HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0

A Mechanoelectrical Coupling Model of Neurons under Stretching

作者:Jin; Tian; Guoyou; Huang; Min; Lin; Ji...biomechanicselectrophysiologymodelcabletheoryneuronalinjury

摘要:Introduction Neurons are situated in a microenvironment composed of various biochemical and biophysical cues,where stretching is thought to have a major impact on neurons.For instance,during a moderate traumatic brain impact,the injury region in axons exhibits significant longitudinal strain;and in a rat model of spinal cord injury,the most severe axonal injury is located in the largest strain region.Stretching may result in microstructural changes in neural tissue and further leading to abnormal electrophysiological function.Hence,it is of great importance to understand the coupled mechanoelectricalbehaviors of neurons under stretching.In spite of significant experimental efforts,the underlying mechanism remains elusive,more works are needed to provide a detailed description of the process that leads to the observed phenomena.Mathematical modeling is a powerful tool that offers a quantitative description of the underlying mechanism of an observed biological phenomenon,including mechanical and electrophysiological behaviors of neurons.Thus,we developed a mechanoelectrical coupling model of neurons under stretching in this study.Mathematical model The mathematical model consists of three submodels,i.e.,the mechanical submodel,the mechanoelectrical coupling submodel and the electrophysiological submodel.The mechanical submodel deals with the relationship between stretching and the deformation of axons,which has specially considered the plastic deformation of axons.The electrophysiological submodel characterizes the feature of neuronal action potential(AP),which is based on the classical H-H model and the cable theory.The mechanoelectrical coupling submodel links the mechanical and electrophysiological submodels through strain-induced equivalent circuit parameter alteration and ion channel injury.Besides,we have discussed a more general deformation condition,where an expanded model coupling the axonal deformation and electrophysiology alteration was explored.As the most essential parameters in an electrophysiologica

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

医用生物力学

《医用生物力学》(CN:31-1624/R)是一本有较高学术价值的大型双月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。 《医用生物力学》主要刊登交流我国学者在生物力学研究中取得的成果和部分国外专家的论文。着重刊登对科研与临床实践有指导意义的论著,同时还开辟综述、讲座、经验交流、研究简报、专题讨论等专栏。内容充实,反映了中国生物力学的研究动向和成果。

杂志详情