0
400-888-7501
首页 期刊 系统仿真学报 基于RBF网络和ARX模型的液压系统故障诊断方法【正文】

基于RBF网络和ARX模型的液压系统故障诊断方法

作者:贺湘宇 何清华 邹湘伏 谢习华 黄志雄故障诊断液压系统挖掘机径向基函数网络有源自回归模型

摘要:提出了基于径向基函数(Radial Basis Function,RBF)网络和有源自回归(Auto-Regressive with Extra Inputs,ARX)模型的液压系统的故障诊断方法。作为一种性能优越的网络分类器,RBF网络比传统的反向传播(Back Propagation,BP)网络表现出更好的分类效果,非常适合于故障特征识别。故障诊断方法首先针对目标故障状态建立ARX模型,提取ARX模型的自回归系数作为故障特征向量。然后将故障特征向量作为RBF网络训练样本,建立RBF网络故障分类器,进一步根据RBF网络的输出结果来判断故障的类型。通过建立挖掘机铲斗部分液压系统仿真模型,验证了于基于RBF网络和ARX模型的故障诊断方法的有效性。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

系统仿真学报

《系统仿真学报》(CN:11-3092/V)是一本有较高学术价值的大型月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。

杂志详情