0
400-888-7501
首页 期刊 计算机科学 面向三维重建的自适应列文伯格-马夸尔特点云配准方法【正文】

面向三维重建的自适应列文伯格-马夸尔特点云配准方法

作者:曾俊飞; 杨海清; 吴浩三维重建点云配准点云特征平滑度

摘要:针对三维重建时点云配准过程易受环境噪声、点云曝光、光照、物体遮挡等因素的影响,以及传统ICP配准算法配准精度低、耗时长等问题,提出一种基于自适应列文伯格-马夸尔特迭代式的点云配准方法。首先,对初始点云数据采用统计滤波和体素栅格滤波相结合的方式进行降噪预处理;然后,对滤波后的点云进行分层,剔除位于层外的外点数据,以提高后续点云配准的精度;针对传统点云特征描述方法计算量大的问题,使用平滑度参数提取点云特征,以提升点云配准的效率;最后,根据点云特征建立帧间点到线及点到面的约束关系,采用改进的列文伯格-马夸尔特(Levenberg-Marquardt)方法完成点云配准,构建较理想的三维重建模型。实验结果表明,提出的点云配准方法适用于室内及室外场景的三维重建,环境适应性强,且点云配准精度和效率都有较大提升。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

计算机科学

《计算机科学》(CN:50-1075/TP)是一本有较高学术价值的大型月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。 《计算机科学》报导国内外计算机科学与技术的发展动态,以其新颖、准确、及时为特色,突出动态性、综述性、学术性,“前沿学科”与“基础研究”相结合;“优秀技术”与“支撑技术”相结合;“倡导”与“争鸣”相结合。

杂志详情