HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0
首页 公文范文 电力系统自动化技术研究

电力系统自动化技术研究

时间:2022-07-20 03:15:48

电力系统自动化技术研究

电力系统自动化技术研究:电力系统电气工程自动化技术发展

摘要:电力系统电气工程智能化是发展的产物,智能化的实现可有效提升电力系统工作效率,使系统运行更加稳定,对电力行业的快速发展有着推动作用。本文首先阐述了电气工程自动化智能化控制的发展价值,分析了电力系统中电气工程自动化技术的智能化优势和智能化应用,指出了电气工程自动化技术的智能化应用前景。

关键词:电气;自动化;智能化;设备;电网

一、电气工程自动化智能化控制的发展价值

智能化使电气工程自动化技术得到较好的控制效果,有利于自动化的发展,智能化技术可提高电力系统的工作性能并实现调节控制。电气工程自动化控制主要工作内容是收集并处理信息,智能化技术主要目的是提高对它的控制效率。智能化控制器与传统控制器相比有着较大的优势,更适合实际的电气工程工作。仅通过调整相关参数即可实现电力系统的自动调节控制,避免了必须由专业技术人员在场的问题,同时减少了操作电气工程人员的相关操作,使电气工程的工作效率和运行质量得到提高。

二、电力系统电气工程自动化技术的智能化优势和应用

(一)智能化优势

(1)在电力系统中智能化技术可实现数据信息的采集与处理,对各个开关量与模拟量进行实时采集,并可根据要求对所采集的数据信息进行处理与存储。(2)智能化优势体现在画面显示上,通过模拟画面将系统和设备的运行真实的反应出来,还能显示出电压、电流,并根据模拟量、计算量、隔离开关及断路器等自动生成趋势图。(3)智能化优势还体现在运行管理方面,专家系统的应用便可快速生成日志、报表,并实时对数据、运行曲线进行储存等。(4)智能化实现了模拟量的故障录波、顺序记录、波形捕捉及开关量变位等。(5)智能化实现了停机操作,通过键盘、鼠标对断路器、隔离开关控制,通过系统设置限制操作人员权限,加强值班管理。(6)智能化实现了参数的在线修改和设定,还可对不对称的运行在线分析并计算负序量。(7)智能化主要体现在对电力系统的运行监控,可实时监控模拟量数值及开关量状态,并通过声光、语音等形式进行自动报警同时记录事件顺序。

(二)智能化应用

1、电气高压设备的智能化

在实际需求基础上为电气高压设备配置适合的智能组件,该智能组件在相应指令下对电气高压设备进行智能自动化控制。高压开关设备的智能化属于多项电子和计算机技术精密结合的综合智能科技,是根据开关设备的需求属性和高压开关的技术标准和实际运行中的需求进行研发的智能化设备。高压开关智能化主要体现在对运行状态的检测,通过对多项技术指标进行评估实现模块化、一体化的效果,大大提升了高压开关设备的智能化水平。

2、电力系统电网的智能化

基于电力系统的智能化需求电网智能化继而产生,智能化电网设备与传统电网设备相比对电网的优化和改革有着重要作用。智能化电网设备雨现代计算机技术、电子技术等相结合可实现电力系统电网的自动化和智能化。电力系统电网的智能化不仅确保了电力网络的稳定运行还大大增加了电力调度的实用功能。智能化的电力系统网络推动了低碳环保和能源再生的发展,诸如智能变电站的出现便是基于智能化电力网路概念所衍生出来的,智能变电站与电气工程自动化中的六个环节的中转站相衔接,使电压的变换和对电流方向的控制变得更加容易操作,这是电力系统中电网整体智能化建设必然的发展方向。

3、电力系统电气工程自动化的管理

基于智能电网不同阶段发展过程中对电力通讯和网络技术的需求,电力系统电气工程需建立适合自身特点的全面、高效、个性强的通信网络,该网络需支持多项业务、设备的使用,实现信息通信的灵活运用和所有的接入方式。我国电网铺盖面广、电源输出与用电需求距离远的问题,这也就导致了我国电网及结构模式的复杂性。那么在基于我国电网实际情况和现实中存在的问题,建立“即插即用”的通信设备网络才是具有我国特色的电网智能化系统。而对所建立起的智能化系统进行管理是建立在强大数据和理论基础之上的,需要对地区内的能源竞争格局进行分析,并按照增强电力企业竞争力的思路的管理思路,对能源发展进行更加深入的分析和研究。智能化市场的计划的管理可提高终端能源消费也有着推动作用。

