HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 精品范文 光通信技术

光通信技术

时间:2023-05-29 17:37:56

光通信技术

光通信技术范文1

无线光通信是以大气作为传输媒质来进行光信号的传送的,只要在收发两个端机之间存在无遮挡的视距路径和足够的光发射功率,通信就可以进行。

FSO-自由空间光通信

FSO在点对点传输的情况下,每一端都设有光发射机和光接收机,可以实现全双工的通信。光发射机的光源受到电信号的调制,并通过作为天线的光学望远镜,将光信号经过大气信道传送到接收端的望远镜。高灵敏度的光接收机,将望远镜收到的光信号再转换成电信号。由于大气空间对不同光波长信号的透过率有较大的差别,可以选用透过率较好的波段窗口。光的无线系统通常使用850nm或1550nm的工作波长。同时考虑到1500nm的光波对于雾有更强的穿透能力,而且对人眼也更安全,所以1550nm波长的FSO系统具有更广阔的使用前景。

FSO与微波技术相比,它具有调制速率高、频带宽、不占用频谱资源等特点;与有线和光纤通信相比,它具有机动灵活、对市政建设影响较小、运行成本低、易于推广等优点。FSO可以在一定程度弥补光纤和微波的不足。它的容量与光纤相近,但价格却低得多。它可以直接架设在屋顶,由空中传送。既不需申请频率执照,也没有敷设管道挖掘马路的问题。使用点对点的系统,在确定发收两点之间视线不受阻挡的通道之后,一般可在数小时之内安装完毕并投入运行。在考虑到当地气象的条件以后,光无线系统一般可得到99.9%的可用性。如果采用其他系统构成主备用,甚至可达到99.999%电信级的可用性要求。

另外FSO系统与网络的连接,还有如下的优点:

(1)对运行的协议透明。现在通信网络常用的SDH、ATM、IP等都能通过。

(2)可组成点对点、星形和网格形结构的网络。

(3)可灵活拆装、移装至其他位置。

(4)易于扩容升级,只需对接口稍作变动就能改变容量。

FSO存在的问题主要有以下几点:

(1)FSO是一种视距宽带通信技术,传输距离与信号质量的矛盾非常突出,当传输超过一定距离时波束就会变宽导致难以被接收点正确接收。目前,在1km以下才能获得最佳的效果和质量,最远只能达到4km。多种因素影响使其达不到99.999%(五个9)的稳定性;

(2)系统性能对天气非常敏感是FSO的另一个主要问题。晴天对FSO传输质量的影响最小,而雨、雪和雾对传输质量的影响则较大。据测试,FSO受天气影响的衰减经验值分别为:晴天,5-15db/km;雨,20-50db/km;雪,50-150db/km;雾,50-300db/km。国外为解决这个难题,一般采用更高功率的激光器二极管、更先进的光学器件和多光束来解决;

(3)城市内,由于建筑物的阻隔、晃动将影响两个点之间的激光对准;

(4)激光的安全问题也会影响其使用,超过一定功率的激光可能对人眼产生影响,人体也可能被激光系统释放的能量伤害。所以产品要符合安全标准。

VLC-可见光通信

VLC是一种在白光LED技术上发展起来的新兴的无线光通信技术。白光LED具有功耗低、使用寿命长、尺寸小、绿色环保等优点,特别是其响应灵敏度非常高,因此可以用来进行超高速数据通信。与传统的射频通信和FSO相比,VLC具有发射功率高、无电磁干扰、节约能源等优点,因而VLC技术具有极大的发展前景,已引起人们的广泛关注和研究。

图1所示为VLC在办公室内的典型应用配置图。VLC作为一种无线的光通信方式,其系统包括下行链路down link和上行链路up link两部分。下行链路包括发射和接收两部分。其发射部分主要由白光LED光源和相应信号处理单元组成,白光LED光源发出的已调制光以很大的发射角在空间中朝各个方向传播。由于室内不受强背景光和天气的影响,光传播基本上不存在损耗,但是由于LED光源个数较多,且具有较大的表面积,因而在发射机和接收机之间存在若干条不同的光路径,不同的光路径到达接收机的时间不同,将引起所谓的码间干扰(ISI)。由于白光LED光源发出的是可见光,且发散角较大,对人眼睛基本无害,因而发射端可以具有较大的发射功率,使得系统的可靠性大大提高。该系统的接收部分主要由光电检测器(PD)和相应信号处理单元组成。室内的光信号被光电检测器转换为电信号,然后对电信号进行放大和处理,恢复成与发端一样的信号。该系统的上行链路与下行链路的组成除了使用的光源不同外,其它基本一样。上行链路采用的光源仍然由白光LED组成,只不过发射面积较小,且具有较小的发射角,天花板上安装的光电检测器接收来自用户的光信号。若将上述基本结构在通信双方对称配置,就可以得到一个可以双向同时工作的全双工VLC系统,由该系统组成的网络称为可见光网络。在VLC系统中,白光LED具有通信与照明的双重作用,这是因为白光LED的亮度很高,且调制速率非常高,人的眼睛完全感觉不到光的闪烁。

由于实现简单,VLC系统大多设计成光强度调制/直接探测(IM/DD)系统,采用曼彻斯特编码和OOK(On-Off-Keying)调制方式。在IM/DD系统中,由于存在多个光源,每个接收机都会接收到来自不同方向的光信号,因而不会因为某条光路径被遮挡而导致通信中断,保证了通信的可靠性。

与FSO和射频通信相比 ,VLC具有以下突出优点:

(1)可见光对人类非常安全。VLC系统可以使用家庭或办公室的高压照明灯发送数据;

(2)VLC无处不在。用于通信的照明灯可以安装在任何地方,通过照明灯,可以很方便地实现高速无线数据通信;

(3)发射功率高。对于FSO,由于受到人眼睛安全要求的限制,发射功率很低,系统性能受到严重限制。对于射频通信,射频信号对人体有害,也不能无限制地增加发射功率。在VLC系统中,由于发射的是可见光,故发射功率较高;

(4)无需无线电频谱证。FSO由于受制,可用的无线电频率非常有限;

(5)无电磁干扰。可以用于医院等对电磁干扰严格限制的场合。

无线光通信技术的发展趋势

1、 FSO的发展趋势

FSO技术原理比较简单,关键的问题是如何提高传输的可靠性,使其尽量达到电信运营商的要求。所以现在的研究方向大多是提高可靠性,然后提高传输距离与速率。大致有以下一些方面。

(1)大气信道的研究

主要研究大气信道的空间损耗,不同气象条件下的传输衰减,大气闪烁,空气散射,背景噪声等。其主要目的是准确掌握某地的气候等通信条件,同时找到气象条件影响通信质量的规律,为通信的实现提供参考数据。

(2)传输可靠性的研究

这个方面的研究工作主要是在某地区一定通信条件下,采取必要的发射接收技术来正确进行数据的传输。现在几个大的FSO生产厂家都有自己的一些专利技术来解决这个问题。据统计,MRV公司现在拥有最多的FSO专利,达16项之多。现在电路部分的做法一般是采取大功率连续单纵模激光器加高灵敏度Si 光电二极管来克服大气信道带来的衰减,减少误码。

还有一些公司,比如LightPointe公司,采用多光束(四个)发射技术,既可以克服气穴的影响,同时可以克服小鸟等引起的光路的突然割断。还有比较重要的一种技术就是跟踪技术,这方面Cannon公司是代表。它一般采用CCD利用光强度或者波形来自动定位、调整发射端的位置。同时有的公司也提出了采用微波-FSO互为备份的概念,不过价格过于昂贵。

