HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0

应用乳化液膜系统合成CdS与ZnS纳米复合微粒

作者:詹志洁; 许朝胜乳化液膜cdszns纳米复合微粒

摘要:利用双W/O型乳化液膜系统合成CdS及ZnS纳米微粒,并以W/O/W型乳化液膜系统合成合金型CdxZn1-xS、混合型CdSZnSmixture与核壳型CdScoreZnSshell(或ZnSooreCdSshell)的纳米复合微粒.XRD分析结果显示,CdS会随着界面活性剂Span80浓度增加而使晶型从立方体转变成六方体,而ZnS则没有晶型转变的现象发生.UV/VIS分析光学性质显示CdS及ZnS纳米微粒随着Span80浓度增加,吸收峰的强度均会有变强的趋势.其中CdS吸收波峰会随着Span80浓度增加而往短波长位移,而ZnS吸收波峰的位置不受Span80浓度影响.另外UV/VIS分析结果也显示,CdS纳米微粒的吸收波峰约在459 nm,ZnS纳米微粒的吸收波峰约在321 nm,而Cd0.5Zn0.5S与CdSZnSmixture纳米复合微粒会同时出现CdS与ZnS的吸收波峰.至于CdScoreZnSshell纳米复合微粒则仅会出现外层ZnS的吸收波峰;同样,ZnScoreCdSshell纳米复合微粒只会出现外层CdS的吸收波峰.另外,根据PL(λex=350 nm)的分析结果显示,CdS纳米微粒的放射波峰约在625 nm,ZnS纳米微粒的放射波峰约在537 nm,Cd0.5Zn0.5S纳米复合微粒则在537,572与625 nm三处同时出现明显的放射波峰,而CdSZnSmixture纳米复合微粒则在599 nm处出现不同于CdS与ZnS特征的放射波峰,至于CdScoreZnSshell或ZnScoreCdSshell纳米复合微粒则只会出现外层ZnS或CdS的放射波峰.

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

过程工程学报

《过程工程学报》(CN:11-4541/TQ)是一本有较高学术价值的大型双月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。

杂志详情