三、电气工程自动化技术的智能化应用前景

(一)电气工程设计应用前景

电气设备设计复杂,往往需要人、财、物三方面的支持。电气设备雨电气自动化中的电路和电机、变压器以及电磁场等之间有着密切联系。智能化技术的应用使电气工程设计难以计算的难题有效解决,会大大提高设计效率和精准度。

(二)电气工程控制应用前景

电气工程中的智能化有效完成生产和流通、交换以及分配的操作,对电气自动化的控制降低人、财、物三方面的浪费。智能化技术的应用主要体现在模糊控制和专家系统控制,其中模糊控制比较简单且紧密联系实际,应用范围较为广泛。

(三)电力系统应用前景

专家系统、神经网络是电力智能化的主要体现,基于专家系统的复杂性,它将大量的规则、专业知识和经验进行结合,通过判断和分析有效解决难题。电力系统中智能化技术应用需根据实际具体情况,及时更新系统规则和知识库,逐步适应国家发展需求。

(四)电气故障应用前景

智能化技术在电气故障中的应用主要表现在神经网络和专家系统、模糊理论三个方面。其中在电气设备故障诊断中应用最为广泛,主要体现在电动机、发电机和变压器的应用中,其中变压器的故障诊断需结合实际情况,快速确定故障范围,通过逐步排查不断缩小故障范围,以此提高故障诊断效率。

四、结语

综上所述,电气工程自动化技术的智能化不仅是时展的需求,更是市场不断进化的要求。电力系统电气工程自动化技术的智能化应用主要体现在系统和设备的监控和控制两方面,还需不断深化研究扩大智能化应用范围,为电气工程设计提供便利,加快电气工程控制效率,使电力系统的控制和管理变得容易,提高电气故障诊断和监测效率。

作者:李超 单位:山东中实易通集团有限公司

电力系统自动化技术研究:电力系统自动化技术安全管理浅析

摘要:

当前的电力系统自动化技术正在日益完善,但由于各类因素造成的安全管理问题也在逐步突出,并影响了整体的自动化技术应用效果。因此,结合当前的实际发展情况,对电力系统的自动化安全管理应进行充分重视。本文主要是对电力系统自动化技术中的安全管理现状以及优化策略进行研究,论述其中存在的主要问题和改善方法,在促进电力系统整体安全管理水平的提升,强化电力系统自动化技术的安全管理策略。

关键词:

电力系统自动化技术;安全管理现状;优化策略

在电力系统自动化技术的推广应用中,电力系统自动化有效的提升了国家电网的工作水平,但电力系统自动化技术并不只是为国家经济发展水平的提升,更是要为整体的电网运行提供前提保障。随着国家用电量的增多,电力系统的自动化技术也有了一定影响,若是没有对自动化技术进行正确的管理应用,则会终止电网运行工作,最终干扰人们的正常生活进行。因此在电网运行管理工作中,应及时总结电力系统的工作问题,进行及时优化和调整,推动整体安全管理水平的提升。

1目前电力系统自动化技术的安全管理现状及存在问题

1.1电力系统自动化技术的设计水平有待提升

电力系统自动化的安全管理工作中,各种设备的发展具有重要价值,但是电力设备水平依旧给电力系统自动化的安全管理带来了工作难度,并在用电量增大时加大设备的运转符合[1]。若是没有对电力设备进行及时的更新以及必要维护,造成设备由于老化无法承担大负荷的输出电量,从而引发电力系统的故障。此外,电力系统自动化技术的安全管理中对设备的要求也较高,若是设备无法负荷整体的技术要求,就会在实际运行中达不到安全工作标准,从而产生相应的安全事故隐患,甚至引发电力系统故障。

1.2电力系统自动化技术水平有待提升

在国家电网部门的电力系统自动化应用中,通电量的增加会加大不合理的电力系统负荷,并会对电力系统的安全运行产生干扰。此外,在一些较为偏远的工作区域,电力系统自动化会受到经济条件和环境条件的限制作用,电网建设水平也较为落后,最终无法有效进行电力系统自动化技术之间的衔接,进而影响正常的电能输送。目前国家的电网发展建设工作中,还应持续完善电力系统自动化技术,进而解决电力系统运行中的安全问题。

