0
400-888-7501
首页 期刊 计算机工程与应用 时空属性关系标签的频繁轨迹模式挖掘【正文】

时空属性关系标签的频繁轨迹模式挖掘

作者:潘晓英; 赵倩; 赵普一卡通数据关系标签可视化

摘要:校园卡技术的广泛应用是高校信息化程度的重要标志,其中学生消费数据隐含了强大的潜在价值,对其进行挖掘具备重大的实用意义。由此,提出一种将校园消费流水数据转换为带有时空属性的消费轨迹树DP-DBSCAN算法和带有关系标签的频繁轨迹挖掘模式FP-TRtree。DP-DBSCAN算法采用时间分块、顺序查询和距离度量,能高效地将数据转换为FP-TRtree带有顺序的频繁一项集,同时无需考虑参数问题,也避免了查询每个数据点最近邻对象的巨大耗时。FP-TRtree模式按顺序添加关系值,支持度降序排序,并对相同轨迹节点间的关系标签不断迭代优化。可视化分析结果表明,该数据转换算法和挖掘模式不但可以发现频繁消费的学生关系轨迹网及孤立人群,而且能定量描述节点间学生的消费亲密程度,同时也减少了数据库扫描次数以及树分支的建立。实验结果不仅符合学生实际消费情况,还能从复杂的消费网络中发现隐含的信息,为院校管理、领导决策提供可参照的依据。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

计算机工程与应用

《计算机工程与应用》(CN:11-2127/TP)是一本有较高学术价值的大型半月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。

杂志详情