(3)传输速率的提高

FSO相对于其他接入设备最大的优势之一就是带宽。现在FSO产品的速率从2M开始,形成多个系列,比较典型的有10Mb/s,100Mb/s,155Mb/s,622 Mb/s。有的公司采用波分复用(WDM)技术,速率可以达到2.5Gb/s,10Gb/s。

(4)FSO设备网络拓扑的研究

FSO网可以有三种拓扑,即点到点、点到多点(星型)和网状网,也可以把它们组合起来使用。目前已使用的系统多采用点到点结构,其原因是大多数系统只是用来连接企业内部的各幢大楼,作为高带宽的专线连接。网状结构的优点是可以把业务集中到一点再接入核心网,效率较高、比较经济,但缺点是能提供的带宽较少,可靠性差。网状结构的优点是通过多个网络节点可以提供几乎实时的迂回选路,使服务得到保护。

从以上看来,现在FSO的发展方向是:首先提高系统的可靠性,然后在此基础上增加系统的传输速率,传输距离,从而找寻FSO更多的使用领域;同时研究FSO的网络拓扑结构,以使得FSO设备发挥最大潜能。

2、 VLC的发展趋势

VLC现阶段主要应用在室内局域网和智能交通系统中,未来VLC将向以下几方面发展。

(1)室内VLC系统采用OFDM调制技术、CDMA接入技术及分组编码技术并具有良好的发展前景,但采用OFDM调制技术时,幅度不断变化的OFDM信号工作在大信号幅度时可能会驱动功放进入非线性区产生失真。其次,目前LED灯分多芯片和单芯片两种,采用OFDM调制技术、CDMA接入方式时采用何种芯片能达到更高的传输率和更少的误码率还有待研究。还有目前VLC系统研究主要是针对下行链路,系统上行链路研究还有待深入。

光通信技术范文2

关键词:光纤通信技术  优势  接入技术

        0 引言

        近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。

        1 光纤通信技术定义

        光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

        2 光纤通信技术优势

        2.1 频带极宽,通信容量大

        光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。散波长窗口,单模光纤具有几十GHz·km的宽带。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。采用密集波分复术可以扩大光纤的传输容量至几倍到几十倍。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps,采用密集波分复术实现的多波长传输系统的传输速率已经达到单波长传输系统的数百倍。巨大的带宽潜力使单模光纤成为宽带综合业务网的首选介质。

        2.2 损耗低,中继距离长 目前,实用的光纤通信系统使用的光纤多为石英光纤,此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。

        如果将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。目前,由石英光纤组成的光纤通信系统最大中继距离可达200多km,由非石英系极低损耗光纤组成的通信系至数公里,这对于降低通信系统的成本、提高可靠性和稳定性具有特别重要的意义。

        2.3 抗电磁干扰能力强 我们知道光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。它是一种非导电的介质,交变电磁波在其中不会产生感生电动势,即不会产生与信号无关的噪声。这样,就是把它平行铺设到高压电线和电气铁路附近,也不会受到电磁干扰。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。

        2.4 光纤径细、重量轻、柔软、易于铺设 光纤的芯径很细,约为0.1mm,由多芯光纤组成光缆的直径也很小,8芯光缆的横截面直径约为10mm,而标准同轴电缆为47mm。这样采用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题,节约了地下管道建设投资。此外,光纤的重量轻,柔韧性好,光缆的重量要比电缆轻得多,在飞机、宇宙飞船和人造卫星上使用光纤通信可以减轻飞机、轮船、飞船的重量,显得更有意义。还有,光纤柔软可绕,容易成束,能得到直径小的高密度光缆。

        2.5 保密性能好 对通信系统的重要要求之一是保密性好。然而,随着科学技术的发展,电通信方式很容易被人窃听,只要在明线或电缆附近设置一个特别的接收装置,就可以获取明线或电缆中传送的信息,更不用去说无线通信方式。

  光纤通信与电通信不同,由于光纤的特殊设计,光纤中传送的光波被限制在光纤的纤芯和包层附近传送,很少会跑到光纤之外。即使在弯曲半径很小的位置,泄漏功率也是十分微弱的。并且成缆以后光纤在外面包有金属做的防潮层和橡胶材料的护套,这些均是不透光的,因此,泄漏到光缆外的光几乎没有。更何况长途光缆和中继光缆一般均埋于地下。所以光纤的保密性能好。此外,由于光纤中的光信号一般不会泄漏,因此电通信中常见的线路之间的串话现象也可忽略。

        3 光纤接入技术

光通信技术范文3

随着我国改革开放的不断深入,我国的科学技术不断的进步。社会的网络化进程速度要在不断的加快,因此,人们对于网络的需求越来越旺盛。而在网络中最重要的一种传输工具就是光纤。所以如果想要发展网络,就必须首先发展光纤通信技术。本文就是针对新形势下光纤通信技术的应用以及发展为题,对此进行一个简单的研究。

【关键词】

新形势;光纤通信技术;应用;发展

光纤通信技术在我国的发展才刚刚开始起步,还需要许多的地方需要改进。但是,随着光纤通信技术的发展,光纤通信技术所应用到的范围也越来越广泛。因此,当前的社会是离不开光纤通信技术的。本文将会从新形势下光纤通信技术应用及发展分析为题,分别从光纤通信技术的应用、光纤通信技术未来的发展趋势两个方面对此进行探讨。希望本文可以对我国光纤通信技术的发展起到帮助作用。

一、光纤通信技术的应用

由于当前在全球范围之内都已经步入了网络化、信息化的社会。所以网络对于人们越来越重要。而光纤通信技术对于网络化、信息化的发展具有不可忽视的作用。光纤通信技术已经渗透到了我们生活的方方面面。包括光纤通信技术在电力通信网中的应用、光纤通信技术在广播电视网中的应用、光纤通信技术在电线干线传输网中的应用。下面,我们就一一为大家介绍光纤通信技术在这几个领域的应用。

(一)光纤通信技术在电力通信网中的应用

光纤通信技术在电力通信网中的应用极大的改善了我国供电网络的环境,改善了我国电力网络不稳点的问题。那么,光纤通信技术为什么会被应用到电力通信网中。这主要是因为光纤通信技术拥有了诸多的优点,这些优点对电力通信网的发展具有重要的作用。因此,目前我国的电力通信网正在朝着光纤的方向发展下去。光纤通信技术在电力通信网中的应用也是最为广泛的。目前光纤通信技术在电力通信网中的应用已经形成了一套系统的、完善的体系。近几年来光纤通信技术在电力通信网中的应用受到了社会各界的广泛好评,越来越受到人民的欢迎。

(二)光纤通信技术在广播电视网中的应用

光纤通信技术出了广泛的应用于电力通信网中,在广播电视网中的应用也是非常广泛的,同时也是非常重要的,是值得我们去认真研究的。光纤通信技术能够广泛的在广播电视网中的应用,同样是因为光纤通信技术具有的诸多优势:其一,光纤通信技术具有很强的抗干扰能力;其二、光纤通信技术能够传输的信息量非常巨大,而且传输的成本较低;其三、光纤通信技术所使用的制作成本非常廉价,而且质量最优。正是因为光纤通信技术具有如此多的优点,因此,可以在广播电视网中广泛的应用。而且光纤通信技术对广播电视网的发展具有重要的作用。

(三)光纤通信技术在电线干线传输网中的应用

光纤通信技术在实际当中的应用是方方面面的,最被人们所熟知的就是在电线干线传输网中的应用。因为,随着通讯技术的发展,越来越多的人开始使用移动电话,因此,信号的稳定性成为了人们关注的重点。为了使信号更加稳定,人们开始讲光纤通信技术应用到了电线干线传输网中。这样的做法很快收到了很好的效果,型号的稳定性被极大的改善。这样的成功主要归功于光纤通信技术在电线干线传输网中的应用。因此,从目前的态势上看。光纤通信技术在电线干线传输网中的应用会不断的扩大。

