作者:徐啸; 王灜; 金涛; 王建民表征学习主题模型多层感知机医疗分析
摘要:随着健康医疗数据的快速积累,数据驱动的医疗分析越来越受重视,合适的医疗活动表征对这些分析至关重要。然而,当前大多数表征方法缺乏对医疗数据时序性、数值敏感性的考虑,影响了分析方法的效果和可解释性。该文针对住院病例,提出了一种基于主题模型加强的医疗活动表征学习方法,该方法利用活动间时序关系和主题分配情况,构建了一个无监督学习的多层感知机模型。在大规模真实住院数据集上的测试结果表明:该方法所得表征可以有效提升疾病聚类、后续活动预测、剩余住院天数预测3项医疗分析任务的效果,同时表征具有良好的医学可解释性。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
《清华大学学报·自然科学版》(CN:11-2223/N)是一本有较高学术价值的大型月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。
杂志详情