1.3电力系统自动化技术管理有待规范

在目前的电力系统自动化技术研发工作中,对安全管理的技术还应继续进行落实,减少自动化技术的故障原因,在电力系统自动化技术管理的规范工作中,首先是对电力自动化技术的安全管理规范,另外是对专业维修人员的培养[2]。并在工作中对工作人员的维修水平进行提升,避免由于技术难题的延误导致严重电力事故的发生。

2电力系统自动化技术中安全管理的优化策略

2.1增进电力系统自动化技术的合理性设计

由于我国的电力系统自动化技术发展较晚,因此同西方国家之间的技术设计有较大差距,为对这一差距进行弥补,应在借鉴发达国家电力系统自动化技术的经验基础上,与当前的国家发展情况相结合,最终进行电力系统的合理科学设计。此外,在设计电力系统自动化技术的基础上,应对其应用故障深入分析,并对造成故障的原因有针对性的提出改善策略,从而强化电力系统自动化的设计水平。

2.2增进电力系统自动化的工作管理水平

对电力系统自动化管理水平的强化包含对管理制度的建设以及工作人员的职业技能提升。电力系统自动化技术的安全管理,必须要有专业的工作人员从事管理工作。对技术人员工作水平的提升,要与电网的实际运行状况相结合,进一步确定企业发展的责任与义务,进而拥有更加合适的学习发展空间。依照不同岗位职责,进行专业人员的知识、技能培养,使其对先进的技术知识有更好掌握,提升自身的实践操作能力;并加强专业人员素质培养,在工作中更加认真处理各项工作,进行安全管理的各类培训;最终具备基本的安全操作要领,并能够保障自身在工作运行中的人身安全与技术安全。在对电力系统自动化的实际应用进行分析后,可以得出具体的安全管理措施,从而有效提升自动化的管理水平。通过分析电力系统自动化的安全因素,能够了解其中的主要影响因素是管理与维修[3]。可通过增进实际应用状况的了解,对各级管理工作及时落实到个人,促进每一位工作人员都能够更好发挥自身工作职责,建立规范性的电力系统工作。在实际的设备维护中,可增强对电力系统自动化技术的投资,使设备研发作用得到更好发挥,能够进行自动化的电力系统调节和检测,进而保障电力系统的高效稳定运行。

2.3增进电力系统自动化技术的维护水平

在科学技术的发展过程中,信息技术的应用越来越重要,将其在应用在电力系统自动化技术中,能够使电网工作运行更加安全、有效[4]。同时,要想充分发挥电力系统自动化的技术,就可利用信息技术进行科学的维护管理,如利用信息技术进行电力系统自动化中的数据优化和采集,促使其能够对通信信息和综合信息进行高效管理,提升电力系统自动化技术的智能化、信息化水平。

3结语

若是在电力系统自动化技术的安全管理中,没有对电力系统自动化的技术管理进行规范,或是对没有电力系统的设备缺陷充分考虑,就会使电力系统自动化技术的安全管理效果得到减弱。针对这种情况,更应加强电力系统自动化的技术管理水平,更加合理利用电力系统自动化的技术作用。通过技术人员水平的培训发挥自动化技术的安全管理价值,使电力系统的工作运行更加安全高效,系统更加稳定。

作者:林伟 单位:国网福建闽清县供电有限公司

电力系统自动化技术研究:电力系统自动化智能技术管理应用

摘要:目前我国经济发展迅速,也就带动了社会中的各行各业,生产、生活用电的需求量日益增加也就给电力系统运行的稳定与安全提出了更高的要求。因此为了适应发展需要,电力系统的自动化水平也正在不断的提高。在这其中智能技术的应用是非常重要的环节。本文对电力系统自动化中智能技术的应用管理进行进简要分析,希望能够为此项工作提供一些帮助。

关键词:电力自动化;智能技术;管理;应用

我国的电力系统运行已经初步实现了自动化,在这其中的一个重要环节就是智能技术的运用。充分发挥智能技术的作用,注重管理质量,可以帮助电力系统推动其自动化进程,因此研究电力系统自动化中智能技术的应用是十分必要的。