二、光纤通信技术的发展趋势

随着最近几年我国科学技术的不断发展和进步。我国的电信市场也在逐步的开放起来。于是光纤通信技术面临着一次蓬勃发展的机遇。以下的内容将是对我国光纤通信技术发展趋势的一个研究,也可以说是一个展望。

(一)我国的光纤通信技术将会朝着高速系统的方向发展

我们通过对过去光纤通信技术的研究可以发现。在以往的发展历程当中,我国的光纤通信技术总是面临着网络网络容量的需求和传输速率的提高之间的矛盾。而且这种矛盾一直伴随着光纤通信技术的发展而发展。为了切实的解决好光纤通信技术当中遇到的这一矛盾,目前我们已经将光纤通信系统从45Mbps增加到了10Gbps,这样一来光纤通信的传播速率就可以在二十年的时间中增加两千倍,这样一来网络网络容量的需求和传输速率就可以达到一个平衡的状态。同时这样的高速系统不仅仅可以解决光纤通信技术中遇到的矛盾,还增加了业务传输容量,而且也为各种各样的新业务,特别是宽带业务和多媒体提供了实现的可能。

(二)实现真正的光联网。

目前我们使用的波分复用系统虽然具有传输容量大的特点,基本上可以满足目前我国的需求。但是它的灵活性和可靠性还是不够好。因此我们需要研发出一种新的技术。目前,我们在考虑是否可以光路上也能实现类似SDH在电路上的分插功能和交叉连接功能,如果这一设想可以成功实现的话,将会对我国光纤通信的发展增加一层新的动力。目前,我们在实现光联网方面的基本目标包括以下几点:其一、创建一个超大容量的光网络系统;其二、真正实现网络的扩展功能,允许网络在其他的方面的功能有所增强;其三、真正实行网络的重构性,最终达到可以灵活组建网络的目的;其四、实现网络的覆盖性,达到任何的系统和信号都可以连接到网络;其五、真正实现网络的快速恢复系统。正是因外构建光网络系统具有上述的优点,我国目前已经投入了大量的人力、物力、财力来实现光网络的构建。相信不久的将来我国可以实现真正的光网络系统,为我国光纤通信技术的发展增添新的动力。

(三)研发出新一代的光纤系统

随着最近几年来,网络在国内的普及和发展,IP的业务量也在急剧的增长。因此,我国的电信网正在向一个新的方向发展,而在目前的发展当中构建具有巨大传输容量的光纤基础设施是下一代网络的物理基础。因为传统的光纤通信系统在传输量以及容量方面已经不能满足目前国内的需求,所以开发出新一代的光纤系统是目前光纤通信系统发展的重点。目前,为了适应我国对光纤通信系统的需求,已经研发出了以下两种新型的光纤系统:其一是即非零色散光纤(G.655光纤);其二是无水吸收峰光纤(全波光纤)。

(四)光网的顺利接入

在过去几十年的发展过程中,我国网络不论是在交换还是传输方面都发生了翻天覆地的变化。但是随着发展的深入我们也发现了目前的接入网还存在着非常大的缺陷。现存的接入网仍然是被双绞线铜线主宰的(90%以上)、原始落后的模拟系统。而能够很好解决这种缺陷的唯一方式就是让光网可以顺利的接入。我们之所以选择光网作为光纤通信技术的接入网,主要是因为光网接入具有以下的优点:减少维护管理费用和故障率:开发新设备,增加新收入;配合本地网络结构的调整,减少节点,扩大覆盖。正是因为光网接入具有以下优点,我们才要大力的发展,才要投入更多的人力、物力、财力。

(五)国家的重视

最近几年来,我国改革开放的脚步越来越快,在各方面的发展也越来越迅速。因此,我国的网络的发展以及信息量的需求也在发生着翻天覆地的变化,面对这样的态势,国家对于光纤通信技术的要求也越来越高,在这样的高标准下极大的推动了我国光纤通信技术的发展。我们以波分复用技术为例子来看:最近几年由于波分复用技术具有容量大、透明性好、重构性强等等的优势,越来越受到国际社会的广泛好评,尤其是在光器件、光系统、光网络等方面的发展已经成为了国际社会所研究的重点。目前,欧美国家、包括亚洲的日本都一级投入了相当大的物力与财力对其进行研究,并且取得了相当大的成就。面对这样的国际形势,我国也开始注重研究和发展光纤通信技术。最具代表的就是我国颁布的“863”计划。所以说,在“863”计划的引导和科研人员的不懈努力之下,我国在光纤通信技术的发展上已经取得了相当可观的成就。自从“863”计划实施以来,我国光纤通信技术经历了从无到有、从小到大、从弱到强的一系列变化,到目前为止我国已经陆续完成了155Mbit/s、622Mbit/s、2.5Gbit/s的SDH系统、并且已经完成了8*2.5Gbit/s、32*10Gbit/s、16*10Gbit/s、2160*10Gbit/s的WDM系统、同时还完成了互联网接入系统、自动交换光网络平台等等的一系列成就。

结语

综上所述,我们不难看出光纤通信技术在生活中的应用越来越广泛,逐步渗透到了生活的方方面面中。同时光纤通信技术的适用性受到了社会社会各界的广泛认同,因此,相信光纤通信技术的发展趋势会越来越好。今天我们以光纤通信技术的应用以及发展为课题,从光纤通信技术的应用和光纤通信技术的发展趋势两个大的方面对此进行了浅析。从中我们了解了光纤通信技术在电线干线传输网、广播电视网、电力通信网中都被广泛利用,而且地位越来越重要。同时我们还了解到目前我国在光纤通信技术上的发展正向着成熟化、国际化的方向发展,在未来会朝着高速系统的方向发展。同时会实现真正的光联网,并且研发出新一代的光纤系统。所以,为了我国的光纤通信技术能够快速的朝着高质量、高效率的方向发展我们必须要在今后的发展、研究当中投入更多的人力、物力、财力,力求我国的光纤通信技术能够在国际舞台上有更广阔的舞台。

作者:李凯 王文洁 单位:国网青岛供电公司

参考文献

[1]李超.浅谈光纤通信技术发展的现状与趋势[J].沿海企业与科技,2007(07).

[2]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息,2006(04).

[3]辛化梅,李忠.论光纤通信技术的现状及发展[J].山东师范大学学报(自然科学版),2003(04).

[4]孙建兵,张云明,林豆豆.浅析光纤通信及全光网技术[J].信息通信,2015(04).

