0
400-888-7501
首页 期刊 控制理论与应用 基于改进PSO算法的过热汽温神经网络预测控制【正文】

基于改进PSO算法的过热汽温神经网络预测控制

作者:肖本贤 王晓伟 朱志国 刘一福改进pso算法rbf神经网络优化策略神经网络预测控制过热汽温

摘要:将改进粒子群优化算法(MPSO融合到神经网络预测控制中,提出了基于MPSO-RBF混合优化策略的模型预测器,以及基于MPSO算法的非线性优化控制器.针对过热汽温的控制,构造了基于神经网络预测控制的串级控制系统,并就该系统在实现时所涉及到的预测模型、滚动优化算法、反馈校正、仿真参数设置问题等进行了分析,给出了MPSO算法的粒子编码、操作设计和混合优化算法步骤.对某超临界600MW直流锅炉高温过热器的过热汽温控制,进行了仿真试验,结果表明该方法具有良好的性能指标和应用前景.

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

控制理论与应用

《控制理论与应用》(CN:44-1240/TP)是一本有较高学术价值的大型月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。 《控制理论与应用》主要报道系统控制科学中具有新观念、新思想的理论研究成果及其在各个领域中,特别是高科技领域中的应用研究成果。

杂志详情