一、电力系统自动化和智能技术

电力系统自动化是通过一定的技术手段帮助电力系统实现其自动化发展,提高自动化水平,电力系统中包含了发电、调度和配电三个部分,这三部分是一个整体,因此电力系统的自动化也是将这三个部分作为基础进行的[1]。可以提高电力系统自动化水平的技术手段是多种多样的,有计算机技术、网络技术等,这些技术手段中最主要的就是智能技术,这项技术在电力系统中的价值也有着明显的体现。智能技术,就是人工智能技术,它指的是通过利用合理有效的技术手段仿照人工操作的形式进行优化和控制,这样能够促进控制水平更加高效,简单的说智能技术是能够实现对于人力的替代作用,甚至在个别问题上面的实际效果还会优于人工水平。在电力系统自动化中使用智能技术可以不断的推动电力系统自动化的发展,为电力系统运行的安全与稳定提供有力保障。

二、电力系统自动化中智能技术管理应用的现状

现阶段,我国的电力系统自动化智能技术已经有了初步的发展,但是在应用以及管理过程中还存在有很多问题制约着该项技术的发展。首先,现阶段的实际工作中,大多数的单位都缺乏团队协作的精神,在进行研究实验工作时,往往都不愿意将资源和技术分享给同行,这样是不利于智能技术的研究进展。其次没有实践经验。因为我国的电力系统自动化智能技术起步比较晚,而且现在的研究速度也比较缓慢,所以基本没有什么实际应用的机会,实践经验匮乏,在管理过程中,也无法借鉴较为成熟的先例,这也阻碍了电力系统自动化的发展[2]。最后政府相关部门对这项技术的研发重视程度不足,所以这项工作也就得不到政府的支持和成本的投资。

三、电力系统自动化中智能技术的管理应用

电力系统自动化中智能技术目前有很多种,综合来讲,实际应用效果突出的主要有以下几种:

1.专家控制系统的应用

一直以来,电力系统的整个操作和监控系统都是由人工进行的,但是人工操作存在有很多弊端,还会造成资源的极大浪费,而且电力企业在运营过程中就需要投入很多的人力、财力,这样不仅加大了电力运营的成本消耗,在具体操作时还会出现误差。使用专家系统可以有效的化解这一问题。专家控制系统是在个别领域当中使用专家知识有效的解决突发状况的智能化计算机系统。而且电力系统自动化还需要依靠专家系统实现监控的作用。这样一旦电力系统在运行过程当中出现任何紧急状况,专家控制系统就可以发出相应的指令,帮助相关的工作人员快速的解除故障,保障电力系统的正常与稳定运行,这一系统已经被广泛的应用到了多个领域当中[3]。

2.线性最优控制的应用

线缆是输送电力的重要媒介,它与电力系统的正常运转有直接关系。电能在传输的过程中需要考虑很多因素的问题,为了能够解决这些问题,提高电力系统自动化水平,就研发了线性最优控制技术,并且取得了良好的成效。

3.模糊控制的应用

模糊控制是结合了模糊数学的思想和理论研发的最新的电力系统自动化技术,这项技术能够良好的掌控那些动态的系统并且精准度非常高,电力系统本身带有很强的变化性,这个变化是不可控的,但是这些问题都可以通过模糊控制技术来解决[4]。与此同时为了检验一个新的自动化程序是否具备实用性,就可以通过模糊控制系统进行模拟实验,测试出其可行性。模糊控制系统中有一个完整的智能推理技术,将完整的数据信息和控制规划输入进系统当中后,模糊控制系统就能主动的对这些数据根据固定逻辑规定进行推理分析,直至推断出模糊控制输出结果。

4.神经网络系统的应用

神经网络系统是通过结合人工神经理论和控制理论形成的一种新的系统,通过字面就可以看出来这个系统具备了类似于人体神经一样的反应,这个反应速度是非常快的,他能够对发生的问题作出及时有效的反应,完全实现了电力操作系统的智能化,他具备有良好的处理复杂数据的能力。神经网络系统和线性最优控制系统是有一些不同的,神经网络系统的控制处理能力非常好、它有着非线性特征,它能够有效的运用到电力系统当中,比如说人工智能系统、自动控制系统、数序系统、计算机科学理论等的运用。

5.综合智能系统

目前,发电系统都是相对大型的电力系统,这些大型的系统结构非常复杂,容易出现失误,所以为了减少电力系统的管理和营运难度,提高工作效率,综合性职能系统也就此产生了,这个系统是通过智能技术来达到它的最终目的的。智能系统的作用非常强,这是智能控制与现代化控制相结合形成的。智能系统通过各种智能技术的使用简化了那些复杂、庞大的环节。目前有很多综合智能系统已经被广泛的应用,还有一些企业将多个智能控制系统融合在一起使用,这样能够使运营和管理工作更加流畅和方便。