光通信技术范文4

[关键词]光纤通信技术;主要特点;历史现状;发展趋势

光纤通信技术作为优良的传输媒介,主要是以光线作为主要传输介质,并由1014hz数量级频率的光波作为载波进行通信。以其高传播速率、大容量的通信特点,向世人展示着它的优越性,一跃成为了我国现阶段最核心的信息传输技术。以下就针对光纤技术历史、特点、发展等几个方面来介绍光纤通信技术的高效优越性,同时介绍了光纤链路的现场测试。

1.光纤通信技术

光纤通信技术,是指将光作为传播载体,用光纤进行信息传输的通信方式。利用光纤本身的特点将这种光导纤维作为传输媒介进行通信。光纤,是由两部分组成的,包括内芯和包层。内芯一般只有几微米到几十微米,外层的包层是为了保护内部的光纤内芯。现代通信技术上使用的并不是一根一根的光纤,而是由众多光纤聚合而成的光缆。由于光纤的主要制作材料为玻璃,所以,有电气绝缘的特点,省去了接地回路的考虑因素,再加上光纤很细,占用的体积比较小,所以大大节省了空间,而且在光纤中进行传输的光波,也不容易出现信息泄露。光纤通信技术的问世,是电信史上迈出的最有力的一步。

2.光纤通信技术的历史与现状

1966年,美籍华人高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)提出可以使用光纤应用于通信当中,这一提出,对社会、已经整个通信技术产业产生了巨大的影响,掀起了一场通信技术革命。1970年,美国康宁公司成功研制出损耗为20dB/km的光纤,意味着光纤通信技术的开始,光纤时代正式到来。1977年,第一次光纤通信实验在美国芝加哥试验成功,采用多模光纤实现了相距7000米的两电话局之间的简单通信,由此,第一代光纤通信系统诞生,为8.5微米波段的多模光纤。1981年,推出了1.3微米多模光纤的第二代光纤通信系统。1984年,单模时代到来,实现了1.3微米单模光纤的第三代光纤通信系统。之后,80年代中后期,1.55微米单模光纤的第四代光纤通信系统诞生。后来,采用光波的光分复用技术用来提高传输速率,将光波进行放大以便增长传输距离的作用,这也就是第五代光纤通信系统。

3.光纤通信技术的主要特点

3.1频带宽,通信容量大。光纤通信技术利用的是光波的调制性能以及调制方式,同时还包括光线的色散特性,这些都使光纤拥有比铜线和电缆都要大很多的传输带宽,针对单波长光纤通信系统来说,为了弥补终端设备瓶颈效应而导致的光纤带宽发挥不到极致的缺点,现在的通信过程中往往采用服用技术来提高传输容量。现阶段的光纤通信技术利用的是密集的波分复用技术,这项技术投入使用后,大大的提高了光纤通信的传输容量,。现在的单波长光纤通信系统的传播速率已经可以达到2.5Gbps到10Gbps。

3.2损耗低,中继距离长。对于目前的通信传输媒介来说,商品石英光纤的损耗是同等其他传输媒介中损耗最低的,一般来说,商品石英光纤损耗可低于0~20dB/km。非商品石英光的损耗更低,若采用这种极低损耗的光纤,可以更好的降低损耗,加大无中继距离,减少中继站数。这对于长途传输线路来说是尤为重要的,通过减少中继站数来降低系统成本以及系统的复杂程度,带来更好的经济效益,更大程度的提高通信系统的性价比。

3.3无串音干扰,保密性好。作为传播媒介来说,最为重要的就是其保密性。传统的电波传输,会导致过程中电磁波的流失泄露,从而导致传输通道的相互传荣,不仅仅传播效率差,干扰多,而且安全保密性等不到保证。利用光波在光纤传播的通信技术,则不容易被窃取通信内容,提高保密性。因为光纤是光波的光信号在光纤中进行传播,有不透明的包层环绕,泄露的都会被包层吸收,就算泄露,也是只有非常微小的一部分。相对于其他媒介来说更轻便、柔软、易于铺设,成本较低。同时还拥有防窃听、保密性能卓越的特点。

3.4抗电磁干扰能力强。因为大部分的光纤通信中使用的都是石英光纤。适应是一种绝缘体材料,不容易被腐蚀,而且绝缘性能绝佳,因此造就了它非常强大的抗电磁干扰能力,。使石英光纤不容易受到自然界雷电、太阳黑子、电离层等等各种客观因素的影响与干扰。由于它不受环境影响的特点,使其可以在各个领域都得以使用,无论是与高压输电线和电力道题复合作为光缆,还是在强电领域的电力传输线路以及电气化铁道,甚至在军事领域上,它免除电磁脉冲的特点也得到了很好的利用。除以上谈到的特点之外,光线本身还具有很多特点:轻便、柔软、原材料丰富、易于铺设、成本低廉、温度稳定性高,使用寿命长等等。

4.光纤通信技术的发展趋势

4.1SDH系统。传统的客户信号一般是TDM的连续码,例如PDH、SDH等。但是为了满则更好的电路交换信息的传输要求,以及飞速发展的科学技术,尤其是在计算机网络盛行的时代,传输的数据也在不断增大中,若一味的采用分组信号,不仅稳定性低,传输速率和效果也很难跟上,这也成为了光纤通信的一个大麻烦,在传输此类信号类型的问题上,还是需要逐步解决的难题。

4.2信道容量。光纤通信的信道容量从155Mb/s发展到lOGb/s,其通信系统也从PDH系统发展到SDH系统,现阶段,4OGB/s的信道容量已实现了商品化。。但是,这样还是无法满足现阶段人们使用的而需求,更大信道容量的通信技术等待开发。采用电的时分复用系统来扩容已经到了瓶颈阶段,无法再突破,所以更好的利用波分复用(WDM)才是夸大信道容量的基本思路目前,160Gb/s(单波道)系统已经试验成功,但是还不能完全投入使用,还需要制定相关规定标准,同时我国还要为研究更大信道容量的通信技术而努力着。

4.3传输距离。传输距离一直是通信技术的软肋,如何更好的提高传输距离也是我国近几年一直在研究的问题。虽说光纤的传输距离越远越好,但是,增大传输距离后的传输效果也是需要注意的,所以在光纤放大器投入使用后,我国也正在研究由减少中继站数目,提高无中继距离,从而加大传输距离的更卓越的方法。

4.1向城域网发展。光纤传输为了实现更大的覆盖面积,也为了提供更多的客户服务,证由干网向这城域网发展,这样推行至城域网后,光纤传输将逐渐靠近业务节点,不仅仅更加靠近用户,还同时提供了信息安全传输的保证,为更多的用户带来了更好的传输功能。为了满足更为广泛的用户要求,光纤通信姜会作为主流传输信息手段进行逐步的发展,为用户提供带更多便利的服务。

综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心的通信技术是我国通信技术产业发展的方向。然而,光纤通信技术作为一种非常重要的现代信息传输技术之一发挥着极大的作用,朝着以后的信息社会的发展模式,最终,光纤通信技术必然会代替其他的通信传输技术,成为以后通信产业领域的主流,我国也会为更好的利用光纤通信来提高我国的通信技术水平而奋斗。因此,无论是时代还是社会的信息化推动下,光纤通信都有拥有更好的发展前景和发展空间。

参考文献

[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息.2006.(4).

[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信.2004.(2).

光通信技术范文5

关键词:光纤;光纤通信

1 光纤通信的原理、分类和优势

1.1 光纤通信

光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。光导纤维通信简称光纤通信。可以把光纤通信看成是以光导纤维为传输媒介的有线光通信。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。它包括以下几个主要部分:光纤光缆技术、光交换技术传输技术、光有源器件、光无源器件以及光网络技术等。

在光纤通信系统中,作为载波的光波频率比电波的频率高的多,而作为传输介质的光纤又比同轴电缆或波导管的损耗低得多,所以说光纤通信的容量要比微波通信大几十亿倍。

1.2 光纤通信的优点

⑴光缆线路的中继距离长,所需中继器数量比电缆线路少的多,在本地网布线及综合布线中一般不需设中继器。

⑵光缆线路一般无需进行充气维护。

⑶光缆接头装置及剩余光缆的放置必须按规定方法进行,以保证光纤应有的曲率半径,尽可能减少信号衰减。

⑷在水泥管控中布防多条光缆是均需加塑料子管保护,减少摩擦力对光缆护层的损伤,同时能防止光缆被扭曲而使光纤收到损伤。

⑸光纤的接续方法与设备均比电缆线路复杂,技术含量高。

⑹光缆线路架空铺设时要采取比电缆线路更为严格的保护措施。

1.3 光缆的分类

常用光缆的分类:

