作者:狄岚; 何锐波; 梁久祯道路交通标识识别卷积神经网络残差连接
摘要:为解决图像采集中噪声和复杂背景对图片的影响以及深度神经网络的高耗时问题,基于可能性聚类算法与卷积神经网络,提出一种道路交通标识识别算法.该方法运用了图像分割技术,并结合卷积神经网络模型对道路交通标识进行更准确的识别.首先,通过色彩增强、图像分割、特征提取、数据增强和归一化等批量预处理操作,形成一个完整的数据集;然后,结合Squeeze-and-Excitation思想和残差网络结构,充分训练出MRESE(My Residual-Squeeze and Excitation)卷积神经网络模型;最后,将优化的网络模型用于道路交通标志的识别.实验结果表明,该方法使训练时间缩短了5%左右,识别精度可达99.02%.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社
《南京大学学报·自然科学》(CN:32-1169/N)是一本有较高学术价值的大型双月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。 《南京大学学报·自然科学》报道内容包括数学、天文、计算机科学、物理、信息物理、化学、生物、生物化学、地球科学、大地海洋学、大气科学、环境科学、医学等学科的基础研究和应用研究。
杂志详情