四、结束语

综上所述,我国的电力系统发展已经初步实现了自动化,想要使其发挥最大优势,不仅要对专业技术进行深入研究,还应完善管理应用措施,智能技术,作为电力系统自动化中的重要组成部分,提高智能技术的管理应用水平可以推进电力系统的自动化进程,确保电力系统安全、稳定的运行。

作者:尹平 单位:湖北省电力公司蕲春县供电公司

电力系统自动化技术研究:浅论电力系统自动化中智能技术的应用

[论文关键词]电力系统自动化 智能技术

[论文摘要]简单回顾模糊控制、神经网络控制、专家系统控制、线性最优控制、综合智能控制等典型智能技术在电力系统自动化中的运用。

电力系统是一个巨维数的典型动态大系统,它具有强非线性、时变性且参数不确切可知,并含有大量未建模动态部分。电力系统地域分布广阔,大部分元件具有延迟、磁滞、饱和等等复杂的物理特性,对这样的系统实现有效控制是极为困难的。另一方面,由于公众对新建高压线路的不满情绪日益增加,线路造价,特别是走廊使用权的费用日益昂贵等客观条件的限制,以及电力网的不断增大,使得人们对电力系统的控制提出了越来越高的要求。正是由于电力系统具有这样的特征,一些先进的控制手段不断地引入电力系统。本文回顾了模糊控制、神经网络控制、专家系统控制、线性最优控制、综合智能控制等五种典型智能技术在电力系统中的运用。

一、模糊控制

模糊方法使控制十分简单而易于掌握,所以在家用电器中也显示出优越性。建立模型来实现控制是现代比较先进的方法,但建立常规的数学模型,有时十分困难,而建立模糊关系模型十分简易,实践证明它有巨大的优越性。模糊控制理论的应用非常广泛。例如我们日常所用的电热炉、电风扇等电器。这里介绍斯洛文尼亚学者用模糊逻辑控制器改进常规恒温器的例子。电热炉一般用恒温器(thermostat)来保持几挡温度,以供烹饪者选用,如60,80,100,140℃。斯洛文尼亚现有的恒温器在100℃以下的灵敏度为±7℃,即控制器对±7℃以内的温度变化不反应;在100℃以上,灵敏度为±15℃。因此在实际应用中,有两个问题:①冷态启动时有一个越过恒温值的跃升现象;②在恒温应用中有围绕恒温摆动振荡的问题。改用模糊控制器后,这些现象基本上都没有了。模糊控制的方法很简单,输入量为温度及温度变化两个语言变量。每个语言的论域用5组语言变量互相跨接来描述。因此输出量可以用一张二维的查询表来表示,即5×5=25条规则,每条规则为一个输出量,即控制量。应用这样一个简单的模糊控制器后,冷态加热时跃升超过恒温值的现象消失了,热态中围绕恒温值的摆动也没有了,还得到了节电的效果。在热态控制保持100℃的情况下,33min内,若用恒温器则耗电0.1530kw·h,若用模糊逻辑控制,则耗电0.1285kw·h,节电约16.3%,是一个不小的数目。在冷态加热情况下,若用恒温器加热,则能很快到达100℃,只耗电0.2144kw·h,若用模糊逻辑控制,达到100℃时需耗电0.2425kw·h。但恒温器振荡稳定到100℃的过程,耗电0.1719kw·h,而模糊逻辑控制略有微小的摆动,达到稳定值只耗电0.083kw·h。总计达100℃恒温的耗电量,恒温器需用0.3863kw·h,模糊逻辑控制需用0.3555kw·h,节电约15.7%。

二、神经网络控制

人工神经网络从1943年出现,经历了六、七十年代的研究低潮发展到现在,在模型结构、学习算法等方面取得了大量的研究成果。神经网络之所以受到人们的普遍关注,是由于它具有本质的非线性特性、并行处理能力、强鲁棒性以及自组织自学习的能力。神经网络是由大量简单的神经元以一定的方式连接而成的。神经网络将大量的信息隐含在其连接权值上,根据一定的学习算法调节权值,使神经网络实现从m维空间到n维空间复杂的非线性映射。目前神经网络理论研究主要集中在神经网络模型及结构的研究、神经网络学习算法的研究、神经网络的硬件实现问题等。