⑴ 按缆芯结构分层绞式光缆、中心管式和骨架式光缆

⑵ 按线路敷设方式分架空式、管道式、直埋式、隧道光缆和水底光缆

⑶按使用环境与场合分室外光缆、室内光缆和特种光缆

⑷按网络层次分长途光缆、市内光缆、接入网光缆。

2 光纤通信的发展历史

光纤从提出理论到技术实现和今天的高速光纤通信也不过几十年的时间。随着不断的实践和技术的提高,1974年贝尔实验室(Bell)采用改进的化学汽相沉积法制出性能非常好的的光纤产品。到1979年,掺锗石英光纤在1.5千米处的损耗已经降到0.2分贝/千米,这一数值已经十分接近石英光纤理论损耗极限。

经过多年的发展,光技术的两个主要方向WDM和PON已经相对比较成熟。多业务传输发展平台两个方面也有了很大的发展,一方面是更有效承载以太网业务、数据业务,另一方面是向业务方面发展。在我们国内,光纤光缆的生产能力过剩,供大于求但是特种光纤如FTTH光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别。

3 光纤通信技术的热点和发展趋势

3.1 向超大容量WDM系统的发展

将多个发送波长适当错开的光源信号同时在一级光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。基于WDM应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。目前全球实际铺设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps。

3.2 向超高速系统的发展

10Gbps系统已开始大批量装备网络,但是,10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通,光复用方式有很多种,但目前只有波分复用(WDM)方式进入了大规模商用阶段。

3.3 实现光联网

波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号,光联网已经成为继SDH电联网以后的又一新的光通信发展高潮。

光通信技术范文6

关键词:光纤通信技术发展现状趋势展望

一、光纤通信技术的发展及现状

光纤通信的诞生与发展是电信史上的一次重要革命。光纤从提出理论到技术实现和今天的高速光纤通信也不过几十年的时间。从国外的发展历程我们可以看出,20世纪60年代中期,所研制的最好的光纤损耗在400分贝以上,1966年英国标准电信研究所高锟及Hockham从理论上预言光纤损耗可降至20分贝/千米以下,日本于1969年研制出第一根通信用光纤损耗为100分贝/千米,1970年康宁公司(Corning)采用“粉末法”先后获得了损耗低于20分贝/千米和4分贝/千米的低损耗石英光纤,1974年贝尔实验室(Bell)采用改进的化学汽相沉积法制出性能优于康宁公司的光纤产品。到1979年,掺锗石英光纤在1.55千米处的损耗已经降到0.2分贝/千米,这一数值已经十分接近由Rayleigh散射所决定的石英光纤理论损耗极限。

目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM和PON,这两个已经相对比较成熟。多业务传输发展平台两个方面,一方面是更有效承载以太网业务、数据业务,另一方面是向业务方面发展。AS0N的现状是目前的系统只是在设备中,或是在网络中实现了一些功能,但是一些核心作用还没有达到。

二、光纤通信技术的趋势及展望

目前在光通信领域有几个发展热点即超高速传输系统、超大容量WDM系统、光传送联网技术、新一代的光纤、IPoverOptical以及光接入网技术。

(一)向超高速系统的发展

目前10Gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。但是,10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。它的比较现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(WDM)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。

(二)向超大容量WDM系统的演进

采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用率低于1%,还有99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一级光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。基于WDM应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。目前全球实际铺设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2×16×10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80×2.5Gbps)或400Gbps(40×10Gbps)。实验室的最高水平则已达到2.6Tbps(13×20Gbps)。预计不久的将来,实用化系统的容量即可达到1Tbps的水平。

(三)实现光联网

上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号。

由于光联网具有潜在的巨大优势,美欧日等发达国家投入了大量的人力、物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目。光联网已经成为继SDH电联网以后的又一新的光通信发展高潮。建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络,不仅可以为未来的国家信息基础设施(NJJ)奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。

(四)开发新代的光纤

传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光(G.655光纤)和无水吸收峰光纤(全波光纤)。其中,全波光纤将是以后开发的重点,也是现在研究的热点。从长远来看,BPON技术无可争议地将是未来宽带接入技术的发展方向,但从当前技术发展、成本及应用需求的实际状况看,它距离实现广泛应用于电信接入网络这一最终目标还会有一个较长的发展过程。

(五)IPoverSDH与IpoverOptical

以lP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持JP业务已成为新技术能否有长远技术寿命的标志。目前,ATM和SDH均能支持lP,分别称为IPoverATM和IPoverSDH两者各有千秋。但从长远看,当IP业务量逐渐增加,需要高于2.4吉位每秒的链路容量时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单统一的IP网结构(IPoverOptical)。三种IP传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用。但从面向未来的视角看。IPoverOptical将是最具长远生命力的技术。特别是随着IP业务逐渐成为网络的主导业务后,这种对JP业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术。

光通信技术范文7

光纤通信技术(opticalfibercommunications)从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。 一、光纤通信技术 光纤即为光导纤维的简称,光纤通信是利用光作为信息载体、以光纤作为传输媒介的一种通信方式。光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。 二、光纤通信技术的特点 (1)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。 对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。 (2)损耗低,中继距离长。在同轴电缆组成的系统中,最好的电缆在传输800MHz信号时,每公里的损耗都在40dB以上。相比之下,光导纤维的损耗则要小得多,传输1.31um的光,每公里损耗在0.35dB以下。 若传输1.55um的光,每公里损耗更小,可达0.2dB以下。这就比同轴电缆的功率损耗要小一亿倍,使其能传输的距离要远得多。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。此外,光纤传输损耗还有两个特点,一是在全部有线电视频道内具有相同的损耗,不需要像电缆干线那样必须引人均衡器进行均衡;二是其损耗几乎不随温度而变,不用担心因环境温度变化而造成干线电平的波动。 (3)抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,只传光,不导电,不受电磁场的作用,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。 (4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。 (5)工作性能可靠。我们知道,一个系统的可靠性与组成该系统的设备数量有关。设备越多,发生故障的机会越大。因为光纤系统包含的设备数量少(不像电缆系统那样需要几十个放大器),可靠性自然也就高,加上光纤设备的寿命都很长,无故障工作时间达50万~75万小时,其中寿命最短的是光发射机中的激光器,最低寿命也在10万小时以上。 故一个设计良好、正确安装调试的光纤系统的工作性能是非常可靠的。 除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。 三、光纤通信技术在有线电视网络中的应用 20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用SDH+光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目。 在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。很多地区的CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。但是现在建设的CATV大多是单向传输,上行信号不能在现有的有线电视网中传送。可以通过电信网PSTN中语音通道或数据通道形成上行信号的传送,也可以通过语音接入系统来完成。将电话接到各用户,这样各用户间即可以打电话,也可以利用广电自己的综合信息网中的宽带传输系统构成广电网中自己的上行信号的传送,组成了双向应用的Internet网。#p#分页标题#e# 现在光通信网络的容量虽然已经很大,但还有许多应用能力在闲置,今后随着社会经济的不断发展,作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力,推动通信网络的继续发展。因此,光纤通信技术在应用需求的推动下,一定不断会有新的发展。

光通信技术范文8

引 言

光通信是一种以光波为传输媒质的通信方式。光波和无线电波同属电磁波,但光波的频率比无线电波的频率高,波长比无线电波的波长短。因此,光通信具有传输频带宽、通信容量大和抗电磁干扰能力强等优点。

