HI,欢迎来到学术之家,发表咨询:400-888-7501  订阅咨询:400-888-7502  股权代码  102064
0

MoS2@ZnxCd1-xS增强可见光诱导产氢性能同时降解抗生素废水:固溶体策略助力光催化

作者:韦之栋; 徐美奇; 刘军营; 郭伟琦; 江治; ...光催化氢能抗生素废水降解协同

摘要:随着工业化进程的加快,能源的需求亦随之增长.以传统不可再生的化石燃料为主体的能源结构,虽然可以满足日常能源需求,但是使用后其排放的氮氧化物,硫氧化物以及CO2温室气体将会对人类的环境造成污染.因此,开发清洁可持续的新型能源成为重要的研究方向之一.氢能作为一种可持续能源,具有高热值、零排放等优点,而光催化粉末体系制氢则具有低成本,低污染等优势.因此,光催化制氢有望成为未来氢能重要的生产方式之一.然而,由于目前关于光催化制氢的研究大多集中于牺牲剂体系,例如醇类及醇胺类体系.传统牺牲剂体系作为探索光催化制氢的作用机制是很有效的,但是具体到未来工业化进程中,其经济性还需进一步的提高,且其中甲醇、乙醇等本身也可作为一种燃料使用.因此,开发廉价的牺牲剂体系,也成了未来工业化进程中的一个重要方面.本文选用MoS2@ZnxCd1-xS作为催化剂,以抗生素废水作为牺牲剂,在可见光照射下实现产氢的同时,降解阿莫西林抗生素废水,相比于单独的MoS2@ZnS及MoS2@CdS体系,性能明显的提高.通过扫描电镜与元素分布测试证明了各个元素的存在及分布.XRD结果表明,MoS2@ZnxCd1-xS是以固溶体形式存在,并非简单地物理混合.随后HRTEM进一步证实所形成的固溶体催化剂呈六方晶相.采用XPS和Raman分析了元素的化学环境,发现固溶体与MoS2可能是通过Mo-S-Cd/Zn键而结合;而MoS2表现出1-T与2-H的混相结构.材料的吸光性能通过紫外可见漫反射测试.我们发现,随着ZnS含量的不断增加,固溶体在可见光区域的吸收不断减弱,同时吸收带边向着紫外光区移动.而光催化制氢性能测试实验表明,Zn0.5Cd0.5S体系呈现出最佳的性能,这可能是因为当Cd:Zn=1:1时,固溶体策略对于CdS在热力学与动力学方面的提升均达到最佳.而MoS2量的增加,产氢效果也呈现出“火山峰”似的规�

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

催化学报

《催化学报》(CN:21-1195/O6)是一本有较高学术价值的大型月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。 《催化学报》主要报道我国在多相催化、均相络合催化、生物催化、光催化、电催化、表面化学、催化动力学以及有关边缘学科的基础研究和应用基础研究中取得的有创造性的最新成果。

杂志详情