三、专家系统控制

专家系统在电力系统中的应用范围很广,包括对电力系统处于警告状态或紧急状态的辨识,提供紧急处理,系统恢复控制,非常慢的状态转换分析,切负荷,系统规划,电压无功控制,故障点的隔离,配电系统自动化,调度员培训,电力系统的短期负荷预报,静态与动态安全分析,以及先进的人机接口等方面。虽然专家系统在电力系统中得到了广泛的应用,但仍存在一定的局限性,如难以模仿电力专家的创造性;只采用了浅层知识而缺乏功能理解的深层适应;缺乏有效的学习机构,对付新情况的能力有限;知识库的验证困难;对复杂的问题缺少好的分析和组织工具等。因此,在开发专家系统方面应注意专家系统的代价/效益分析方法问题,专家系统软件的有效性和试验问题,知识获取问题,专家系统与其他常规计算工具相结合等问题。

四、线性最优控制

最优控制是现代控制理论的一个重要组成部分,也是将最优化理论用于控制问题的一种体现。线性最优控制是目前诸多现代控制理论中应用最多,最成熟的一个分支。卢强等人提出了利用最优励磁控制手段提高远距离输电线路输电能力和改善动态品质的问题,取得了一系列重要的研究成果。该研究指出了在大型机组方面应直接利用最优励磁控制方式代替古典励磁方式。目前最优励磁控制的控制效果。另外,最优控制理论在水轮发电机制动电阻的最优时间控制方面也获得了成功的应用。电力系统线性最优控制器目前已在电力生产中获得了广泛的应用,发挥着重要的作用。但应当指出,由于这种控制器是针对电力系统的局部线性化模型来设计的,在强非线性的电力系统中对大干扰的控制效果不理想。

五、综合智能系统

综合智能控制一方面包含了智能控制与现代控制方法的结合,

如模糊变结构控制,自适应或自组织模糊控制,自适应神经网络控制,神经网络变结构控制等。另一方面包含了各种智能控制方法之间的交叉结合,对电力系统这样一个复杂的大系统来讲,综合智能控制更有巨大的应用潜力。现在,在电力系统中研究得较多的有神经网络与专家系统的结合,专家系统与模糊控制的结合,神经网络与模糊控制的结合,神经网络、模糊控制与自适应控制的结合等方面。神经网络适合于处理非结构化信息,而模糊系统对处理结构化的知识更有效。因此,模糊逻辑和人工神经网络的结合有良好的技术基础。这两种技术从不同角度服务于智能系统,人工神经网络主要应用在低层的计算方法上,模糊逻辑则用以处理非统计性的不确定性问题,是高层次(语义层或语言层)的推理,这两种技术正好起互补作用。神经网络把感知器送来的大量数据进行安排和解释,而模糊逻辑则提供应用和挖掘潜力的框架。因此将二者结合起来的研究成果较多。

除了上述方法,在电力系统中还应用了自适应控制、变结构控制、h∞鲁棒控制、微分几何控制等其它方法。总之,智能技术的广泛运用推动了电力系统的自动化进程。我们相信随着人们对各种智能控制理论研究的进一步深入,它们之间的联系也会更加紧密,相信利用各自优势而组成的综合智能控制系统会对电力系统起到更加重要的作用。

电力系统自动化技术研究:电力系统自动化发展趋势及新技术的应用

[摘要] 现代 社会对电能供应的“安全、可靠、 经济 、优质”等各项指标的要求越来越高,相应地,电力系统也不断地向自动化提出更高的要求。电力系统自动化技术不断地由低到高、由局部到整体 发展 ,本文对此进行了详细的阐述。

[关键词]电力系统自动化 发展 应用

一、电力系统自动化总的发展趋势

1.当今电力系统的自动控制技术正趋向于:

(1)在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。

(2)在设计分析上日益要求面对多机系统模型来处理问题。

(3)在理论工具上越来越多地借助于现代控制理论。

(4)在控制手段上日益增多了微机、电力 电子 器件和远程通信的应用。

(5)在研究人员的构成上益需要多“兵种”的联合作战。

2.整个电力系统自动化的发展则趋向于:

(1)由开环监测向闭环控制发展,例如从系统功率总加到agc(自动发电控制)。

(2)由高电压等级向低电压扩展,例如从ems(能量管理系统)到dms(配电管理系统)。

(3)由单个元件向部分区域及全系统发展,例如scada(监测控制与数据采集)的发展和区域稳定控制的发展。

(4)由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。

(5)装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。

(6)追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。

(7)由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如mis(管理信息系统)在电力系统中的应用。

近20年来,随着 计算 机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(computer)、控制(control)、通信(communication)和电力装备及电力电子(power system equiqments and power electronics)的统一体,简称为“cccp”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。