光波按其波长长短,依次可分为红外线光、可见光和紫外线光。红外线光和紫外线光属不可见光,它们同可见光一样都可用来传输信息。光通信按光源特性可分为激光通信和非激光通信;按照传输媒介的不同,可分为有线光通信和无线光通信。常用的光通信有大气激光通信、光纤通信、蓝绿光通信、红外线通信和紫外线通信。

1、光通信系统

数据源被传送到远端的某个目的地。数据源的输出波调制到一个光载波上,光载波以光场或光束的形式通过光通道进行传输。在接收端,光场被征集和处理。通常,检测时会伴有噪声干扰、信号变形、内存背景辐射。此系统中传输载波是光波频段,系统的工作方式与其它采用调制方式的通信系统是相同的。而光波系统所采用的器件与无线电射频系统所采用的标准器件大不相同。它们在使用方法、特性方面有很大的差异,需要不同的设计过程[1]。光通信系统方框图如图1所示。

http://

2、宽带通信技术

宽带通信依托综合化、数字化、宽带化、智能化、多样化的光通信网,向用户提供语音、数据、图像、视频的交互式多媒体信息服务。宽带的通信质量和能力都远远超越了窄带通信系统,表现于数据通信能力和图像通信能力等。Www.133229.cOm

宽带通信技术发展趋势和特点:目前我国城市正处于快速发展阶段,农村地区处于市场导入期,潜力巨大。2011年全国农村宽带家庭普及率为10%,预计未来3年加速增长,2012年为14%,2014年将达到20%,随着城市化进程的加快,互联网将成为改变城乡二元结构、缩小城乡差距的重要手段之一。发展宽带通信业务已经成为国内运营商的战略抉择,也将成为国内市场竞争的焦点。未来宽带通信业务的趋势是(1)宽带接入普及率逐渐提高;(2)宽带通信业务趋于个性化;(3)宽带通信业务不断多媒体化、融合化;(4)宽带集成通信业务将快速发展;

3、网络的宽带化和光纤通信

20世纪70年代后半期,光纤作为使用传输技术引进以来,其研究开发的历史一直走传输容量大和应用领域扩大的路。支撑互联网通信量爆炸性增加的是光纤预计今后将推进图像信息等高速信息流的配送服务和tv会议等丰富的双向多媒体通信等宽带服务的引入,网络的宽带化是必然的,其中,作为构建未来宽带遍布网络的技术,光纤和移动通信无疑是璀璨的双壁[2]。综上所述,可以把光纤通信技术的研究开发动向概括为以下三个方面。

(1)传输介质的大容量化。大传输容量技术是极大限度地利用传输介质的能力,以提高传输效率的技术,是以往所有传输系统开发一贯专注的技术。从这方面讲,具有很大潜在传输频带的光纤的大容量化是今后研究的重点。大容量化是光放大波段的扩大,在波段中信道的高密度复用、信道传输速率的高速化、远距离传输技术。即光放大波段扩大是从初期1550nm波段附近的20-30nm,大了1450-1650nm的200nm,将近扩大一个数量级。这与波长信道高密度复用和频率利用率的提高相结合。可以进行超过100信道的波分复用传输。而且每个信道的传输速率也可用以往电子式时分复用,现在达到40gbit/s。对于光领域的tdm(time division multiplexing)技术,达到了数百吉比特每秒的高速率。为实现宽波段远距离超高速传输,必须实现全信道均匀传输特性,必须进行放大器、传输码、色散管理等技术及其综合技术的研究。

(2)网络化技术。随着wdm的引入,因链路的大容量化,而使链路容量超过节点处理能力,则出现电子瓶颈这一新问题。因此,关于网络的研究正在飞速发展。这项研究是将光分插复用器或光交叉连接引入节点内,不仅是链路,而且节点也光化,利用光级别的接通技术,要有效地构建性能价格比很高的网络。

转贴于 http://

光子网络的技术基础是wdm技术。但wdm技术不仅仅是点对点链路技术,其最大特点是作为网络技术来使用[3]。

(3)使用光纤的接入系统宽带化的相关技术。http://目前的光接入系统有两种,一种是改造现有设备的经济上较为合算的系统;另一种是可以提供新服务项目的系统。

4、在新领域中的光通信技术

以传输速率数十兆比特每秒的中小容量光纤系统的引入为开端,从20世纪70年代的后半期开始,以公用通信网为主,推进了系统高速化和大容量化。对公用通信网之外的领域也研究引入光纤、对飞机、汽车等移动物体内和计算机之间和机器之间也引进了光纤。此时,出现了微波光子学的领域,并针对移动通信、先进道路交通系统、阵列天线、计量等领域的应用进行了研究开发。光空间通信系统是在光纤通信的研究正式开展的20世纪70年代前半期研究的领域。

光通信技术范文9

关键词:4G通信;光传输;通信技术

4G通信是我国现阶段新兴的通信方式,与传统的3G技术相比更具有优势和自身不能替代的特点,4G可以把高速传输技术和无线局域网两者进行有机融合,从而达到提升通讯速度的目的,扩大了通信产业的规模。

14G通信技术概述

4G是移动通信技术当中的第四代技术,包括FDD-LTE和TD-LTE两种类型,4G和3G通信技术想比较的话,优势是相当之多的,首先4G通信的覆盖范围广泛,其次是更具有智能性和网络的兼容性,并且4G的资费更加优惠,这获得了广大群众的喜爱和信赖。随着4G技术的不断发展,起到了非常重大的意义,在数据传输上方面,具有“三高”优势,即高质量、高速度和高效率,并且通信非常灵活方便,时当前通信技术上强大的技术支撑,4G通信技术弥补了3G通信技术当中的不足之处,优化和完善了传统的通信技术,使得4G通信更加具有发展前景,促进了我国通信行业的发展。

2光传输通信技术的应用与发展研究

2.1广泛应用光传输通信技术

我国社会各方面都在不断向前发展着,逐渐趋向于国际化的标准,而光传输技术目前已经相对成熟,和国际水平不相上下,成为了国际高速宽带的主要力量。我国市场目前主要需要的是高速带宽光传输技术中的关键部分,即为密集波分复用技术,这种技术是构成网络建设中的中坚力量。我国应用最为广泛的光传输技术是PTN和OTN这两项技术,这两项技术为通信企业带来了IP业务的功能和灵活的调节能力。

2.2光传输通信技术发展

光传输通信技术在诞生之后,对社会的发展起到了很大的推动作用,光传输技术还在不断完善和发展过程中,在无线网络使用的过程中,能够给人民的出行、工作和学习方面快速提供丰富的内容信息,满足人们的需要。光传输技术是4G通信技术中非常具有发展潜力的技术,不断完善和创新光传输技术,为4G通信做出贡献。光传输通信技术的发展经过坚持不懈的努力,终于成功突破了100Gb/s的速度范围,这弥补了之前不能提高光载波携带信息量问题的缺点,为其提供了科学有效的解决方法,并且提高了数据携带信息的数量。

2.3光传输通信技术发展前景

我国社会经济不断发展壮大,4G通信技术迅速发展,促进了综合数学业务的进步。波分复技术结合传输和光的两种技术作为信息的交换节点和源点之间的信息传输的中心,这种技术促进了光传输技术的发展和完善,其影响力量是很大的。先进的PTN和OTN系统是以WDM技术为核心的,这种系统将会逐渐取代传统传输过程中的MST以及DWDM技术,其自身的优势和特点是传统通信技术所不能比拟的,网络扁平化和业务IP化都受到了WDM技术的影响,并且WDM技术能够满足的各种需求,受到了广大网络用户的喜爱,因此,我国的各大网络运营商开始重视并在联通、移动和电信这国内三大运营商中开始应用这项技术。

