作者:唐飞琳广义相对论引力场引力场能量动量张量内部标架空间洛仑兹群空间爱因斯坦引力场运动方程半度规
摘要:本文通过引入标架空间定叉了引力场场强张量和引力场拉格朗日密度,根据最小作用量原理导出了引力场运动方程的一种新的半度规形式(或称标架形式)及具有标架空间和坐标空间的双重协变的引力场能量动量张量.我们用这种定域化的能量表达式和球对称真空外部场席瓦兹希德解(当β1+β2=0,B3=0时)计算出在r≥R区域中的球对称引力场的总能量为E=MC2 1-√1-2GM/C2R/1+√1-2GM/C2R.它把爱因斯坦引力理论作为一个特例(满足条件β1=β2=β3=0)包含其中,是对爱因斯坦度规引力理论的重大发展.本文通过求解球对称真空外部场解得到以下结论:满足条件β1+β2=0,β3=0时的球对称真空外部场解就是席瓦兹希德外部解,基于球对称真空外部场解的任何检验Einstein引力场方程的实验验证都无法确定Einstein引力场方程是唯一正确的.最后根据粒子在引力场中的运动方程确定了待定常数的值为β1=2β,β2=β3=0.本文得到的引力理论与平移引力理论具有相同的形式.本文建立的引力理论采用的几何是黎曼几何,没有采用平移引力理论中的weitzenbock几何,并且对其中的能量问题和待定常数问题作了更深入的讨论.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社