作者:何华灿人工智能可解释性演化不确定性泛逻辑学柔性命题逻辑柔性神经元数理辩证逻辑
摘要:针对深度神经网络 AI研究的可解释性瓶颈,指出刚性逻辑(数理形式逻辑)和二值神经元等价,二值神经网络可转换成逻辑表达式,有强可解释性。深度神经网络一味增加中间层数来拟合大数据,没有适时通过抽象把最小粒度的数据(原子)变成粒度较大的知识(分子),再把较小粒度的知识变成较大粒度的知识,把原有的强可解释性淹没在中间层次的大海中。要支持多粒度的知识处理,需把刚性逻辑扩张为柔性命题逻辑(命题级数理辩证逻辑),把二值神经元扩张为柔性神经元,才能保持强可解释性。本文详细介绍了从刚性逻辑到柔性逻辑的扩张过程和成果,最后介绍了它们在 AI研究中的应用,这是重新找回 AI研究强可解释性的最佳途径。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社