0
400-888-7501
首页 期刊 计算机科学与探索 基于网络表示学习的链路预测算法【正文】

基于网络表示学习的链路预测算法

作者:杨晓翠; 宋甲秀; 张曦煌链路预测几何布朗运动随机游走算法网络表示学习算法

摘要:网络是表达对象之间复杂联系的重要形式,广泛存在。而链路预测作为网络分析的重要方法,具有很大的研究意义和应用价值。传统的链路预测算法普遍是基于邻接矩阵的稀疏表示方案而设计,计算效率低且扩展性差。首先引入网络表示学习的概念,创新性地提出基于几何布朗运动的随机游走算法GbmRw,然后进一步设计出网络表示学习算法GBMLA,实现更具区分能力与表达能力的网络表示,最后以节点表示向量的欧式距离来表征节点之间的相似性,从而预测其链路存在的可能性。不同领域的多个网络中进行反复实验的结果表明,该算法较之于基于原始网络设计的传统算法,预测效果得到了明显的提升,也进一步肯定了网络表示学习对于链路预测工作的重要意义。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

计算机科学与探索

《计算机科学与探索》(CN:11-5602/TP)是一本有较高学术价值的大型月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。

杂志详情