3几种比较常见的光传输技术

常见的几种光传输技术包括DWDM技术、MSTP技术、软件无线电技术、OTN技术、智能天线技术这五种,接下来将分别对这五种技术进行阐述。

①DWDM的技术是根据光分插复用设备所形成的DWDM环网,使得DWDM技术在容量和扩展性能方面具有很大的优势,能进行本地传输网的多业务传送。DWDM还在汇聚层发挥着其重要的作用,弥补了IP汇聚点到BRAS之间的带宽不足问题,DWDM技术的形状多数是以物理路由的形状出现的,利用光通道的保护方式构架网络通道。在客户使用中,一般情况下,选用CE接口就可以满足客户的需求,再根据实际情况,选择适合的波道速率和OADM方式,在能够保证满足客户需求时,尽量降低使用成本,也能够保证城域波分系统可平滑扩容的目的。

②MSTP技术主要适用于汇聚层和接入层,可以在通信传输的过程中提供ATM接口,并可以对多种业务进行处理还有传送信息的功能,对于数据还能够进行汇总和收验,统一整理数据,对于混合类型的业务有至关重要的作用,不仅如此,这种技术可以降低网络成本费用。一种可以对多种业务进行处理和传送的技术,可在传输设备中提供ATM接口,并且对于数据具有汇总和收敛的功能,对以TDM业务为主的混合型业务有重要作用,这种技术有利于降低网络成本。

③软件无线电技术,也就是SDR技术,此项技术具有分离信道的功能,还可以将A/D以及D/A过程靠近RF前端。软件无线电技术具有良好的可操作性和灵活性,能够很好的快速的适应环境,升级速度快,操作简单方便。

④OTN设备有效的缓解了网络数据带来的种种压力,并且有效的保护了网络安全。OTN设备的应用领域是在汇聚层,而其中包含着各个节点,这些节点的作用是满足广大用户的网络使用需求。为了更加方便用户的使用,研究人员正在考虑把整个城域网光纤通过直接连接的方式载入到城域网的传送当中。

⑤智能天线技术,通常也可以称为自适应天线阵列技术。起初,在声呐、雷达等军事行业应用了这项技术,主要是配合完成空间的滤波以及定位的工作。这项技术包含了空分多址法,主要是被应用于对新号区分处理并精确信号发生频率,以及信号所在区域的控制。不止如此,该项技术还在用户位置增加了主波功能,保障了用户网络的稳定性和安全性,排除干扰信号,跟踪用户和所在位置,熟悉用户的网络状况,最大限度的保证用户网络的安全,为广大网络群众提供安全的上网环境,使用户没有后顾之忧,为民众提供了方便、快捷、安全、稳定的网络服务。

4结语

综合以上的叙述可以得知,我国的通信技术以高速的发展模式迅速应用到了我们的生活当中,给人们的生活带来了便利。同时,4G通信技术的诞生促进了通信技术的发展,推动了社会科技的进步,为人们提供了多姿多彩的网络信息,并且为用户提供了安全的网络环境。

参考文献:

光通信技术范文10

1光纤通信技术在铁路通信系统中的应用分析

1.1SDH光纤通信在铁路通信系统中的应用

SDH光纤通信在铁路通信系统里的使用解决了PDH光纤通信使用存在的问题,并在此基础上有所突破,让铁路通信系统更加稳定和流畅。借助SDH设备构成的具备自愈保护作用的环网形式,能在传输媒体主要信号中断的时候自动利用自愈网及时恢复正常的通信状态。相较于与PDH技术,SDH技术有四个显著优点:一是网络管理能力更强;二是比特率和接口标准均统一,让各个厂家设备间的互联成为了可能;三是提出“自愈网”这一新理论,能在传输媒体主要信号中断时及时恢复正常;四是运用字节复接技术,简化网络各个支路信号。鉴于SDH光纤通信技术有诸多优点,所以在铁路通信网发展规划里,已经明确提出了要着重发展基于同步数字系列(SDH)基础上的传送网[2]。就以xx铁路为例,该铁路基于新敷设20芯光缆里的其中4芯光纤基础上,开设SDH2.5Gb/s(1+1)光同步传输系统为长途传输网,在铁路的相应经过点均设置了SDH2.5Gb/sADM设备,并借助622Mb/s光口同接入层传输设备相连,发挥上联和保护作用。此外,还借助2芯光纤开设了SDH622Mb/s(1+0)光同步传输系统,将其作为当地的中继网,并在铁路相应经过点以及新开设的各个中间站和线路新设置了SDH622Mb/s设备。

1.2DWDM光纤通信在铁路通信系统中的应用

DWDM光纤通信技术是借助单模光纤宽带与损耗低的特点,由多个波长构成载波,许可各个载波信道能同时在同一条光纤里传输,如此一来,在给定信息传输容量的情况西夏,就能降低所需光纤的总量。使用DWDM技术,单根光纤能传输的最大数据流量可以高达400Gb/s。DWDM技术最显著的优点就是其协议与传输速度是没有关联的,以DWDM技术为基础的网络可以使用IP协议、以太网协议、ATM等进行数据传输,每秒处理数据流量在100Mb~2.5Gb之间。也就是说,以DWDM技术为基础的网络能在同一个激光信道上以各种传输速度传输各种类型的数据流量。当前,在国内铁路通信网里DWDM技术得到了广泛应用,其中沪杭-浙赣铁路干线就是国内第一条使用DWDM光纤传输系统的铁路。此外,京九、武广等铁路的DWDM光纤传输系统也在建设与使用中。就拿京九铁路来说,京九铁路线使用的是具有开放性的DWDM系统和设备,能兼容各种工作波长以及厂商的SDH设备。波道数量为16,波道速率基础为每秒2.5Gb,借助京九线20芯光缆里的2芯G.652单模光纤,使用单纤单向传输的方式,也就是说相同波长在两个方向上都能多次使用,光接口满足ITU-TG.692协议的标准。

2结语

综上所述,光纤通信技术在铁路通信系统中占有重要地位,发挥着重要作用,本文主要基于光纤通信结构和原理的基础上,分析了PDH、SDH和DWDM三种光纤通信技术在铁路通信系统中的应用情况,其中应用较多和值得推广使用的就是SDH和DWDM两种光纤通信技术,望能给铁路通信工作者提供一定借鉴。

作者:李士军 单位:通号工程局集团天津交通信息技术有限公司

光通信技术范文11

在我国,电力通信系统是不同的,想要建设一个光纤通信网是非常困难和复杂的,时代的发展对电力通信提出了更高的要求,在通信网中也就要求更加先进的光纤。目前经常用的电力通信光纤有光纤复合地线、光纤复合相线等。

1.1光纤复合地线

光纤复合地线指的是电力传输线路中的地线中有一定的具有地线作用和光纤优点,同时可靠性强和不需要进行特殊维护的管线单元。同时想要应用光纤复合线需要很大的投资,它主要应用于建设新线路和更新旧线路。主要作用就是防止输电线路被雷击,同时也可以通过地线中的光纤进行信息传输,将地线架空。

1.2自承式光缆

自承式光缆主要分为两种,即金属自承式光缆和全介质自承式光缆。全介质自承式光缆的质量很轻、直径很小、结构式全绝缘的,尤其是它的光学性能非常的稳定,就能够降低停电造成的损失,这种光纤非常的特殊;金属自承式光缆具有简单的结构、较低的成本,应用与电力系统时不需要将短路电流和热容量考虑在内。

1.3光纤复合地线

光纤复合地线指的是输电线路中一种电力光缆,这种光缆将光纤单元复合在输电线路相线中。光纤复合地线将电力系统的线路资源进行充分的利用,防止和外界发生矛盾,这是电力通信系统应用的一种新型光缆,对解决架空线路受限问题非常有效,也可以防止发生雷击时间,除此之外,在使用光纤复合相线以后,使地线绝缘的运行更加稳定,也节省了电能。

