HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0

基于核函数的改进k-means文本聚类

作者:张国锋; 吴国文高斯核函数文本聚类

摘要:通过对传统k-means算法优缺点的研究分析,提出一种改进的k-means聚类算法。随机初始化k/2个簇心,划分最大的簇并删除空簇,在更新簇心的同时判断簇心位置的合理性;及时对簇心做出修改,使得最后聚类出的k个簇中不会出现空簇;使用高斯核函数作为测量向量之间距离的方法,提高聚类的准确性。基于此改进的k-means算法,使用在不同网站上采集的文章作为数据源,并利用TF-IDF以及Word2Vec技术对文本进行向量化处理,进而完成对文本的聚类任务。与传统的k-means文本聚类相比,不仅提高了聚类的准确性,而且改善了传统k-means算法结果可能会出现空簇的缺陷。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

计算机应用与软件

《计算机应用与软件》(CN:31-1260/TP)是一本有较高学术价值的大型月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。 《计算机应用与软件》主要面向从事计算机应用和软件技术开发的科研人员、工程技术人员、各大专院校师生等。致力于创办以创新、准确、实用为特色,突出综述性、科学性、实用性,及时报道国内外计算机技术在科研、教学、应用方面的研究成果和发展动态的综合性技术期刊,为国内计算机同行提供学术交流的平台。

杂志详情