光缆施工安全隐患
在智能变电站建设中,光纤通信作为其主要通信介质发挥出了极大的作用,但是在施工建设中容易出现一系列问题,导致变电站通信质量受到损坏。在导入光纤时接口密封不严,使保护钢管中容易出现积水,造成冬天积水无法排除结冰膨胀,从而造成光纤被积压,不仅降低了传输效率,同时也影响了光缆的安全性。在进行光缆材料的选用时没有固定的标准,捆绑材料也达不到标准,使光缆在固定时不稳定,余缆容易出现散落的现象,从而造成安全隐患。光缆的材料选用不足,也会造成施工工艺的差异,产品的质量达不到统一的标准,导致同一个智能变电站中出现不同施工工艺的现象。在进行光缆的固定和安装时,其固定架间隔之间缝隙存在着质量问题,部分型号的光缆固定架间隙不足,导致传输的质量和速率下降,固定架和光配机架上下距离不够充足,使光缆在固定保护套管弯曲过大,使馆内光纤造成积压,从而降低传输速率。
2.2材料选择不规范
智能变电站光纤通信系统涉及到多个专业,施工需要采购的设备数量多,型号也分为很多种类,因此在进行设备采购时针对光缆固定架、配线单元、保护套管等材料的配备要符合施工的要求。但是从巍山智能变电站光纤通信系统的材料选购上看,设备进行采购时常常出现遗漏的现象,设备材料的供应商数目众多,其产品型号难以统一,给材料的配置带来了很多的困难。不同型号进行的施工工艺也不相同,造成工程的工艺不规范。
2.3施工人员素质不强
智能变电站光纤通信系统的构建是一个非常复杂的施工工程,施工规模大,项目多,作业环境危险,这就需要施工人员增强安全意识和专业技能,但是现阶段很多施工人员不注重技能的提升,不能够及时掌握新技术,在进行高电压作业时防护措施不到位,高空作业时没有配备相应的安全设施,造成人身安全隐患。在进行通信设备的建设时没有进行大地放电,身上的静电造成通信设备的损坏等。
3加强变电站站内光纤通信的有效措施
3.1进行变电站初期研究
在进行智能变电站光纤通信系统的构建时,要与相关部门进行沟通,确定系统的可实现性,要对光缆通信建设的目标进行明确,同时优化设计方案,将设备材料的选购、光缆设计数量、安装方式和投入使用等各界环节进行预算和估量,在设计时要严格审核期设备的选用,人员的调配和施工技术的应用也要符合相关的规定。要选择专业的设备厂家进行设备材料的选购,保证设备的型号一致,将安全隐患在初期研究阶段降到最低。110kV巍山变电站的顺利实施和政府的支持紧密相连,其各项施工也符合国家的施工要求。
3.2规范施工中的各项操作
在进行光缆的安装和调试运行时,施工人员要严格按照相关的规定进行规范操作,在进行光缆施工时,要以光缆数据传输效率最大化和传输安全为标准进行光缆的安装。结合巍山当地的气候特点,对于施工中出现的客观因素如天气原因等要进行及时的调整工期,保证施工的进度和工期。及时将新技术应用到施工建设中,从而让通信建筑更好地发挥其作用。在建筑中明确责任人和监督人,监督施工按照相关规定操作,保证施工的安全。
3.3加强施工人员的培训
在进行光缆通信建设时,施工人员的操作是保证系统顺利运行的关键。要加强对施工人员的技能培训和综合素质的提高,不断提升员工的专业技能水平,让新技术运用到光纤通信建设中。增强员工的安全意识,在员工进行危险环境作业时,要让员工配备相应的安全工具,如安全帽等,在进行通信设备建设时,要注意对员工进行大地放电,减少通信设备的损害。建筑单位要及时对光缆进行维护,防止光缆的损坏造成极大的损失。
4结语
关键词:光纤通信技术特点发展趋势光纤链路现场测试
1光纤通信技术
光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路;光波在光纤中传输,不会发生信息传播中的信息泄露现象;光纤很细,占用的体积小,这就解决了实施的空间问题。
2光纤通信技术的特点
2.1频带极宽,通信容量大。光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。
2.2损耗低,中继距离长。目前,商品石英光纤和其它传输介质相比的损耗是最低的;如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。
2.3抗电磁干扰能力强。石英有很强的抗腐蚀性,而且绝缘性好。而且它还有一个重要的特性就是抗电磁干扰的能力很强,它不受外部环境的影响,也不受人为架设的电缆等干扰。这一点对于在强电领域的通讯应用特别有用,而且在军事上也大有用处。
2.4无串音干扰,保密性好。在电波传输的过程中,电磁波的传播容易泄露,保密性差。而光波在光纤中传播,不会发生串扰的现象,保密性强。除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。正是因为光纤的这些优点,光纤的应用范围越来越广。
3不断发展的光纤通信技术
3.1SDH系统光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。伴随着科技的进步,特别是计算机网络技术的发展,传输数据也越来越大。分组信号与连续码流的特点完全不同,它具有不确定性,因此传送这种信号,是光通信技术需要解决的难题。而且两种传送设备也是有很大区别的。
3.2不断增加的信道容量光通信系统能从PDH发展到SDH,从155Mb/s发展到lOGb/s,近来,4OGB/s已实现商品化。专家们在研究更大容量的,如160Gb/s(单波道)系统已经试验成功,目前还在为其制定相应的标准。此外,科学家还在研究系统容量更大的通讯技术。
3.3光纤传输距离从宏观上说,光纤的传输距离是越远越好,因此研究光纤的研究人员们,一直在这方面努力。在光纤放大器投入使用后,不断有对光纤传输距离的突破,为增大无再生中继距离创造了条件。
3.4向城域网发展光传输目前正从骨干网向城域网发展,光传输逐渐靠近业务节点。而人们通常认为光传输作为一种传输信息的手段还不适应城域网。作为业务节点,既接近用户,又能保证信息的安全传输,而用户还希望光传输能带来更多的便利服务。