二、对电力系统光纤通信网的维护

目前,电力系统中广泛应用光纤通信技术,而光纤通信技术不断加大网络规模和网络结构的复杂性。良好的维护电力系统光纤通信网是电力系统更加安全和可靠的保证。第一,要提高电力系统工作人员的专业技能和综合素质,需要对他们就行全面的培训;第二,积极引进先进设备,更新技术和设备,维持光纤通信网络的正常运行。

三、电力通信中光纤通信技术的发展方向

3.1光接入网

最近的几年,网络技术不断的创新和发展,网络的交换和传输不断的更新换代。将来,网络的发展趋势就是智能化网络,具有网络主宰、高度集成、数字化的特点。目前网络的接入主要是通过双绞线,虽然双绞线具有较好的传输质量,可是和光纤还是存在很大的差距。如果应用光接入网,管理和维护网络的成本就会降低,甚至可以建立光透明网络,实现真正的多媒体。

3.2使用新型的光纤

现在,IP的业务量不断增加,电信网络也要不断的创新和发展,光纤正是其发展的基础。现在的信号传输都是远距离,并且有很高的质量要求,原来的单模光纤已经不能满足发展的要求,所以对光纤进行开发和研究是电力系统发展的需要。目前,随着不断提高的干线网要求和不断发展的城域网建设,两种新型的光纤已经得到社会各界的认可,这两种分别是非零色散光纤和无水吸收峰光纤。因为光纤的先进性,他们的应用与发展也会非常广泛。

3.3光联网

光联网以后光网络具有很大的容量、很多的网络节点、很大的网络范围,同时网络的透明度也会增加,有效的将不同的信号连接起来,提高了网络的灵活性。除此之外,网络的恢复速度也会加快、恢复时间也会缩短,也不会影响电力系统的正常运行。很多发达国家已经投入资金、人力和物力在光联网之上,我国也将逐步迈向这条路。光联网将会在将来的通信中发挥巨大的作用,促进电力通信的发展。

四、结束语

光通信技术范文12

【关键词】信息科学;光纤;光通信;光正交频分复用;通信技术

有人在上世纪30年代提出这样的观点:“总有一天光通信会取代有线和微波通信而成为通信主流”。随着现代通信技术飞速发展,光通信技术日益成熟,光通信的地位也日益凸显,甚至在欧美国家已达到战略地位。目前,光纤通信已经成为各种通信网的重要传输方式,其在信息高速公路的建设上也十分重要。以下将分别介绍电域正交频分复用技术和光纤通信技术,以及在两者相结合的情况下产生的新一代光通信技术。

1.电域正交频分复用与光纤通信技术

光纤通信技术是有线光通信技术中最为普遍、最为重要的传输技术,具有应用广、传输快、使用便捷等优点;而正交频分复用技术可以解决电磁信号在传输过程中相互干扰的问题。下面将分别介绍这两种典型技术的概念、原理及其应用。

1.1电域正交频分复用技术

正交频分复用(OrthogonalFrequencyDivisionMultiplexing),简称为OFDM,是多载波调制技术的一种。其基本原理是将主信道分为若干个并行的正交子信道,再通过傅立叶变换将高速的数据信号产生出一组并行的低速数据流,并且把低速数据流调制到每个子信道上传输,从而完成高速数据信号的传输。这个过程有一个突出的优点,即提高系统的频谱利用率,同时降低计算复杂性。正交频分复用技术的使用具有以下几个优势:

(1)有效补偿光纤色散。根据现代通信技术的不断发展和人们对通信技术要求的提高,光通信正朝着两个方向发展:一是大幅度提高单信道的传输速率,目前正趋近于100Gb/s;二是快速的网络动态调节能力。但是这两种要求是互相矛盾的,当单信道的传输速率达到100Gb/s的时候,传统光纤的色散补偿能力就变得昂贵和耗时。而正交频分复用技术在电子领域内的应用就恰到好处的解决了这一问题,通过在频域内的复数运算,利用此技术优良的计算性,从而方便的对光纤色散进行补偿。

(2)提升信道传输速率。2008-2009两年间,W.Shieh(澳大利亚墨尔本大学)和S.Jansen分别进行了“107Gb/s信号在单模光纤传输1000km的实验(无光色散补偿和放大的情况下)”和“12*121.9Gb/s信号在单模光纤传输1000km的实验(采用偏正复用和正交通带调制技术)”.两人主导的科学实验打破了制约数字通信高速发展的瓶颈,从而有效的提升了光通信的整体传输速率。

(3)减少信号相互干扰。由于光通信是一种以光波为载体的通信方式,其信号在传输的过程中会受到电磁波的干扰,而通过正交频分复技术则可以采用一定的技术在接收端分离正交信号,从而减少各个子信道之间的互相干扰。其原理在于:在使用正交频分复用技术的传播过程中,将单通道高速信息数据流分配到若干低速速率的子信道中,这样子信道信号带宽就小于总信道带宽,每个子信道上的衰落就趋于平坦,干扰降低;采用此种技术还可以增加子信道符号周期,减少码间干扰。而且由于分离开的每个子信道仅占原来整个信道的很小一部分,相对将容易达到信道均衡。

1.2光纤通信技术

光纤通信就是指以光导纤维作为传输介质传输信号,从而实现信息传递的一种通信方式。光导纤维通信就是光纤通信的简称。光纤通信是光通信的一种,属于有线通信,也可以看成是以光导纤维作为传输介质的“有线”光通信。通常光纤通信系统并不是指一根单独的光纤,通常情况下的光纤系统都是由无数光纤组成的光缆。

光纤的组成主要包括三部分,内芯是几十微米或者几微米的纤芯;中间层是包层,光信号利用纤芯和包层的不同折射率实现在纤芯的内的全反射,也就是光信号的传输;外层是图层,其主要作用就是增加光纤的韧性从而对光纤起到保护作用。光纤通信是以光为载体、以光导纤维为传输介质,把信息从一端传输到另一端的技术方式。光纤通信技术可以大致分为光纤光缆技术、光交换技术传输技术、光有源器件、光无源器件以及光网络技术等。通过不同的技术手段可达到低损耗、低色散、大容量的数据信息传输。

2.现代技术相结合的光通信技术

传统光通信技术包括大气激光通信、光纤通信、蓝绿光通信、红外线通信和紫外线通信几种。为进一步推进光通信技术的发展,紧跟目前通信的发展趋势,符合用户对现代通信的要求,将电域正交频分复用技术和光纤通信技术有机融合,从而利用两种技术的优点为用户提供服务。

对于光通信而言,结合正交频复用技术与光纤通信技术的优点,合理互补两种技术的缺点,能够实现光通信技术超高速度、超大容量、超长距离传输的效果,达到为用户群更快的传输数据、更多的输送内容、更远的服务用户的目的。

3.结语

经反复的实验论证,在光通信的传播过程中,利用电域正交频分复用技术可以有效的实现光纤色散补偿、信道传输速率提升、减少信道干扰三大优势;采用光纤通信技术可以逐步实现在更广阔的光谱范围内,低损耗、低色散的传输,是传输容量能够成千倍级甚至万倍级的增长。通过两种技术的结合,产生现代化的电域正交频分复用与光纤通信技术相结合的光通信技术。

【参考文献】

[1]邓超公,张为峰,忻向军.光正交频分复用技术在光网络中的应用研究[J].光通信研究,2009,(06).

[2]郭仁东.光纤通信技术的现状与发展[J].电脑知识与技术,2008,(23).