HI,欢迎来到学术之家,学术咨询:400-888-7501 订阅咨询:400-888-7502 股权代码 102064

深度卷积神经网络的发展及其在计算机视觉领域的应用

作者:张顺; 龚怡宏; 王进军类脑智能神经网络深度学习计算机视觉视觉认知

摘要:作为类脑计算领域的一个重要研究成果,深度卷积神经网络已经广泛应用到计算机视觉、自然语言处理、信息检索、语音识别、语义理解等多个领域,在工业界和学术界掀起了神经网络研究的浪潮,促进了人工智能的发展.卷积神经网络直接以原始数据作为输入,从大量训练数据中自动学习特征的表示.卷积神经网络具有局部连接、权值共享和池化操作等特性,可以有效降低网络复杂度,减少训练参数的数目,使模型对平移、扭曲、缩放具有一定程度的不变性.目前,深度卷积神经网络主要是通过增加网络的层数,使用更大规模的训练数据集,以及改进现有神经网络的网络结构或训练学习算法等方法,来模拟人脑复杂的层次化认知规律,拉近与人脑视觉系统的差距,使机器获得“抽象概念”的能力.深度卷积神经网络在图像分类、目标检测、人脸识别、行人再识别等多个计算机视觉任务中都取得了巨大成功.该文首先回顾了卷积神经网络的发展历史,简单介绍了M-P神经元模型、Hubel-Wiesel模型、神经认知机、用于手写识别的LeNet以及用于ImageNet图像分类比赛的深度卷积神经网络.然后详细分析了深度卷积神经网络的工作原理,介绍了卷积层、采样层、全连接层的数学表示及各自发挥的作用.接着该文重点从以下三个方面介绍卷积神经网络的代表性成果,并通过实例展示各种技术方法对图像分类精度的提升效果.从增加网络层数方面,讨论并分析了AlexNet、ZF-Net、VGG、GoogLeNet和ResNet等经典卷积神经网络的结构;从增加数据集规模方面,介绍了人工增加标注样本的难点以及使用数据扩增技术对神经网络性能提升的作用;从改进训练方法方面,介绍了包括L2正则化、Dropout、DropConnect、Maxout等常用的正则化技术,Sigmoid函数、tanh函数以及ReLU函数、LReLU函数、PReLU函数等常用的神经元激

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

计算机学报

《计算机学报》(月刊)创刊于1978年,由中国计算机学会与中国科学院计算技术研究所主办、科学出版社出版,以中文编辑形式与读者见面,同时以英文摘要形式向国际各大检索系统提供基本内容介绍。 一直在计算机领域保持着领先水平,刊登的文章被国际多种著名检索刊物所收录.包括《中国学术期刊文摘》,美国《EI》,英国《SA》,美国《数学评论》,日本《科技文献速报》,俄罗斯《文摘杂志》等。 《计算机学报》刊登的内容覆盖计算机领域的各个学科,以论文、技术报告、短文、研究简报、综论等形式报道以下方面的科研成果:计算机科学理论、计算...

杂志详情

相关期刊

作品认领

本站文章皆为用户上传,可能会出现作者遗漏,为促进学术资源开放获取,作者完成个人作品认领,即可获得平台文献免费下载权限。

详询在线客服 ×

被举报文档标题:深度卷积神经网络的发展及其在计算机视觉领域的应用

被举报文档地址:


我确定以上信息无误

举报类型:

非法(文档涉及政治、宗教、色情或其他违反国家法律法规的内容)

侵权

其他

举报理由:
   (必填)