0
400-888-7501
首页 期刊 传感器与微系统 基于自监督深度学习的人脸表征及三维重建【正文】

基于自监督深度学习的人脸表征及三维重建

作者:刘成攀; 吴斌; 杨壮非约束条件自监督深度学习人脸表征三维重建孪生神经网络

摘要:非约束条件下,由于传统神经网络对于单个个体人脸表情变化过于敏感而对不同个体间人脸灵敏度有限,从而导致构建的三维模型几何特征与个体不匹配。针对上述问题,提出一种基于具有较强鲁棒性的自监督深度学习的人脸表征及三维重建算法,有效利用二维人脸的特征点信息自动映射到三维空间中实现三维人脸重建。选用Efficient Net为主体框架获取面部特征向量及三维形变模型参数,并在孪生神经网基础上引入对比损失函数扩大类间间距,减少类内间距,同时提出身份损失函数保留特征空间中同一个体的身份信息增强对形变的鲁棒性。在300W—LP和AFLW2000—3D数据集上,该算法均有不错的表现。

注:因版权方要求,不能公开全文,如需全文,请咨询杂志社

传感器与微系统

《传感器与微系统》(CN:23-1537/TN)是一本有较高学术价值的大型月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。 《传感器与微系统》编辑部始终坚持质量第一,注重社会效益,发表具有前瞻仰性、先进性、导向性的论文及最新科技、市场信息,为企事业和高校提供先进的科技成果与工艺技术,为提高传感器与微系统技术的学术水平,促进国内外学术交流,加速传感器与微系统技术及其产业的发展而努力工作。

杂志详情