二、具有变革性重要影响的三项新技术

1.电力系统的智能控制

电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:

(1)电力系统是一个具有强非线性的、变参数(包含多种随机和不确定因素的、多种运行方式和故障方式并存)的动态大系统。

(2)具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。

(3)不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。

智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。

智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经 网络 适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的asvg(新型静止无功发生器)的自学习功能等。

2.facts和dfacts

(1)facts概念的提出

在电力系统的 发展 迫切需要先进的输配电技术来提高电压质量和系统稳定性的时候,一种改变传统输电能力的新技术——柔性交流输电系统(facts)技术悄然兴起。

所谓“柔性交流输电系统”技术又称“灵活交流输电系统”技术简称facts,就是在输电系统的重要部位,采用具有单独或综合功能的电力 电子 装置,对输电系统的主要参数(如电压、相位差、电抗等)进行调整控制,使输电更加可靠,具有更大的可控性和更高的效率。这是一种将电力电子技术、微机处理技术、控制技术等高新技术应用于高压输电系统,以提高系统可靠性、可控性、运行性能和电能质量,并可获取大量节电效益的新型综合技术。

(2)facts的优秀装置之一——asvc的研究现状

各种facts装置的共同特点是:基于大功率电力电子器件的快速开关作用和所组成逆变器的逆变作用。asvc是包含了facts装置的各种优秀技术且结构比较简单的一种新型静止无功发生器。

asvc由二相逆变器和并联电容器构成,其输出的三相交流电压与所接电网的三相电压同步。它不仅可校正稳态运行电压,而且可以在故障后的恢复期间稳定电压,因此对电网电压的控制能力很强。与旋转同步调相机相比,asvc的调节范围大,反应速度快,不会发生响应迟缓,没有转动设备的机械惯性、机械损耗和旋转噪声,并且因为asvc是一种固态装置,所以能响应 网络 中的暂态也能响应稳态变化,因此其控制能力大大优于同步调相机。

(3)dfacts的研究态势

随着高科技产业和信息化的发展,电力用户对供电质量和可靠性越来越敏感,电器设备的正常运行甚至使用寿命也与之越来越息息相关。可以说,信息时代对电能质量提出了越来越高的要求。

dfacts是指应用于配电系统中的灵活交流技术,它是hingorani于1988年针对配电网中供电质量提出的新概念。其主要内容是:对供电质量的各种问题采用综合的解决办法,在配电网和大量商业用户的供电端使用新型电力电子控制器。

3.基于gps统一时钟的新一代ems和动态安全监控系统

(1)基于gps统一时钟的新一代ems

目前应用的电力系统监测手段主要有侧重于记录电磁暂态过程的各种故障录波仪和侧重于系统稳态运行情况的监视控制与数据采集(scada)系统。前者记录数据冗余,记录时间较短,不同记录仪之间缺乏通信,使得对于系统整体动态特性分析困难;后者数据刷新间隔较长,只能用于分析系统的稳态特性。两者还具有一个共同的不足,即不同地点之间缺乏准确的共同时间标记,记录数据只是局部有效,难以用于对全系统动态行为的分析。

(2)基于gps的新一代动态安全监控系统

基于gps的新一代动态安全监控系统,是新动态安全监测系统与原有scada的结合。电力系统新一代动态安全监测系统,主要由同步定时系统,动态相量测量系统、通信系统和中央信号处理机四部分组成。采用gps实现的同步相量测量技术和光纤通信技术,为相量控制提供了实现的条件。gps技术与相量测量技术结合的产物——pmu(相量测量单元)设备,正逐步取代rtu设备实现电压、电流相量测量(相角和幅值)。

电力系统调度监测从稳态/准稳态监测向动态监测发展是必然趋势。gps技术和相量测量技术的结合标志着电力系统动态安全监测和实时控制时代的来临。

随着 计算 机技术,控制技术及信息技术的发展,电力系统自动化面临着空前的变革。多媒体技术、智能控制将迅速进入电力系统自动化领域,而信息技术的发展,不仅会推动电力系统监测的发展,也会推动电力系统控制向更高水平发展。