3.5互联网发展需求与下一代全光网络发展趋势近年来,互联网业发展迅速,IP业务也随之火爆。研究表明,随着IP业的迅速发展,通信业将面临“洗牌”,并孕育着新技术的出现。随着软件控制的进一步开发和发展,现代的光通信正逐步向智能化发展,它能灵活的让营运者自由的管理光传输。而且还会有更多的相关应用应运而生,为人们的使用带来更多的方便。综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心,并面向IP互联网应用的光波技术是目前光纤传输的研究热点,而在以后,科学家还会继续对这一领域的研究和开发。从未来的应用来看,光网络将向着服务多元化和资源配置的方向发展,为了满足客户的需求,光纤通信的发展不仅要突破距离的限制,更要向智能化迈进。
4光纤链路的现场测试
4.1现场测试的目的对光纤安装现场测试是光纤链路安装的必须措施,是保证电缆支持网络协议的重要方式。它的目的在于检测光纤连接的质量是否符合标准,并且减少故障因素。
4.2现场测试标准目前光纤链路现场测试标准分为两大类:光纤系统标准和应用系统标准。①光纤系统标准:光纤系统标准是独立于应用的光纤链路现场测试标准。对于不同的光纤系统,它的标准也不同。目前大多数的光纤链路现场检测应用的就是这个标准。②光纤应用系统标准:光纤应用系统标准是基于安装光纤的特定应用的光纤链路现场测试标准。这种测试的标准是固定的,不会因为光纤系统的不同而改变。
4.3光纤链路现场测试光纤通信应用的是光传输,它不会受到磁场等外界因素的干扰,所以对它的测试不同于对普通的铜线电缆的测试。在光纤的测试中,虽然光纤的种类很多,但它们的测试参数都是基本一致的。在光纤链路现场测试中,主要是对光纤的光学特性和传输特性进行测试。光纤的光学特性和传输特性对光纤通信系统对光纤的传输质量有重大的影响。但由于光纤的特性不受安装的影响,因此在安装时不需测试,而是由生产商在生产时进行测试。
4.4现场测试工具①光源:目前的光源主要有LED(发光二极管)光源和激光光源两种。②光功率计:光功率计是测量光纤上传送的信号强度的设备,用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的。光功率计的原理非常像电子学中的万用表,只不过万用表测量的是电子,而光功率计测量的是光。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,组成光损失测试器,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。③光时域反射计:OTDR根据光的后向散射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等。从某种意义上来说,光时域反射计(OTDR)的作用类似于在电缆测试中使用的时域反射计(TDR),只不过TDR测量的是由阻抗引起的信号反射,而OTDR测量的则是由光子的反向散射引起的信号反射。反向散射是对所有光纤都有影响的一种现象,是由于光子在光纤中发生反射所引起的。
虽然目前光通信的容量已经非常大,但仍有大量应用能力闲置,伴随着社会经济和科学技术的进一步发展,对信息的需求也会随之增加,并会超过现在的网络承载能力,因此我们必须进一步努力研究更加先进的光传输手段。因此,在经济社会发展的推动下,光通信一定会有更加长久的发展。
参考文献:
[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息.2006.(4).
[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信.2004.(2).
论文摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文探讨了光纤通信技术的主要特征及应用。
1.光纤通信技术
光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。
光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。
2. 光纤通信技术的特点
(1) 频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。
(2) 损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。
(3) 抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。
(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。
除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。
3. 光纤通信技术在有线电视网络中的应用
20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用 SDH +光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目。 转贴于
有线电视网络在全国各地已基本形成,在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。很多地区的 CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。但是现在建设的CATV 大多是单向传输,上行信号不能在现有的有线电视网中传送。可以通过电信网 PSTN 中语音通道或数据通道形成上行信号的传送,也可以通过语音接入系统来完成。将电话接到各用户,这样各用户间即可以打电话,也可以利用广电自己的综合信息网中的宽带传输系统构成广电网中自己的上行信号的传送,组成了双向应用的Internet网。
现在光通信网络的容量虽然已经很大, 但还有许多应用能力在闲置, 今后随着社会经济的不断发展, 作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力, 推动通信网络的继续发展。因此, 光纤通信技术在应用需求的推动下, 一定不断会有新的发展。
参考文献
[1]王磊,裴丽. 光纤通信的发展现状和未来[J].中国科技信息,2006,(4)
[2]何淑贞,王晓梅. 光通信技术的新飞跃[J]. 网络电信,2004,(2)
[3]辛化梅,李忠. 论光纤通信技术的现状及发展. 山东师范大学学报,2003,4