作者:饶东宁; 黄思宏情感分析文本分类股价趋势预测中文分词
摘要:近几年,情感分析技术引起人们的兴趣,在金融应用上,可以作为投资者投资前的参考.但是现有方法存在应用过于专一、数据偏差、结果过于笼统和不够精确的问题.因此本文优化一个通用的中文文本分类器,用于对在线评论数据和股票新闻数据进行情感分析.收集整理了2万条数据作为语料库,每条数据分别由3个人进行独立标注.之后对THUCTC进行优化,具体从3个方面对中文文本分类器进行优化,首先是词语切分,使用词干词典方法结合不同的分词法,实验比较后得到二分法为最好的结果;其次,为分类器选择最好的内核,发现Liblinear内核对即时性要求较高的投资人更好,另一方面Libsvm在提高准确率方面更有优势;最后在金融导向的情绪字典方面,它由Chi-square和TF-IDF方法构建,可用在普通文本分类器上.通过这种方式,本文的结果可以被推广且不会失去准确性.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社