0
400-888-7501
首页 期刊 计算机应用研究 基于随机子空间的多标签类属特征提取算法【正文】

基于随机子空间的多标签类属特征提取算法

作者:张晶; 李裕; 李培培多标签学习成对约束特征提取随机子空间

摘要:目前多标签学习已广泛应用到很多场景中。在此类学习问题中,一个样本往往可以同时拥有多个类别标签。因为类别标签可能带有的特有属性(即类属属性)将更有助于标签分类,所以已经出现了一些基于类属属性的多标签学习算法。针对类属属性构造会导致属性空间存在冗余的问题,提出了一种多标签类属特征提取算法LIFT_RSM。该算法基于类属属性空间通过综合利用随机子空间模型及成对约束降维思想提取有效的特征信息,以达到提升分类性能的目的。在多个数据集上的实验结果表明,与若干经典的多标签算法相比,提出的LIFT_RSM算法能得到更好的分类效果。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

计算机应用研究

《计算机应用研究》(CN:51-1196/TP)是一本有较高学术价值的大型月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。 《计算机应用研究》杂志以其新颖性、学术性、系统性、技术性于一身,瞄准国家迫切需要的前沿技术,及时反映并涵盖了国内外计算机学科领域最新发展趋势及技术动向,注重刊登反映本学科领域的新理论、新方法、新技术,选题新颖,可读性强而备受广大读者所喜爱,在各行各业拥有大量的读者、作者,在计算机业界享有崇高的知名度和影响力。

杂志详情