作者:祁燕; 岳添骏; 杨大为推荐协同过滤lda相对熵
摘要:提出了一种加权的基于LDA(Latent Dirichlet Allocation)的协同过滤算法,通过对传统协同过滤算法优缺点的分析,联合打分数据和评论数据的特征进行推荐。该算法主要研究用户评论文本的特点,通过LDA主题模型对评论文本集合进行主题提取,使用相对熵的方法计算相似度,在此基础上,研究用户评分对于每条评论文本的影响,联合LDA进行评分预测及推荐。实验结果表明,该算法能够显著提高推荐准确度。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社