作者:陈春雨; 阳秋光; 李东方背景差法sift算法三维重构fcm聚类kalman滤波三维坐标二维坐标立体匹配
摘要:基于二维坐标的多运动目标跟踪,在跟踪过程中由于目标相互遮挡,算法无法分清各个运动目标,导致跟踪目标失败。而三维坐标具有深度信息,利用目标遮挡前后坐标的不突变性能很好地分清各个目标,为此提出基于三维坐标的运动目标跟踪方法。首先,采用背景差法进行目标检测;其次使用sift算法对目标特征提取,运用极线约束对目标特征点进行立体匹配以及三维重构并使用模糊C均值聚类算法(FCM),确定运动目标中心三维坐标;最后结合Kalman滤波实现目标跟踪。实验和分析结果表明,算法能够较好地适应目标遮挡下的跟踪,具有良好的准确性、鲁棒性。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社